Typing P4 vl1.1

- problem statement and
proposed solution -

PROBLEM STATEMENT

Assessment based on

* P4v.1spec
* P4 open-source v.1 compiler
* P4 behavioral model generated code, v.1

An example
header_type ht

{
fields { |
fiveBits : 5: | will use a shorthand
sum : 5; notation:
}
} bit<5> fiveBits;

sum = fiveBits + fiveBits;
action sum()

{

add(m.sum, m.fiveBits, m.fiveBits);

}

Legal program fragment, accepted by P4 v.1 compiler.

Q: What is fiveBits?

A) Ox1F

B) OxFF (8 bits)

C) -1

D) An arbitrary value

bit<5> fiveBits = OxFF;

Answer:

The spec says nothing, so the right answer could be D.
According to the behavioral simulator it is B

(the intention was A, but there is a bug in the mask computation).

Q: What is sum?

A) O
bit<5> fiveBits = 0x10; B) 0x20 (six bits)

bit<5> sum = fiveBits + fiveBits; g) 32
) An arbitrary value

Answer:

According to the spec it is not defined.
According to the behavioral simulator it is B.

Q: Which branch is taken?

signed<5> fiveBits = 0;
fiveBits = fiveBits + -1;

A) True
if (fiveBits < 0) { B) False
}
else {
}
Answer:

According to the spec it is not defined.
According to the behavioral simulator it is B: all values are unsigned.
(The signed declaration produces no change in generated code).

Other integer manipulation problems

Operations between values with different widths
Operations on different signs

Operations on values with different signs and widths
Comparisons <, >=: are they signed or unsigned?
Negation: is the result signed or unsigned?

Overflow: what happens when operations produce values
out of range?

Masking: are results signed or unsigned?
Shifting right: arithmetic or logical.
Shifting with negative amounts.
Sigh-extension: enlarging signed values.

Ambiguity is evil

* |f the specis ambiguous or undefined, it can
be implemented in many ways.

* Not all implementations will produce the
same answer.

 We can debate endlessly about the right
answer (see the definition of addition of
signed integers in C).

Solution

The spec should describe the legal behaviors in
detail

Incorrect programs should be rejected

Correct programs should produce the spec-
mandated answer

Programs should not have surprising behaviors

v1.1 rcO spec draft fixed some of these, but not all

Types

All modern programming languages solve this problem
with types.

— (This is true for both statically-typed and dynamically-
typed languages).

— P4 must be statically typed, because dynamic types
require runtime support.

Each value has a compile-time type.

The type specifies:

— all legal values

— all legal operations

— the meaning of all legal operations

Type conversions (casts) may be needed.

The simple types need to be defined: aka. integers
(i.e., we don’t need any deep type theory)

Integer type behaviors to be specified

Legal operations

Overflow

Sign-extensions

Conversion rules

Literal interpretation (how to write a constant)
A cast operator may need to be introduced

A DESIGN PROPOSAL FOR ADDING
TYPES IN P4 V1.1

Core guiding principle

“Least surprising behavior”

Behavior modeled after the well-defined parts of C
Fixed all undefined parts of C

Prefer to forbid rather than surprise

High-level view of proposal

Eliminate saturated types
Types: bool, bit<N>, int<N>, varbit<N>, infint

infint: infinite precision, compile-time only, for
literals

All behaviors specified
No runtime exceptions

All binary operations require both operands
of the same type (except shifts)

Restricted set of explicit casts
— No ambiguity in how casts work

Very few implicit casts allowed

Portability and types

No target can support all possible operations
— e.g. bit<2312312> x;

Targets will impose restrictions. Examples:

— Maximum width supported

— Shift with a very large number

— Arithmetic only on some widths (e.g., size % 8 = 0)
— Constraints on operands of *

It is OK to reject properly typed programs

However, if a program is accepted, result
should conform to the spec

Saturated types

Can be implemented using black-boxes
operating on bit<*> values
(e.g., saturated_adder)

Highly unlikely to be portable
Most operations are probably not needed

For symmetry we should probably have both
signed and unsigned saturated types

bool type

Not an integer or a bit

Result of comparisons <= >= == = < >
Operations: && || and !

Also, first operand of ?:

Two constants: true and false

No implicit casts from/to bool

The C program if (x) is written as if (x 1= 0)

— This is the main reason
bool should be different from bit<1>

varbit<N>

Variable-length bitstring with up to N bits

N must evaluate to a compile-time constant
Has a dynamic length, which is <= N

Initially length is O

Only two operations:

— extract (parser), emit (deparser)
— cannot be used in the match-action pipeline

Length set by extract
Length cannot be changed once set
There are no casts to/from varbit<N>

bit<N> type

* Unsigned bitstring with exactly N bits
N must evaluate to a compile-time constant

 Most binary operations require both operands of
the same exact type (same sign and same width)

— shift is the only exception

bit<N> operations

unary + - Result is bit<N> even for negation (C-style).

binary + - Both operands same type; result has same type; overflow and
underflow wrap around (C-style)

~ Result is bit<N>; complement all bits

& | A Both operands same type

l===<><=>= Both operands same type; unsigned comparisons; result is bool
<< >> Right operand must be unsigned, of any width; result has the

same type as the left operand; logical shift; shift by an amount
greater than N produces 0.

* Both operands same type; result has same type.
(Must extend prior to * to avoid overflow.)

?: First operand is bool, other two operands must have same type.

Note: no division — to avoid runtime exceptions.

int<N> type

e Bitstring with N bits interpreted as a signed
number

* Represented using two’s complement

 Most binary operations require both operands of
the same exact type (same sign and same width)

— shift is the only exception

InNt<N> operations

unary + - Result has is int<N>; overflow (negation) wraps around

binary + - Both operands same type; result has same type; overflow and
underflow wrap around

~ Result is int<N>: complement all bits.

& | A Both operands same type

l===<><=>= Both operands same type; signed comparisons; result is bool

<< >> Right operand must be an unsigned value. Result has the same

type as the left operand; arithmetic shift; shift by an amount
greater than N is well-defined.

* Both operands same type; result has same type

?: First operand is bool, other two operands must have same type.

Shifts

* Tricky for several reasons

— different for signed and unsigned numbers

— shift with negative amount is strange => illegal

— shift work is exponential in size of RHS operand
* Targets may reject shift operations with very

large amounts, e.g.:

— bit<8> x; bit<16>vy; y =y << x;

— Target may require

width of shift amount <= ceil(log2(width(lhs)))

— Targets may even reject shifts by variable
amounts

infint type

Signed compile-time constant value, infinite precision

A literal with no type specification has an infint type

— e.g. 7, bit<5>, stack[9], a<< 3

infint type is only used for compile-time constant values
— No runtime value can have an infint type

All infint operations are arbitrary-precision; they are all
performed at compile-time

No infint bit-level manipulations (~ | & *): must specify width
Cannot have operations mixing infint with any other type

— Explicit casts may be used
— Or the compiler inserts implicit casts from infint

infint operations

+ - Result is infint; no truncation
(unary and binary)

& | ~A lllegal: cannot infer width
l===<><=>= Signed comparisons; result is infint
<< >> Right hand-side must be positive.

a<<bisa*2"b
a>> b is floor(a / 2”b)

* Both operands same type; result has same type

2 First operand is bool, other two operands must be infint

Explicit casts
e Cast syntax C-like: (type)
* Permitted casts:
— bit<1> <-> bool
— int<N> -> bit<N> same representation
— int<N> -> int<M> (truncate/sign-extend)
— bit<N> -> int<N> same representation
— bit<N> -> bit<M> (truncate/0-extend at MSB)
— infint -> bit<N> (overflow should give warning)
— infint -> int<N> (overflow should give warning)

* Truncating cast is C-like:
truncate to keep Isb, drop most significant bits

e Casts are not free; explicit cast makes cost apparent

Implicit casts

Allow implicit casts only in 2 circumstances:
— To convert an infint value to another type

— In assignment statements, when RHS has a
different type from LHS

Compiler converts implicit casts to explicit
Rules for conversion must be very clear

A binary operation of an infint and another
type will implicitly cast infint to the other type

Typed Integer Literals

* Simple integer literals have type infint
 Must be able to declare type in literal

* Proposed syntax:
— width w value — unsigned numbers
— width s value — sighed number

— value can be negative for signed number

EXAMPLES

10

-10
3w10
3w-10
8s10
8s-10
2s3
1w10
1510

Literal examples

Interpretation

type is infint, value is 10

type is infint, value is -10

type is bit<8>, value is 10

lllegal: negative unsigned number

type is int<8>, va
type is int<8>, va
type is int<2>, va

type is bit<1>, va

ueis 10
ueis-10
ue is -1, overflow warning

ue is 0, overflow warning

type int<1>, value is 0, overflow warning

lllegal operations examples
bit<8> x; bit<16>vy; int<8> z;

X+y Different widths ((bit<16>)x) +y or x+ ((bit<8>)y)
X+2 Different signs ((int<8>)x) +y or x+ (bit<8>)z

(int<8>)y Cast cannot change both size and width (int<8>)(bit<8>)y

y+2 Different widths and signs. (int<8>)(bit<8>)y +z or

Note that the 4 alternatives produce all vy + (bit<16>)(bit<8>)z or

different results. (bit<8>)y + (bit<8>)z or

(int<16>)y + (int<16>)z

X << Z RHS of shift cannot be signed X << (bit<8>)z
x?y:0 First operand must be bool. (x!1=0)?y:0 or ((bit<1>)x)?y:0
X==1z Different signs x == (bit<8>)z or (int<8>)x ==z
1 << X Width cannot be inferred ((bit<32>)1) << x or 32wl << X
~1 Width cannot be inferred ~32wl

5&-3 Width cannot be inferred 32w5 & -3

Implicit casts examples

bit<8> x; bit<16>vy; int<8> z;
x+1 x + (bit<8>)1
2<0 z < (int<8>)0
(x==0)?y:0 (x==(bit<8>)0)?y: (bit<16>)0
x << 13 0; overflow warning

X | OXFFF X | (bit<8>)OxFFF; overflow warning

