Skip to content
Rewrite of the behavioral model as a C++ project without auto-generated code
C++ Python C M4 Makefile Thrift Other
Branch: master
Clone or download
Antonin Bas
Antonin Bas Update _pi_init implementation
_pi_init is now required to return the "ABI version" so that the core PI
library can check for compatibility at runtime.
Latest commit b447ac4 Aug 6, 2019
Type Name Latest commit message Commit time
Failed to load latest commit information.
PI Update _pi_init implementation Aug 6, 2019
docs Add docs simple switch if restrictions (#800) Jul 2, 2019
hooks Fix dockerhub build hook for release image Feb 22, 2019
include Make exit a core primitive Jun 10, 2019
m4 Use config.h file to fix use of #ifdef in headers Feb 15, 2019
mininet Option in mininet switch to have bmv2 log to console (#286) Feb 10, 2017
pdfixed Make code build with recent Thrift versions (post 0.12.1) May 9, 2019
src Make exit a core primitive Jun 10, 2019
targets Make exit a core primitive Jun 10, 2019
tests Make exit a core primitive Jun 10, 2019
third_party add missing functional includes Oct 30, 2017
thrift_src Add support for sending digests through P4Runtime Oct 31, 2018
tools Add units for meter rate to documentation of runtime_CLI (#753) Apr 25, 2019
travis Make thrift's installation friendly for chinese user (#797) Jul 22, 2019
.dockerignore Exclude some unnecessary files from the Docker image Apr 7, 2017
.gitignore Support for injecting / receiving pkts with gRPC Jul 6, 2017
.gitmodules got rid of infra Mar 16, 2015
.travis.yml More recent compiler versions for CI Apr 19, 2019 Fix Apache CLA link Feb 15, 2019
CPPLINT.cfg added files, and a script to invoke cpplint in … Dec 8, 2015
Dockerfile More recent compiler versions for CI Apr 19, 2019
Dockerfile.grpc Update requirement for grpc to 1.3.0 (#378) May 23, 2017
Dockerfile.noPI Add Dockerfile.noPI Dec 6, 2017
Doxyfile Use config.h file to fix use of #ifdef in headers Feb 15, 2019 added main page for the target-design doxygen documentation Jan 22, 2016
LICENSE Added licensing info Jun 4, 2015 Install simpleswitch_runner library Aug 9, 2018 Update README to reference p4c compiler Jul 19, 2019
VERSION changed VERSION number to 1.13.0 for release Feb 21, 2019 Use config.h file to fix use of #ifdef in headers Feb 15, 2019 Make code build with recent Thrift versions (post 0.12.1) May 9, 2019 Fix for ubuntu18.04 (#657) Sep 18, 2018


Build Status

This is the second version of the P4 software switch (aka behavioral model), nicknamed bmv2. It is meant to replace the original version, p4c-behavioral, in the long run, although we do not have feature equivalence yet. Unlike p4c-behavioral, this new version is static (i.e. we do not need to auto-generate new code and recompile every time a modification is done to the P4 program) and written in C++11. For information on why we decided to write a new version of the behavioral model, please look at the FAQ below.

This repository contains code for several variations of the behavioral model, e.g. simple_switch, simple_switch_grpc, psa_switch, etc. See here for more details on the differences between these.


On Ubuntu 14.04, the following packages are required:

  • automake
  • cmake
  • libjudy-dev
  • libgmp-dev
  • libpcap-dev
  • libboost-dev
  • libboost-test-dev
  • libboost-program-options-dev
  • libboost-system-dev
  • libboost-filesystem-dev
  • libboost-thread-dev
  • libevent-dev
  • libtool
  • flex
  • bison
  • pkg-config
  • g++
  • libssl-dev

You also need to install the following from source. Feel free to use the install scripts under travis/.

To use the CLI, you will need to install the nnpy Python package. Feel free to use travis/

To make your life easier, we provide the script, which will install all the dependencies needed on Ubuntu 14.04.

Our Travis regression tests now run on Ubuntu 14.04.

On MacOS you can use the tools/macos/ script to install all the above dependencies using homebrew. Note that in order to compile the code you need XCode 8 or later.

Building the code

1. ./
2. ./configure
3. make
4. [sudo] make install  # if you need to install bmv2

In addition, on Linux, you may have to run sudo ldconfig after installing bmv2, to refresh the shared library cache.

Debug logging is enabled by default. If you want to disable it for performance reasons, you can pass --disable-logging-macros to the configure script.

In 'debug mode', you probably want to disable compiler optimization and enable symbols in the binary:

./configure 'CXXFLAGS=-O0 -g'

The new bmv2 debugger can be enabled by passing --enable-debugger to configure.

Running the tests

To run the unit tests, simply do:

make check

If you get a nanomsg error when running the tests (make check), try running them as sudo

Running your P4 program

To run your own P4 programs in bmv2, you first need to compile the P4 code into a json representation which can be consumed by the software switch. This representation will tell bmv2 which tables to initialize, how to configure the parser, ...

There are currently 2 P4 compilers available for bmv2 on p4lang:

  • p4c includes a bmv2 backend and is the recommended compiler to use, as it supports both P4_14 and P4_16 programs. Refer to the README for information on how to install and use p4c. At the moment, the bmv2 p4c backend supports the v1model architecture, with some tentative support for the PSA architecture. P4_16 programs written for v1model can be executed with the simple_switch binary, while programs written for PSA can be executed with the psa_switch binary. See here for more details on the differences between these.
  • p4c-bm is the legacy compiler for bmv2 (no longer actively maintained) and only supports P4_14 programs.

Assuming you have installed the p4c compiler, you can obtain the json file for a P4_16 v1model program as follows:

p4c --target bmv2 --arch v1model --std p4-16 <prog>.p4

This will create a <prog>.json output file which can now be 'fed' to the bmv2 simple_switch binary:

sudo ./simple_switch -i 0@<iface0> -i 1@<iface1> <prog>.json

In this example <iface0> and <iface1> are the interfaces which are bound to the switch (as ports 0 and 1).

Using the CLI to populate tables...

The CLI code can be found at tools/ It can be used like this:

./ --thrift-port 9090

The CLI connect to the Thrift RPC server running in each switch process. 9090 is the default value but of course if you are running several devices on your machine, you will need to provide a different port for each. One CLI instance can only connect to one switch device.

The CLI is realized using the Python's cmd module and supports auto-completion. If you inspect the code, you will see that the list of supported commands. This list includes:

- table_set_default <table name> <action name> <action parameters>
- table_add <table name> <action name> <match fields> => <action parameters> [priority]
- table_delete <table name> <entry handle>

The CLI include commands to program the multicast engine. Because we provide 2 different engines (SimplePre and SimplePreLAG), you have to specify which one your target is using when starting the CLI, using the --pre option. Accepted values are: None, SimplePre (default value) and SimplePreLAG. The l2_switch target uses the SimplePre engine, while the simple_switch target uses the SimplePreLAG engine.

You can take a look at the commands.txt file for l2_switch and simple_router to see how the CLI can be used.

Using the debugger

To enable the debugger, make sure that you passed the --enable-debugger flag to configure. You will also need to use the --debugger command line flag when starting the switch.

Use tools/ as follows when the switch is running to attach the debugger to the switch:

sudo ./ [--thrift-port <port>]

Displaying the event logging messages

To enable event logging when starting your switch, use the --nanolog command line option. For example, to use the ipc address ipc:///tmp/bm-log.ipc:

sudo ./simple_switch -i 0@<iface0> -i 1@<iface1> --nanolog ipc:///tmp/bm-log.ipc <path to JSON file>

Use tools/ as follows when the switch is running:

sudo ./ [--thrift-port <port>]

The script will display events of significance (table hits / misses, parser transitions, ...) for each packet.

Loading shared objects dynamically

Some targets (simple_switch and simple_switch_grpc) let the user load shared libraries dynamically at runtime. This is done by using the target-specific command-line option --load-modules, which takes as a parameter a comma-separated list of shared objects. This functionality is currently only available on systems where dlopen is available. Make sure that the shared objects are visible by the dynamic loader (e.g. by setting LD_LIBRARY_PATH appropriately on Linux). You can control whether this feature is available by using --enable-modules / --disable-modules when configuring bmv2. By default, this feature is enabled when dlopen is available.

Integrating with Mininet

We will provide more information in a separate document. However you can test the Mininet integration right away using our simple_router target.

In a first terminal, type the following:

- cd mininet
- sudo python --behavioral-exe ../targets/simple_router/simple_router --json ../targets/simple_router/simple_router.json

Then in a second terminal:

- cd targets/simple_router
- ./runtime_CLI < commands.txt

Now the switch is running and the tables have been populated. You can run pingall in Mininet or start a TCP flow with iperf between hosts h1 and h2.

When running a P4 program with simple_switch (instead of simple_router in the above example), just provide the appropriate simple_switch binary to with --behavioral-exe.


Why did we need bmv2 ?

  • The new C++ code is not auto-generated for each P4 program. This means that it becomes very easy and very fast to change your P4 program and test it again. The whole P4 development process becomes more efficient. Every time you change your P4 program, you simply need to produce the json for it using the p4c compiler and feed it to the bmv2 executable.
  • Because the bmv2 code is not auto-generated, we hope it is easier to understand. We hope this will encourage the community to contribute even more to the P4 software switch.
  • Using the auto-generated PD library (which of course still needs to be recompiled for each P4 program) is now optional. We provide an intuitive CLI which can be used to program the runtime behavior of each switch device.
  • The new code is target independent. While the original p4c-behavioral assumed a fixed abstract switch model with 2 pipelines (ingress and egress), bmv2 makes no such assumption and can be used to represent many switch architectures. Three different -although similar- such architectures can be found in the targets/ directory. If you are a networking company interested in programming your device (parser, match-action pipeline, deparser) with P4, you can use bmv2 to reproduce the behavior of your device.

How do program my own target / switch architecture using bmv2 ?

You can take a look at the targets/ directory first. We have also started writing some doxygen documentation specifically targetted at programmers who want to implement their own switch model using the bmv2 building blocks. You can generate this documentation yourself (if you have doxygen installed) by running doxygen Doxyfile. The output can be found under the doxygen-out directory. You can also browse this documentation online.

What else is new in bmv2 ?

  • Arithmetic is now possible on arbitrarily wide fields (no more limited to <= 32-bit fields) and variable-length fields are now supported.
  • We finally have unit tests!
  • While it is still incomplete, we provide a convenient 'event-logger' built on top of nanomsg. Every time a 'significant' event happens (e.g. table hit, parser transition,...) a message is broadcast on a nanomsg channel and any client can consume it.

Are all features supported yet ?

At this time, we are aware of the following unsupported P4_14 features:

  • direct registers

If you find more missing features or if you would like to request that a specific feature be added, please send us an email ( or submit an issue with the appropriate label on Github. Do not hesitate to contribute code yourself!

How do I signal a bug ?

Please submit an issue with the appropriate label on Github.

How can I contribute ?


You can’t perform that action at this time.