
Deparsing Proposal
Leo Alterman // Barefoot Networks

August 31st, 2015



Problem



● Current deparsing definition:

P4 takes the approach that any format which should be generated on egress should be 
represented by the parser used on ingress. Thus, the parse graph represented in the P4 
program is used to determine the algorithm used to produce the serialized packet from the 
Parsed Representation. Note the following considerations:

○ Only headers which are valid are serialized.
○ If the parse graph is acyclic, then a topological ordering (that is, a linear order that respects 

the parse graph’s ordering) can be generated and used to determine the order by which 
headers should be serialized.

○ In general, cycles occur in the parse graph when parsing header stacks or a set of optional 
headers. These may be treated as a single node in the parse graph and serialized as a 
group.

Deparsing



● Problems with this:

○ Parse graphs without a topological ordering
■ Shows up for TLV headers

○ Inserting headers before ethernet
■ Shows up for fabric headers

○ Checksum updates
■ Some targets may perform checksum calculations only after 

general Match+Action processing

Deparsing



Non-topological parse graph
A

B

C

C

B

D

● This is the simplest example of a parse graph 
without a topological header ordering

● What should the deparsing behavior be?
○ Preserve original ordering?

■ Some targets might not be able to
■ What if we're adding these headers from 

scratch?
○ Specify some canonical ordering?

■ Might reorder headers - for things like 
IPv4 options, this is probably okay



Inserting headers before Ethernet

Eth

IPv4

● Or generally: how do you insert new headers on 
top of the ones you already parse?

● Can currently hack in "ghost" states that are in the 
parse graph but have transitions which can never 
be taken

● Better solutions?
○ Specify a canonical header ordering wtih 

'Fabric' at top?
○ Specify a header instance always directly 

preceeds/follows another header instance?

Fabric

Start



● Or generally: how do you express simple packet modifications that 
happen after the match action pipeline?

● Both v1 and current proposal sidestep this issue with slightly bizarre 
'checksum update' syntax

● Deparsing is a nice place to put checksum updates
○ Don't have to worry about modifying checksums incrementally in 

middle of program (which could affect code modularity)
○ Naturally expressed as reassigning a field's value before emitting it

Checksum updates



Solution
(or at least, a beginning of a solution)



● Hard to tell at this point what the right abstraction for deparsing is
○ Needs to make sense at the program level
○ Needs to work on a variety of targets

● Proposal: Start by explicitly exposing 'packet interface' to get and set 
serialized data, then allow target architectures to figure out the right way 
to use it

Explicit Deparsing



● Packet blackbox:
○ extract() method, replaces built-in parser extract() function
○ emit() method, added for deparsing

■ takes a header instance - outputs to header wire if it's valid, 
does nothing if not valid

● Packet blackbox instance is passed into parser and deparser whiteboxes 
as an argument (user never creates their own packet objects)

● Target architecture may or may not expose a deparser whitebox, may 
make it optional, etc.

Packet Blackbox



whitebox_type parser_module (blackbox packet_t p, struct my_headers_t h) {

parser start {
p.extract(h.ethernet);
return select (h.ethernet.ethertype) {

ETH_IPV4: parse_ipv4;
ETH_IPV6: parse_ipv6;

}
}

parser ipv4 {
p.extract(h.ipv4);
return select (h.ipv4.proto) {

// … 
}

}

// … 
}

Packet Blackbox Parser Example



whitebox_type deparser_module (blackbox packet_t p, struct my_headers_t h) {

// Architecture disallows anything inside this control func other
// than packet 'emit' calls and checksum rewrites

blackbox checksum ipv4_chksum {
fields {

// list every h.ipv4 field here other than 'chksum'
}
algorithm : csum16;

}

control deparse {
p.emit(h.fabric_header);
p.emit(h.ethernet);
ipv4_chksum.get_value(h.ipv4.chksum);
p.emit(h.ipv4);
p.emit(h.ipv6);
// … 

}
}

Packet Blackbox Deparser Example


