Skip to content
Jiagu深度学习自然语言处理工具 中文分词 词性标注 命名实体识别 情感分析 知识图谱关系抽取 新词发现 关键词 文本摘要
Branch: master
Clone or download
Latest commit a809550 Mar 2, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
jiagu optimize time cost Feb 27, 2019
test update Feb 27, 2019
README.md Update README.md Mar 2, 2019
demo.py
license
requirements.txt commit message Feb 25, 2019
setup.py

README.md

Jiagu自然语言处理工具

Jiagu以BiLSTM等模型为基础,使用大规模语料训练而成。将提供中文分词、词性标注、命名实体识别、情感分析、知识图谱关系抽取、关键词抽取、文本摘要、新词发现等常用自然语言处理功能。参考了各大工具优缺点制作,将Jiagu回馈给大家。

目录


提供的功能有:

  • 中文分词
  • 词性标注
  • 命名实体识别
  • 情感分析 (模型训练中)
  • 知识图谱关系抽取 (模型训练中)
  • 关键词提取
  • 文本摘要
  • 新词发现
  • 等等。。。。

安装方式

pip安装

pip install jiagu

源码安装

git clone https://github.com/ownthink/Jiagu
cd Jiagu
python3 setup.py install

使用方式

  1. 快速上手:分词、词性标注、命名实体识别
import jiagu

#jiagu.init() # 可手动初始化,也可以动态初始化

text = '厦门明天会不会下雨'

words = jiagu.seg(text) # 分词
print(words)

pos = jiagu.pos(words) # 词性标注
print(pos)

ner = jiagu.ner(text) # 命名实体识别
print(ner)
  1. 中文分词

分词各种模式使用方式

import jiagu

text = '汉服和服装'

words = jiagu.seg(text) # 默认分词
print(words)

words = jiagu.seg([text, text, text], input='batch') # 批量分词,加快速度。
print(words)

words = jiagu.seg(text, model='mmseg') # 使用mmseg算法进行分词
print(list(words))

自定义分词模型(将单独提供msr、pku、cnc等分词标准)

import jiagu

# 独立标准模型路径
# msr:test/extra_data/model/msr.model
# pku:test/extra_data/model/pku.model
# cnc:test/extra_data/model/cnc.model

jiagu.load_model('test/extra_data/model/cnc.model') # 使用国家语委分词标准

words = jiagu.seg('结婚的和尚未结婚的')

print(words)
  1. 关键词提取
import jiagu

text = '''
该研究主持者之一、波士顿大学地球与环境科学系博士陈池(音)表示,“尽管中国和印度国土面积仅占全球陆地的9%,但两国为这一绿化过程贡献超过三分之一。考虑到人口过多的国家一般存在对土地过度利用的问题,这个发现令人吃惊。”
NASA埃姆斯研究中心的科学家拉玛·内曼尼(Rama Nemani)说,“这一长期数据能让我们深入分析地表绿化背后的影响因素。我们一开始以为,植被增加是由于更多二氧化碳排放,导致气候更加温暖、潮湿,适宜生长。”
“MODIS的数据让我们能在非常小的尺度上理解这一现象,我们发现人类活动也作出了贡献。”
NASA文章介绍,在中国为全球绿化进程做出的贡献中,有42%来源于植树造林工程,对于减少土壤侵蚀、空气污染与气候变化发挥了作用。
据观察者网过往报道,2017年我国全国共完成造林736.2万公顷、森林抚育830.2万公顷。其中,天然林资源保护工程完成造林26万公顷,退耕还林工程完成造林91.2万公顷。京津风沙源治理工程完成造林18.5万公顷。三北及长江流域等重点防护林体系工程完成造林99.1万公顷。完成国家储备林建设任务68万公顷。
'''				

keywords = jiagu.keywords(text, 5) # 关键词
print(keywords)
  1. 文本摘要
fin = open('input.txt', 'r')
text = fin.read()
fin.close()

summarize = jiagu.summarize(text, 3) # 摘要
print(summarize)
  1. 新词发现
import jiagu

jiagu.findword('input.txt', 'output.txt') # 根据文本,利用信息熵做新词发现。

评价标准

  1. msr测试结果

msr

附录

  1. 词性标注说明
n   普通名词
nt   时间名词
nd   方位名词
nl   处所名词
nh   人名
nhf  姓
nhs  名
ns   地名
nn   族名
ni   机构名
nz   其他专名
v   动词
vd  趋向动词
vl  联系动词
vu  能愿动词
a   形容词
f   区别词
m   数词  
q   量词
d   副词
r   代词
p   介词
c   连词
u   助词
e   叹词
o   拟声词
i   习用语
j   缩略语
h   前接成分
k   后接成分
g   语素字
x   非语素字
w   标点符号
ws  非汉字字符串
wu  其他未知的符号
  1. 命名实体说明(采用BIO标记方式)
B-PER、I-PER   人名
B-LOC、I-LOC   地名
B-ORG、I-ORG   机构名

加入我们

思知人工智能群QQ群:90780053,微信群联系作者微信:MrYener,作者邮箱联系方式:help@ownthink.com

捐赠作者(您的鼓励是作者开源最大的动力!!!):捐赠致谢

收款码

贡献者:

  1. Yener
  2. zengbin93
  3. dirtdust
You can’t perform that action at this time.