
Gradient optimization for robot inverse kinematics

Pramod Kotipalli1

Abstract— Inverse kinematics is one of the hardest problems
in robotics. Given desired goal position and orientation for an
end-effector, inverse kinematics seeks to find a suitable series of
joint configurations to meet that goal. In this paper, we develop
a forward kinematics model in Python and apply gradient-
based methods using automatic differentiation to develop an
inverse kinematics model of an arbitrary n-joint robot arm. We
evaluate the performance of standard gradient descent against
Nesterov Momentum gradient descent. We conclude with a
discussion of the limitations of our 2D model and areas for
extension to gain more fidelity with real-world robots.

I. INTRODUCTION

Robotic arms are ubiquitous. These serial actuators help
assemble cars on factory floors, help vacuum our floors, and
even aid in film production.

Fig. 1. The Canadarm on the NASA Space Shuttle [Wikipedia n.d.(a)]

For a robot arm to navigate to a goal position, the robot
must first know the position of its links and the orientation
of its joints. Together, this series of components determine
the position of the robot arm’s end-effector.

Given sufficient information about the position, orienta-
tion, and dynamics of these joints and links, the position
and orientation of the end-effector can be computed directly
with a series of matrix multiplications. This process is
known as forward kinematics. Given a goal position for the
end-effector, finding the position, orientation, and dynamics
of intermediate joints and links is the process of inverse
kinematics. This problem is one of the hardest problems in
robotics; inverse kinematics forms a highly non-convex and
discontinuous optimization problem.

In this paper we will investigate gradient descent algo-
rithms applied to the problem of inverse kinematics. We will
build a two dimensional forward kinematics model and sim-
ulation tool in the Python programming language. We then
apply a Python-based automatic differentiation method to our

1Pramod Kotipalli is with the Department of Computer Sci-
ence, School of Engineering, Stanford University, Stanford, CA
pramod.kotipalli@stanford.edu

forward kinematics model to provide gradient information
for our gradient descent method. Doing so provides us with
an inverse kinematics model.

The goal of inverse kinematics is to find a configuration
of joint angles such that a goal position is reached by the
end-effectors. As such, the top line metric to minimize is
the distance between the end-effector and the goal position.
Furthermore, mobile robots face practical constraints in terms
of energy consumption and limited computation resources,
both in terms of execution time and memory usage. We
can approximate these resource costs through the number of
iterations taken for the gradient descent method to converge.

II. BACKGROUND

A. Forward kinematics

A robot arm is modeled as a series of links and joints.
Links have a fixed length and are connected to each other
by joints, either revolute joints (rotation around a common
axis) or prismatic joints (providing a linear sliding move-
ment). (See Figure 3.) We also assume that each joint only
provides one degree-of-freedom. We discuss the geometry
and kinematics modeling of serial robots based on [Touretzky
2017, Spong, Hutchinson, and Vidyasagar 2020].

Fig. 2. A six degree-of-freedom serial robot arm [Wikipedia n.d.(b)]

A revolute joint is characterized by the angle between the
two links it connects. The process of forward kinematics
is to find the cumulative effect of all of these joint angles

Fig. 3. Six different types of joints used in robotics [LaValle 2006]



on the position and orientation of the end-effector. A robot
manipulator in n joints has n+1 links. Joint i connects link
i−1 with link i. Joint 1 connects link 0 with link 1, namely
the ground plane with the first link of the robot arm. We
define the joint variable to be qi which takes the angle of
rotation, θi, for a revolute joint or the joint displacement, di,
in the case of a prismatic joint.

The key modeling feature of forward kinematics is how we
define and attach coordinate frames to each link in the series.
Specifically, we rigidly attach a coordinate frame oixiyizi
to link i such that the coordinates of any point on link i is
constant when expressed in ith coordinate frame. When joint
i is actuated, link i and its corresponding coordinate frame
oixiyizi move together.

We now have coordinate frames attached to each joint
in the robot. Each joint variable qi defines a homogeneous
coordinate transform (as matrix Ai) from coordinate frame
i − 1 (i.e. oi−1xi−1yi−1zi−1) to coordinate frame i (i.e.
oixiyizi). The transformation matrix Ai is a function of
the joint variable qi. As such, Ai = Ai(qi), a notation
simplification. The coordinate transform from link i to link
j is given by T i

j = Ai+1 · · ·Aj which can equivalently be
expressed in R4×4 composed of a rotation matrix Ri

j ∈ R3×3

and position base frame Oi
j ∈ R3:

T i
j =

[
Ri

j Oi
j

~0 1

]
(1)

The coordinate transform from link 0 (attached to the
robot’s fixed origin reference frame) to link n (the end-
effector) is notated by T 0

n . This is the formulation of forward
kinematics. We define the function fk to take in the joint
variables vector ~q and link lengths vector ~l and to return the
position vector of the end-effector.

B. Inverse kinematics

Forward kinematics produces the position goal = ~g =
O0

n of the end-effector given the joint variables ~q ∈ Rn×d for
d ∈ {2, 3} (i.e. in two or three dimensions). Inverse kinemat-
ics produces the joint variables ~q given a target end-effector
position O0

n. We are tasked with finding the series of matrices
Ai(qi) = Ai ∈ R4×4∀i ∈ {1, . . . , n} that when multiplied
with the design variables qi will produce the composite
transformation T i

j that (1) respects the kinematic constraints
of the robot (e.g. link lengths and rotation constraints) and
(2) reaches the end-effector to the goal position ~g.

C. Inverse kinematics as an optimization problem

Solving for the joint positions and orientations requires
trigonometric modeling. The inclusion of sine and cosine
terms in this modeling make inverse kinematics a highly non-
convex problem. As such, neither constrained optimization
nor linear programming are suitable options to solve this
inverse problem. Inverse kinematics in its general, non-
simplified form construes a non-convex optimization method
where it is generally impossible to find a globally-optimum
solution.

To use a gradient-based method, we must have first-order
information, namely the Jacobian of the forward function
~Jfk. (With the Hessian ~Hfk of the forward function, we can
use second-order methods.) Computing the gradient function
of fk provides us with sufficient information to find a local
optima joint variable vector ~q given the link lengths vector
~L and a goal position.

D. Automatic differentiation for gradient information

Automatic differentiation techniques use the chain rule
of calculus to numerically evaluate the derivatives of func-
tions defined by a computer program. Because a computer
program is ultimately composed of elementary operations,
such as addition and division, we can apply the chain rule
several times to find the derivative of a computer program
[Kochenderfer and Wheeler 2019].

We represent the forward kinematics process in a compu-
tational graph, namely through a Python function definition
fk. We use the third-party Python library autograd which
was designed to differentiate programs written in Python
and numpy code. (numpy is a popular third-party numerical
computation library for Python.)

III. IMPLEMENTATION

[Miranda 2017, Morais 2019] aided in our implementation
of the forward and inverse kinematic modeling.

A. Kinematic modeling

We use Python 3 to model and compute forward kinemat-
ics function fk. We model this problem in two dimensions.
The transformation matrix T i

j ∈ R3×3 combines a rotation
matrix Ri

j ∈ R3×3 and base position vector Oi
j ∈ R2 and

decomposes into a series of matrices ~A. For i = 0 and j = n,
we can state the forward kinematics problem as:

T 0
n =

[
R0

n O0
n

~0 1

]
= A0

1 · · ·An−1
n (2)

Each update matrix takes the form:

Ai−1
i =

cos θ − sin θ Oi−1
i (0)

sin θ cos θ Oi−1
i (1)

0 0 1

 (3)

We must then compute the Jacobian of the forward func-
tion, as ~Jfk = jacobian(fk). We use the Jacobian to
inform our gradient descent search.

The cost function is defined as the distance between the
goal position goal = ~g and result of the forward kinematics
model for a given joint configuration ~q [Morais 2019]:

costgoal(~q) = ‖goal− fk(~q)‖ (4)



B. Automatic differentiation with Python autograd

We then use the autograd [Maclaurin, Duvenaud, and
Adams 2015] Python library to find the Autograd is a
third-party Python library that computes the derivative of
a vector-input, scalar-output function specified with Python
and numpy. We use the autograd.grad gradient func-
tion as part of the gradient descent algorithm:

~Jfk = autograd.grad(fk) (5)

We formulate the optimization problem as one of the cost
function, yielding our inverse kinematics solution function:

ik(goal) = argmin
~q

costgoal(~q) (6)

IV. EVALUATION

We would like to understand the accuracy and performance
of our inverse kinematics model ik. We specify various
parameters of the algorithm and report the cost value and gra-
dient descent (g.d.) iteration counts and Nesterov Momentum
g.d. (n.g.d.) iteration counts. We used a fixed seed value in
numpy to ensure reproducible results. We used an epsilon of
ε = 0.001 as the threshold to terminate our gradient descent
methods.

Table IV: Method results
n goal = ~g g.d. iters. n.g.d iters.

2 [
√
2,
√
2]T 3047 255

3 [2, 1]T 693 40

4 [3, 2]T 1111 48

5 [3, 3]T 742 30

6 [2, 3]T 346 53

For every robot size and goal position evaluated, n.g.d.
performed about 10 times faster than g.d. to converge to a
solution. The momentum factor in n.g.d. allowed the opti-
mization method to move quickly through an initially-”flat”
configuration space to more quickly find a valid locally-
optimum solution.

The initial joint configuration angles are randomly initial-
ized from [0, 2π). At each iteration of the gradient descent
method, a new frame is rendered showing the optimal joint
configuration for that time in the optimization process. In the
simulation, we view the robot arm’s joints slowly converging
to a local optima configuration until the epsilon value is
exceeded during gradient updates.

We visualize the joint configurations resulting from Table
IV in Figures 4, 5, 6, 7, and 8.

V. LIMITATIONS AND FUTURE WORK

A. Operating in 3D

This implementation of inverse kinematics is simulated
in two-dimensions. However, most robotic arms operate in
three-dimensions utilizing a different update matrix Ai−1

i ∈
R4×4 with a rotation matrix Ri−1

i ∈ R3×3 and base position

Fig. 4. n = 2, ~g = [
√
2,

√
2]T

Fig. 5. n = 3, ~g = [2, 1]T

Fig. 6. n = 4, ~g = [3, 2]T

Fig. 7. n = 5, ~g = [3, 3]T



Fig. 8. n = 6, ~g = [2, 3]T

vector Oi−1
i ∈ R3. This 2D model can easily be extended to

3D by updating the fk method appropriately. The gradient
descent method does not need to be changed to account for
this new problem formulation.

Typically, robots’ joints are constrained in their movement.
For example, one rotation joint may only be able to operate
in [0, π) due to its construction. The Stanford Arm (Figure
9) is a classic example of a serial manipulator robot arm.

Fig. 9. The Stanford Arm [Allen 2015]

B. Denavit-Hartenberg convention for 3D kinematic chains

Every joint of this robot is constrained in its motion. Using
the Denavit-Hartenberg (DH) convention, we are able to
model the joints’ coordinate frames and define the update
matrix Ai−1

i as a product of two rotation matrices and
two transformation matrices. The DH convention makes a
few simplifying assumptions about the robot’s kinematic
constraints allowing for most serial robots to be modeling
in 3D with DH rules. More details can be found in [Spong,
Hutchinson, and Vidyasagar 2020: Ch. 3-4]. 3D modeling
with DH conventions is one area of extension for this paper’s
work.

Through its design, a serial robotic arm provides a priori
information about link lengths, joint angle constraints, and
coordinate frame displacements which are all encoded into
the DH matrix. An optimization method then operates on
the joint angle configuration variables in this matrix to find
a locally-optimal joint configuration.

C. Path constraints and optimization

Moving an end-effector from an initial position ~o to a goal
position ~g is usually not sufficient for a robot to operate in the
real world. Robots are constrained by energy requirements,
weight requirements, and torque output limits among other
factors. Further, the path that the robot’s joints can move

in space must also be constrained to avoid self-intersection
and to avoid obstacles. Incorporating these constraints into
this inverse kinematic model would make this system more
useful in real-world contexts.

VI. CONCLUSION

In this paper, we develop a rigorous model for the forward
kinematics process for serial robot arms. We employ auto-
matic differentiation to provide gradient information about
the forward process to inform the gradient descent method
used to solve the inverse kinematics process. We compare
standard gradient descent with Nesterov gradient descent
applied to five instances of the inverse problem. We discuss
methods for augmenting our 2D simulation into 3D while
incorporating real-world constraints imposed on physical
robots.

REFERENCES

[All15] Peter K. Allen. CS 4733, Class Notes: For-
ward Kinematics I. http : / / www1 . cs .
columbia.edu/˜allen/F15/NOTES/
forwardkin2.pdf. 2015.

[KW19] Mykel J Kochenderfer and Tim A Wheeler.
Algorithms for optimization. Mit Press, 2019.

[LaV06] S.M. LaValle. Planning Algorithms. Cambridge
University Press, 2006. ISBN: 9781139455176.
URL: https : / / books . google . com /
books?id=-PwLBAAAQBAJ.

[MDA15] Dougal Maclaurin, David Duvenaud, and Ryan
P Adams. “Autograd: Effortless gradients in
numpy”. In: ICML 2015 AutoML Workshop.
Vol. 238. 2015, p. 5.

[Mir17] LJ Miranda. Solving the Inverse Kinematics
problem using Particle Swarm Optimization.
https://ljvmiranda921.github.io/
notebook / 2017 / 02 / 04 / inverse -
kinematics-pso/. 2017.

[Mor19] Pedro Morais. py-k. https://github.com/
p-morais/py-k. 2019.

[SHV20] M.W. Spong, S. Hutchinson, and M. Vidyasagar.
Robot Modeling and Control. Wiley, 2020. ISBN:
9781119524076. URL: https : / / books .
google.com/books?id=WC7PDwAAQBAJ.

[Tou17] Dave Touretzky. Cognitive robotics: kinematics.
https : / / www . cs . cmu . edu / afs /
cs / academic / class / 15494 - s17 /
lectures / kinematics / kinematics .
pdf. 2017.

[Wika] Wikipedia. Canadarm. https : / / en .
wikipedia.org/wiki/Canadarm.

[Wikb] Wikipedia. Serial manipulator. https : / /
en . wikipedia . org / wiki / Serial _
manipulator.

http://www1.cs.columbia.edu/~allen/F15/NOTES/forwardkin2.pdf
http://www1.cs.columbia.edu/~allen/F15/NOTES/forwardkin2.pdf
http://www1.cs.columbia.edu/~allen/F15/NOTES/forwardkin2.pdf
https://books.google.com/books?id=-PwLBAAAQBAJ
https://books.google.com/books?id=-PwLBAAAQBAJ
https://ljvmiranda921.github.io/notebook/2017/02/04/inverse-kinematics-pso/
https://ljvmiranda921.github.io/notebook/2017/02/04/inverse-kinematics-pso/
https://ljvmiranda921.github.io/notebook/2017/02/04/inverse-kinematics-pso/
https://github.com/p-morais/py-k
https://github.com/p-morais/py-k
https://books.google.com/books?id=WC7PDwAAQBAJ
https://books.google.com/books?id=WC7PDwAAQBAJ
https://www.cs.cmu.edu/afs/cs/academic/class/15494-s17/lectures/kinematics/kinematics.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15494-s17/lectures/kinematics/kinematics.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15494-s17/lectures/kinematics/kinematics.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15494-s17/lectures/kinematics/kinematics.pdf
https://en.wikipedia.org/wiki/Canadarm
https://en.wikipedia.org/wiki/Canadarm
https://en.wikipedia.org/wiki/Serial_manipulator
https://en.wikipedia.org/wiki/Serial_manipulator
https://en.wikipedia.org/wiki/Serial_manipulator

	Introduction
	Background
	Forward kinematics
	Inverse kinematics
	Inverse kinematics as an optimization problem
	Automatic differentiation for gradient information

	Implementation
	Kinematic modeling
	Automatic differentiation with Python autograd

	Evaluation
	Limitations and future work
	Operating in 3D
	Denavit-Hartenberg convention for 3D kinematic chains
	Path constraints and optimization

	Conclusion

