

Goals of 1.2

e Simplify and clean-up P4

* Provide a “stable” language version

* |.e., we work very hard to keep the language
backwards compatible from 1.2 onwards

* Provide a precise specification of the language
* Including semantics of all constructs

* Provide a reference implementation of the language
* Compiler front-end
 Example programs
* Behavioral simulator

e Address feedback received on P4 v1.0and v1.1

PAvi2vs1.1 (&

* An incremental evolution of P4 v1.1
e Same abstraction level

* Same core constructs
* Parsers, control, match/action tables, actions, headers, metadata

* Same computational restrictions
* No unbounded loops, no FP, no pointers, no recursion, constant work per header byte

* Simplified and clarified

* Avoid inventing new language constructs
* Reuse well-understood tools and techniques as much as possible

* Prepare language for future evolution through growth
» Architectural features caused most of P4’s growth

Language clean-up

* Break language into three parts

* Core language (part of the language spec)

» Packet processing language
* Language constructs to describe architectures

e Standard library (e.g., common to all architectures)

* A standard architecture spec
* Prototypes for architectural blocks and intrinsic metadata
 Library with extern blocks declarations (e.g., checksums)

* Write a specification for the control/data-plane API
e Libraries and architectures are written in P4

* These separate specifications evolve independently
* Architecture evolution becomes much easier

Desirable P4 v1.2 features

* Strong static typing

Simpler syntax

Few undefined behaviors

No runtime exceptions/traps

Explicit deparser specification

Clear evaluation results (“declarative” => “deterministic”)
Lexical scoping

e Support for writing modular programs

e Support for error handling

* Parameterization (e.g., “how many bits to specify an output port?”)
* Compile-time resource allocation (e.g., checksum units, tables, etc.)
* Simple extensibility hooks (e.g., Java-like annotations)

Details for some
proposed constructs

Architecture specification

A proposal for architecture specification was given
in December 2015

* That presentation is included as an appendix
* The architectural specification language included the following features:
* struct/header types
» parsers/control/packages architectural blocks
* prototypes for architectural blocks
* generic types (templates)
* parameterized architectural blocks
* separation of declaration vs. instantiation

Interaction with architecture

* Intrinsic metadata
e Action occurs at the “end” of the pipeline

e Extern object method invocations
* Action occurs instantly

* No “delayed” execution
* E.g., drop, field_list_calculation, generate_digest
* Order of delayed executions was unspecified
* Order of side-effects and delayed executions was unspecified

* The meaning of a P4 program should be unambiguous

Moving constructs from P4 to libraries

* Custom primitive actions declarations
* field list_calculation (e.g., checksums, modify field with_hash based offset)
* parser_value_set

* generate_digest

* cloning, recirculation, resubmission, mirroring
e Counters, meters, registers

* Action profiles

» Saturated types
* In general, all constructs which “look” non-portable across all architectures

Explicit packet (in standard library)

extern packet_in {
void extract<T>(out T hdr);
void extract<T>(out T varSizeHeader, in bit<32> size);
T lookahead<T>();

}

extern packet out {
void emit<T>(in T hdr);

}

parser prs(packet_in p, Headers h) {
p.extract(h.eth);

}

Deparsers

* InP4vl.1
* Sometimes impossible to infer
* Users have no control
* Hacks for creating fabric headers

control deparser(in headers h, packet_out p)

{
e In P4 v1.2 Checksum16() ck;
' apply {
e Just another control block ck.clear();

h.ip.hdrChecksum = 0;
ck.update(h.ip);
p.emit(h.ethernet);
h.ip.hdrChecksum = ck.get();
p.emit(h.ip);

* Should clearly specify sequence of
actions (emit, checksums)

Parameterization support

* Writing portable and modular programs

 typedef
* E.g., typedef bit<8> Port _t;

° enum
e E.g., enum ChecksumType {crcl6, crc32 }

e constant declarations
* const Port_t CPU_PORT = 16;

* Generics (templates)
* E.g., parser<H>(packet_in p, out H headers)

* Constructors
* (See also the architectural description proposal)

Simpler syntax

* modify_field, set_metadata => assignment statements
 modify field(a, b) =>a=>b
* set_metadata(a, b) =>a=>b

* Add a few useful operators: masking, concatenation, bit selection, mux, range

* Convert keywords to methods or fields
e valid(a) => a.valid

add_header(a) => a.setValid(true);

remove_header(a) => a.setValid(false);

copy_header(a, b) =>a=>b

hs[last] => hs.last

push(hs, 2) => hs.push_front(2)

Richer type system

° enum

* error
* header/struct
* header_union
 Stacks of unions => option parsing

* Typed architecture blocks
 parsers, control blocks, packages
* (See also the architectural description proposal)

Extensibility hooks

 @annotation(expression)

* Allows for some language evolution without spec changes
* Pragma-like

* Typed

* Apply to specific language elements

e Similar to Java @annotations and C# [Attributes]

 Some annotations could become part of standard

Y

Scoping

* Create lexical scopes

 Remove global variables

* Introduce local variables and parameters

 Clarifies scope of intrinsic metadata
(See also the architectural description proposal)

* Enables modular programs

* Declarations must precede uses (except parser states)

Error handling

e Accommodate various architectural constraints
* (E.g., encoding of error codes)

 Add an error type (special enum-like type):
error { IncorrectVersion, HeaderTooShort }

* Parser exceptions => “reject” parser state

* Introduce an “assert” method, usable in parsers
assert(h.ip.version == 4, IncorrectVersion);
» Assertion failure sets error code and transitions to the reject state

* Expose errors explicitly to control blocks
control ingress(in error parser_error, ...)

Flexible control-flow

e Control blocks:
 Add areturn statement
 Add an exit statement

* Parsers
* rename “return” to “transition”

To be continued...

* We will produce the following:
* Draft design with all of these features
* A “migration guide” mapping P4 v1.1 constructs to P4 v1.2
e Example programs and program fragments
* A written P4 v1.2 specification draft

Appendix

* The following slides include for reference the presentation from
December 2015 on a proposal for describing architectures in P4

Abstracting switch architectures
- a proposal -

November 30, 2015

The P4 tension

Universal

Customizable

22

P4 v1:

Fixed Abstract Forwarding Model

1.1 The P4 Abstract Model

1 INTRODUCTION

— C v 2 —

Ingress Match+Action
Packet Modifications +

Egress Selection

Queues

and/or
Buffers

[N Sy

—

Egress Match+Action

Packet Modifications

- C ©v-+H4COQO

¥

Figure 1: Abstract Forwarding Model

23

pletean
=

Ly

Table 2: Standard Parser Exceptions

Pl

programmable

-

Switch Configuration

[\
Action profiles | Parse Meters Registers
E Graph
Mirroring R s s esssssspesiss st - Counters LPM
field_list_calculation | | | Teigme | Exact
r¢ 1] ‘
¥ i Ternar
xorl6 || i 5 y
y 0]
I U
csum16 b N R Queues %T
a p —» S and/or —* p
crclé U 0 u
T [T\ Ingrss Match+Actjon Egress Match+Action | T
crc32 ' Packet Modifications + Packet Modifications .
A Egress Selection [
[

24

Divide and conquer

* Separate language definition from
architecture definition
* Evolve them independently

25

Speciftying architectures

e A device model describes what parts of a forwarding
device can be programmed in P4.

* Each manufacturer can publish custom device
models.

* The community defines a standard switch model for
portability.

* Even if without custom switch models, this approach
is useful, because it decouples the language evolution
from the model evolution: new versions of the
standard switch model do not require changing the
language.

Generic Programmable Dataplane Model

Packets
Programmable

blocks

AN
Dataplane

PR R Rl

[N\ N\

: /
/ Extern Fixed function v
(black-box)

Extern interfaces Dataplane/P4 interfaces .

P4 Support for multiple architectures

v
1
2 M 0]
R X Parser |*» drop?
_ NN R Queues T L
H P S and/or p
u £ Buffers U
T R | Ingress Match+Action Egress Match+Action | T
Packet Modifications + Packet Modifications
Egress Selection

Match-
* action
MUX

pipeline

» encrypt »

Packets in

Inventing new language constructs
 Don’t
* You will get them wrong

* Reuse constructs from other languages

e How would | do this in Java/C++?

Switch architecturein C++

// switch.hpp: written by manufacturer
struct Metaln { int inputPort; }

struct MetaOut {
int outputPort;
bool drop;

} target-defined metadata
user-defined metadata

template<class T> class switch

{

virtual void parser(const packet &p, T& headers)=0;
virtual void control(T& headers,
const Metaln &in, MetaOut& out)=0;

abstract methods = implemented by user

Structure of a P4 program

: stdmodel.
stdlib.p4
o
Written by fommunity Written by community

myProg.p4

Written by user

model.p4

Written by

manufacturer

Detailed Design

How is this different from “whitebox”?

* This is a revision of the previous whitebox proposal

* Accomplishes same goals
e Slightly different approach

* Break out whitebox into multiple simple constructs
* parser, control, package

* Allows for separate type-checking

* Modeled after C++/Java OO

* We can provide an operational semantics for all these
constructs

P4 program skeleton

// standard definitions

#include “stdlib.p4”

// architecture description; includes Switch decl.
#include “arch.p4”

// user code

parser myParser ...

// architecture instantiation

Switch(myParser(), myControl()) main;

Preliminaries

 Add a proper “struct” type

e Can be used for metadata (replacing the metadata
keyword)

* The header type is just for headers
 Structs can be nested (but not headers)

header ethernet { ... }
header ipv4 { ... }

struct headers_t { ethernet e; ipv4 ip; ... }

Basic building blocks

e parser and control

* They look like functions
* Local scope
e Arguments with directionality
* They are typed

e Rationale:

* in and out arguments indicate the scope of metadata and
the user data. For example, the parser metadata cannot be
accessed in the Ingress block.

 Signatures allow type checking

* Help with resource allocation, by delimiting the scope of
various structures.

Parsers

* Rename parser -> state
* Use parser for grouping states

parser P(in parser_metadata_t pm,
out header_t headers)

state start { ... extract(headers.e); ...
state parse_ip{... }

Control blocks

control Ingress(inout headers_t headers,
in control_metadata_in cmi,
out control_metadata_out cmo)
{
tablet{..}
actiona{..}
apply { /* control body */ }

}

Declarations

* Architecture declares prototypes for programmable
blocks

e Users define blocks with matching prototypes

parser P<H>(in parser_metadata pm, out H headers);

control Ingress<H>(inout H headers,
in control_metadata_in cmi,

out control_metadata_out cmo);

 Rationale:
* type variables indicate user-specified types
* Type variables are only allowed in architectural specifications
* users cannot write code containing type variables

Persistent Resources

e Compiler must allocate resources
* E.g., extern objects, tables, and blocks containing such objects
* Parsers and control blocks are persistent resources

parser name(arguments)

{

stateful _Instantiations
state{...}

control name(arguments)

{

stateful _Instantiations
apply {/* control flow here */ }

Instantiating a resource

extern Checksum16 { ... }

parser MyParser(...)

{

Checksum16 ck; // checksum unit instantiation

state start{ ... }
stateipv4 { ... ck.verify(h.ipv4); ... }

}

Types and instances

» parser and control block declare types

* Types must be instantiated to be used

control IPv4Control(inout Headers headers)

{..}

control Ingress(inout Headers headers, ...)

IPv4Control() ipv4control; // instantiate control block
table acl{ ... } // table instantiation

apply {

ipv4control.apply(headers); // invoke control instance

acl.apply(); // invoke table instance

Rationale for instantiations

e Parsers and control blocks are similar to classes in OO
languages.

e Separating type declaration from instantiation allows
one type to be instantiated multiple times.

e E.g,: configure a switch that has 4 ingress pipelines
where each of them can be programmed
independently: the programmer can write one type,
and instantiate it 4 times, once for each pipeline.

* Instantiation is denoted using constructor invocation.

Packages

* A package is a container which may contain other packages, parsers
and control blocks.

* The toplevel forwarding element is declared as a package by the
architecture manufacturer and instantiated by the user.

Switch instantiation outline

// Architecture declaration by manufacturer

parser Parser<H>(out H headers, ...);

control Ingress<H>(inout H headers, ...);

control Deparser<H>(in H headers, ...);

// toplevel element:

package Switch<H>(Parser<H> p,
Ingress<H> ingress,

Deparser<H> deparser);

// Program written by user

struct head {... }

parser MyParser(out head h, ...) {... }
control Mylngress(inout head h) {... }

control MyDeparser(in head h...) {... }

// toplevel element instantiation
Switch(MyParser(),

Mylngress(),

MyDeparser()) main;

H = struct head —
inferred by compiler

Rationale

 The manufacturer can specify complex switches, with
many programmable surfaces.

* The type parameters allow various switch components to
be linked with each other

* (e.g., the headers from the parser are the input/output of the
ingress pipeline and the input to the deparser

* the user cannot write an ingress pipeline that accidentally
processes different headers from the parser).

* The manufacturer can expose multiple switch models, and
the user can choose which one to instantiate (e.g., a
standard model, or a model with additional features).

* The user can explicitly instantiate each programmable
surface of the switch with the desired implementation.

A Complex Example

Parsers Control pipelines
P1
11
parser P<H>(out H headers);
P2 control I<H>(inout H headers, ...);
package module<H>(P<H> p1, P<H> p2, I<H> pipe);
P3
package switch<H1, H2>(module<H1> modl,
12 module<H2> mod2);
P4

Different headers allowed

Parameterization

* Third parties can write pre-packaged P4 code, which can be reused in a modular way.
* To suitthe needs of arbitrary users, these blocks may be parameterized

* Similarto C++/Java/ML Functors

control ACLControl(bool largeSize)// parameters
(inout Headers h) // arguments

{...}

#include “aclControl.p4”

control Ingress(inout Headers headers)

{

ACLControl(false) aclControl; // instantiate with largeSize=false

apply {
aclControl.apply(headers);

