
P4’s action-execution semantics and conditional
operators

Anirudh Sivaraman

Massachusetts Institute of Technology

1 / 14



P4’s action-execution semantics

1. Consider the statements:
modify field(hdr.fieldA, 1);
modify field(hdr.fieldB, hdr.fieldA);

2. Assume hdr.fieldA = 0 initially.

3. If executed sequentially: hdr.fieldB = 1.

4. P4’s semantics (7.1.1 of rc1 draft): “Both actions are started
at the same time.”

5. hdr.fieldB = 0.

2 / 14



Parallel semantics can be unintuitive

1. Feedback from P4 tutorial at SIGCOMM.

2. Ben Pfaff’s email: “I don’t think I’d noticed anything about
parallel versus serial semantics before; maybe it is new. It will
take some care in a software implementation.”

3 / 14



Proposal: Change action execution semantics to sequential

1. Does this break any existing code?

2. Are programmers already using sequential semantics?

4 / 14



Analyzing programmer intent in existing P4 programs

1. Python script that uses the p4-hlir python module.

2. Analyze read and write sets for each action primitive in a
compound action.

modify field(hdr.fieldA, 1);
modify field(hdr.fieldB, hdr.fieldA);

3. Read sets = {}, {hdr.fieldA}
4. Write sets = {hdr.fieldA}, {hdr.fieldB}
5. Read set for compound action = {hdr.fieldA}
6. Write set for compound action = {hdr.fieldA, hdr.fieldB}
7. Intersection of read/write sets = {hdr.fieldA}
8. Flag any compound action with an intersection between the

read and write set.

5 / 14



Results on p4lang/p4factory/targets/switch.p4

1. 211 compound actions.

2. 163 with no read/write set intersection.

3. 48 with non-null read write set intersection.

6 / 14



Digging deeper

1. Of the flagged 48, 43 have write-after-read dependencies.
terminate tunnel inner ethernet ipv4 {

modify field(qos metadata.outer dscp,l3 metadata.lkp ip tc);
modify field(l3 metadata.lkp ip tc,inner ipv4.diffserv);

}
decap vxlan inner ipv6 {

copy header(ethernet,inner ethernet);
remove header(inner ethernet);

}
2. Will work with both parallel and sequential semantics.

3. Sequential makes the intent clearer.

7 / 14



Digging deeper

1. 5 were written using sequential semantics.
egress port mirror {

modify field(i2e metadata.mirror session id, session id);
clone egress pkt to egress(session id, p4 field list.e2e mirror info);

}
field list e2e mirror info {

i2e metadata.mirror session id;

}

2. (May have cleverly exploited parallel semantics, but checked
that sequential was the author’s intent).

8 / 14



What we learned from switch.p4

1. Switching to sequential semantics is unlikely to break
switch.p4.

2. P4 programmers already use sequential semantics.

9 / 14



We don’t lose any expressive power

1. Any thing that’s parallel (e.g. swap) can be expressed with a
sequential construct.

pkt.a = pkt.b;
pkt.b = pkt.a;

becomes
pkt.tmp = pkt.a;
pkt.a = pkt.b;
pkt.b = pkt.tmp;

2. Many things cannot be done with just parallel statements e.g.
atomic read, modify, write.

pkt.tmp = register;
pkt.tmp = pkt.tmp + 1;
register = pkt.tmp;

10 / 14



Does this complicate the compiler?

1. Yes, the compiler backend might need to gracefully reject
some code.

2. Backend will limit the longest dependency chain within a
compound action.

11 / 14



But expressions (2.6 of rc1 draft) cause the same problem
anyway

1. For instance,
pkt.a = (pkt.b + (pkt.c - (pkt.d <<(pkt.e >>pkt.f))));

is valid P4 code, which some backends will reject.

2. It’s equivalent to this sequential version
pkt.tmp1 = pkt.e >>pkt.f;
pkt.tmp2 = pkt.d <<pkt.tmp1;
pkt.tmp3 = pkt.c - pkt.tmp2;
pkt.a = pkt.b + pkt.tmp3;

3. Can transform the second into the first by propagating
expressions.

4. I think rejecting sequential code is no worse than rejecting
complex expressions.

12 / 14



Conclusion

1. As P4 programmers, we don’t lose anything (and gain quite a
bit) by switching to sequential semantics.

2. The compiler needs a little more work, which is going to
happen anyway.

3. Analysis script, results, and slides available at:
https://github.com/anirudhSK/p4-semantics

13 / 14



One last thing: The conditional operator

1. Section 2.6 of rc1 proposes min/max operatrors

2. The min operator expressed as code is
(arith_expr1 < arith_expr2) ? arith_expr1 : arith_expr2;

3. I propose we generalize this to:
(bool_expr) ? arith_expr1 : arith_expr2;

14 / 14


