
Proposal for serializable types in P4
P4 Serializable Types Subcommittee

Abstract

The current P416 specification includes descriptions of how structured
datacanbeextracted fromincoming rawpacketdata (through packet_in)
inaparser andhowit canbeemittedas rawpacketdata (through packet_out)
in a deparser. It also provides a number of entities, such as, externs, ta-
bles, and interactions with the control plane, that require communica-
tion of data in an expected layout. The data moving across these bound-
aries is limited to data types that are either scalar types with specified bit
widths and representations, or aggregate types that contain these types.
We refer to these data types as “serializable”, and propose that this prop-
erty of the type should be explicitly specifiable in P4.

Inaddition,weproposeextending theenumeration type toallowspec-
ification of a backing type and representation, allowing such enums to be
used as serializable data. We also recommend allowing a cast operation
between a serializable type and an appropriately sized bit<w> type. These
features have been requested from the P4 community in the past.

1. The need to specify serializability
P4, as a language, is largely about parsing incoming data from wire-format
form into structured data, processing that data via match action tables, and
then deparsing structured data back to wire-format to emit it on the wire. In
addition to parsing binary data into P4 header types and emitting those head-
ers back out into binary data, several externs make use of raw (or perhaps bet-
ter stated, re-shaped) data to compute their final values. A good example of the
later is the IP checksum computation which effectively re-interprets the fields
of an IPv4 header, specified through a tuple, as a set of 16-bit values to be pro-
cessed.

The data types that can interact with these behaviors is limited to scalar
types with specified bit widths and representations and aggregate types that
contain these types. We refer to this as “serializable” data and propose that
it should be possible to explicitly specify when a serializable type is required

1



or when a user specified type is expected to be serializable. We can imagine
using either adding a serializable type specifier, or building this idea into the
proposed typed hierarchy for generics.

It is worth noting that not all serializable types are handled in the same
way. The packet_in.extract method must set a header validity flag when data
is extracted into that header. The packet_out.emit method is currently limited
to operating on header types or types that contain header types, and the emit

method uses the validity information to determine if a header should be writ-
ten to the wire but does not write the validity information. We would like to
see packet_out.emit extended to match the types supported by the packet_in

methods, which allow for other serializable types to be extracted.3

Where serializable data is used elsewhere, such as tuples passed in to an
extern like the IP checksum extern, we expect that data to be packed-bit data,
without any padding. In particular, tuples and structs with multiple fields are
expected to be read and written without any padding bits. In the case of head-
ers, if they are treated as serializable types they will need to read and write the
validity information along with the header data.

Specifying the serialized layout also allows aggregate data to be cast be-
tween a structured data type and a bit<w> field, as has been requested in P4
spec issues.1 It is worth noting that this type of cast is already possible in the
language through theuseofbit concatenationoperations (toconvert fromstruc-
tured data to a bit<w>) or bit slice operations (to convert from a bit<w> to struc-
tured data).

In addition, we propose extending the syntax of the enum type to allow a
backing-type to be specified along with numeric values for the entries in the
enum.2 This would allow for serializable enums to be used as fields in headers
and provide a way for the programmer to specify the enum representation.4

It isworthnoting thatnoneof these recommendationsare intended to force
implementers to use a particular representation for data. A CPU target, for in-
stance,mightwant to specify aggregatedata typeswithpadding tobettermatch
the memory model on the CPU. Or an implementation might decide to com-
pletely flatten and re-arrange data to better fit a bus between parts of a hard-
ware device. The intention is to provide some flexibility to the P4 programmer.

3Effectively, this re-opens the discussion from Issue 161: Types supported by emit
1Issue 383: P4_16: Allow ‘bit-vector structs’ to be used everywhere that bit type

can, Issue 342: P4_16: Allow headers to contain ‘bit-vector structs’
2Issue 550: Allow enums with specified bitwidths and values Issue 394: Allow enum to

‘derive’ bitstring type
4This addresses the note in section 8.3 of the P4 spec for enums that appear in the

control-plane API.

2

https://github.com/p4lang/p4-spec/issues/161
https://github.com/p4lang/p4-spec/issues/383
https://github.com/p4lang/p4-spec/issues/342
https://github.com/p4lang/p4-spec/issues/550
https://github.com/p4lang/p4-spec/issues/394


In either case, a cast or other bit packing or bit extraction operationmight have
some cost, an where this cost exists it is recommended that the implementa-
tion include this in documentation for the implementation so that the enduser
is aware of the cost model.

2. Adding serializable type modifiers
Whenspecifying concrete types, it is notnecessary for theprogrammer to spec-
ify that a type is serializable, since the compiler can determine this, however,
when declaring types, the serializable modifier can inform the compiler that
the type shouldbechecked for thisproperty. The serializablemodifier ismore
useful in the case where an extern, control, or other callable P4 element re-
quires a parameterized type be serializable. This idea dove tails well with the
idea of specifying constrained generics, and if it is captured in the type hierar-
chy, the need for a separate serializablemodifier.

2.1. Marking arguments as serializable

For example the verify_checksum call from the checksum1-bmv2.p4 example pro-
gram in the p4c:

verify_checksum (true, {

hdr.ipv4.version, hdr.ipv4.ihl, hdr.ipv4.diffserv,

hdr.ipv4.totalLen, hdr.ipv4.identification, hdr.ipv4.flags,

hdr.ipv4.fragOffset, hdr.ipv4.ttl, hdr.ipv4.protocol,

hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.ipv4.options},

hdr.ipv4.hdrChecksum, HashAlgorithm.csum16);

Here the tuple data is expected to be passed on raw to the verify_checksum or at
least the underlying implementation is expected to be aware of any padding
that might occur and compensate for it. The contents of the tuple must all
be serializable as well, bool or enum values cannot be represented here, for in-
stance.

The verify_checksum type in the v1model.p4 include file is:

extern void verify_checksum<T, O>(in bool condition, in T data,

inout O checksum, HashAlgorithm algo);

We would propose restricting the incoming data type to use the serializable

type here:

3



extern void verify_checksum<T, O>(in bool condition,

in serializable T data, inout O checksum,

HashAlgorithm algo);

Alternatively, we can imagine specifying the type with the generics (apologies
to Nate and the teamworking on this if I've got the syntax incorrect):

extern void verify_checksum<T in Serializable, O in Scalar>(

in bool condition, in T data,

inout O checksum, HashAlgorithm algo);

We would propose that the packet_in and packet_out externs be similarly an-
notated with the serializable modifier (or possibly an emitable modifier see
note below).

Note. The question aroundwhether “emitable” is a behavior on serializable
data or a data type that is a super set of serializable data is something I've
been struggling a bit with, and something I think we should consider care-
fully.

The argument for “emitable” as a behavior is that we think of header data
as being serializable with the valid bit included when a header is serialized,
and the valid bit not included when a header is emitted. I think the down-
side of this is that the type system in P4 does not capture this kind of “effect”
information in the type, and I think there is potential for this to be confus-
ing to end users because it is sort of expressed on an orthogonal direction to
how we think about serializable or not serializable.

The argument for “emitable” as a type, is that we can think of serializ-
able data as being bit<w>, int<w>, and struct types containing these types,
and emitable data as header, header stack, header_union, and struct types
that contain these types. This makes it somewhat clearer in the type system
where the lines are drawn, because “emitable” data is a super set of serializ-
able data, with serializable data simply being treated as “always” validwhen
usedwhere an “emitable” type is expected. Thedownsideof this approach is
that header and header_union types are harder to treat as “serializable” since,
the extra validity information has to go somewhere.

The description below treats emitable as a typewhile the rest of the doc-
ument discusses it as a behavior, reflecting my own questions about how
this should be handled.

For example, the current definition for the packet_out extern is:

4



extern packet_out {

void emit<T>(in T data);

}

Thedescription types that can occupy T, includes header, header_stack, struct,
and header_union types. However, emit is limited to only emitting structwhose
fields are header, header_stack, or header_union types or struct types with fields
of these types.

Thiscreatesan implicit differentiationbetween struct types that areemitable
and those that are not, at least in the case of emit.

We would propose that emitwould make use of the emitable type modifier
to specify that there is an expectation of emitable types here:

extern packet_out {

void emit<T>(in emitable T data);

}

Or, again, following from the generics proposal:

extern packet_out {

void emit<T in Emitable>(in T data);

}

2.2. Marking serializable aggregate types
P4 programmers canmake use of serializable for specifying when a concrete
type shouldbechecked tobe serializable. For instance, a structmightbemarked
serializable to ensure that its components are all serializable. The compiler
would be expected to raise an error when the type violates this property.

For instance, the following structwould be checked to ensure its fields are
serializable.

serializable struct s1 {

bit<10> a;

bit<2> b;

}

5



Note. I'm not sure how the generics example is going to differentiate serial-
izable and non-serializable structs, but we would presumably follow suite.

So far, so good, but the compiler could easily determine this serializability it-
self. What happens if a struct includes another struct:

serializable struct s2 {

bit<8> a;

s3 s;

}

If s3 is serializable, then the compiler has no reason to complain.

Note. Whether s3 itself needs to bemarked as serializable, or if it is sufficient
for the compiler check the structure of s3 and determine it is serializable, is
something we should decide.

However, if s3 is defined as follows:

struct s3 {

error recordedError;

}

The compiler would be expected to mark s2 as an error, because it cannot live
up to the requirement of being serializable.

3. Casts
Oneof the requestswehave heard from the community1 is that theywould like
a way to treat structured data as a bit<w> type or to treat bit<w> type as struc-
tured data. We would propose that data specified as serializable can be cast to
a bit<w> type and that a bit<w> type can be cast to struct data.

Following from the expectations that P416 outlines around avoiding am-
biguous casts (such as those that simultaneously change signed-ness and ex-
tend bit width), we recommend that the width specified by the bit width must
match exactly the bit width of the serializable type when casting between a
bit<w> and serializable type.

1Issue 383: P4_16: Allow ‘bit-vector structs’ to be used everywhere that bit type
can, Issue 342: P4_16: Allow headers to contain ‘bit-vector structs’

6

https://github.com/p4lang/p4-spec/issues/383
https://github.com/p4lang/p4-spec/issues/342


For instance, in the following code fragment we cast back and forth be-
tween a serializable type and an appropriately sized bit<w>.

serializable struct s_t {

bit<7> a;

bit<10> b;

bit<7> c;

}

s_t s;

bit<24> raw;

s = (s_t)raw;

raw = (bit<24>)s;

However, the following casts would not be allowed:

bit<32> raw2;

int<24> raw3;

raw2 = (bit<32>)s;

raw3 = (int<32>)s;

In these cases the program would need to supply multiple casts. Part of the
reason for this is to make sure that it is clear to a P4 programmer what is being
done.

It is worth noting that it is currently possible to support this in P4 through
P4 operations:

raw = s.a ++ s.b ++ s.c;

s.a = raw[17,23];

s.b = raw[7,16];

s.c = raw[0,6];

We also propose that if a user wants to cast between two struct types that are
the same size, but are not otherwise structurally similar, they must first cast
through a bit<w> type. Again, this is to encourage the program writer to be
aware of the translations happening, even if the compiler can effectively com-
pile away the operations.

7



4. Making serializable enums
P4's enum type is currently left up to the compiler to determine the representa-
tion and backing type for the enum, however, as the current P4 spec acknowl-
edges, there are instances where an enum is exposed to the control plane, and
a compiler must specify how it will handle such enumerations in communica-
tion with the control plane.

Instead of having this be a place where one implementation might vary
from another, we propose that the enum type be extended to allow specifying
both the backing type and the numeric representation of enumeration items.

We propose an extending enum as follows:

enumDeclaration

: optAnnotations ENUM name '{' identifierList '}'

| optAnnotations ENUM typeRef name '{' specifiedIdentifierList '}'

specifiedIdentifierList

: specifiedIdentifier

| specifiedIdentifierList ', ' specifiedIdentifier

specifiedIdentifier

: name '=' initializer

Thiskeeps theoriginal enum for use internal to theP4program, but alsoprovides
a serializable enumwith both the backing type and the numeric representation
specified. In this case, we expect the initializer to be a compile-time known
values.

We imagine a simple example looking something like the following:

enum bit<8> example_t {

first = 0,

second = 1,

third = 2

}

This specifies that example_t is a serializable enum serializable to the type bit<8>

(following the syntax for typedef of typeRef followed by name) with three entries
first, which serializes to 0; second, which serializes to 1; and third, which seri-
alizes to 2.

If we added a new entry that was not representable in the bit<8>, we would

8



expect the compiler to raise an error.

enum bit<8> example_t {

first = 0,

second = 1,

third = 2,

more = 300 // compiler would raise error.

}

One use case we can imagine is for specifying things like ethernet types to use
within an ethernet header:

enum bit<16> etherType_t {

BF_FABRIC = 0x9000,

VLAN = 0x8100,

QINQ = 0x9100,

MPLS = 0x8847,

IPV4 = 0x0800,

IPV6 = 0x86dd,

ARP = 0x0806,

RARP = 0x8035,

NSH = 0x894f,

ETHERNET = 0x6558,

ROCE = 0x8915,

FCOE = 0x8906,

TRILL = 0x22f3,

VNTAG = 0x8926,

LLDP = 0x88cc,

LACP = 0x8809

// ...

}

typedef bit<48> macAddr_t;

header ether_t {

macAddr_t dstAddr;

macAddr_t srcAddr;

etherType_t etherType;

}

9



Note. This raises a question for packet_in.extract, which is if we have an in-
complete mapping from the integer space of the backing type to the sym-
bolic enumeration, do we raise an error? Do we included an UNRECOGNIZED

symbol for incomplete enumerations?

Another approach, would be to use annotations for specifying the backing type
and numeric values for the type. The upside of this approach is that it does not
require changing the syntax of P4 to support the newer representation. The
downside is that backends that ignore these extensions will not handle these
enums as serializable. In the case where an enum would be used in a place a se-
rializable type would be used, this will result in an error, however, in cases
where it will might be exposed to the control plane, and the compiler might
have already had its own method for dealing with enum representations, it will
silently differ from the users expectations. In either case, I would argue, the
work needed on the part of implementers is similar, and extending the lan-
guage is arguably both safer and backwards compatible, since existing pro-
grams will continue to work exactly as they have.

5. Extending other types to be serializable
Currently, some scalar types (like bool and varbit types) are not explicitly se-
rializable unless they are included as part of a header in the current spec, ad-
ditionally, some types like header and header_union have a specified handling
through extract or emit but not a clear serializable layout that would capture
their validity information.

5.1. Extending emit behavior to scalar types
The integer types bit and int are inherently serializable, and unsurprisingly
makeup thefieldsof a header. Theycanalsobe specifiedas packet_in.look_ahead
(andpossibly packet_in.extract) canbeused toextractnon-header types. How-
ever, packet_out.emit currently avoids handling these types.

We propose treating these as emitable when they appear as a stand alone
value or as a field in a struct, which externs like emit currently do not support.
Similarly, boolean values should be serialized as 0 for false and 1 for true and
be backed by a bit<1>, following the explicit cast from bool to bit<1> in P4.

It is worth noting that the reason given for the current restrictions on these
are to avoid creation of non-byte aligned data on egress in implementations
that restrict header types to be byte aligned. We would suggest that implemen-

10



tations with this restriction could reject programs with non-byte sized scalar
types, in lieu of doing more expensive static analysis or run time checking to
enforce this restriction. This opens the door for more flexibility even in those
implementations with this restriction to handle more flexible deparsers.

5.2. Extending header types
Wecan imagineextending theconceptof general serializability to header, header_union,
and varbit types, by specifying how validity data (in the case of header and
header_union) and size data (in the case of varbit) data would be serialized.

The header type is the simplest to handle, with a single additional bit to
represent the validity of the header. This bit could be supplied following the
header data.

The header_union type might have a more compact representation with an
additional bit field with enough additional values to specify which header, if
any, is currently valid. For instance, a header_union over three header types
would have 4 valid representations: no headers, header 1 valid, header 2 valid,
or header 3 valid, and could be represented by a bit<2> or an equivalent enum
with a bit<2> backing type.

The varbitwould need both enough space to represent the largest possible
type, along with a dynamic size field, sized to the possible sizes of the varbit.

5.3. Make bool types serializable
We can also imagine making the bool type serializable and using its current
bit<1> cast behavior to define its serializable behavior. This would make it ob-
vious how a boolwithin a header should be handled and encode into the type
how it is expected to be used.

6. Implications of serializable types
In addition to making explicit what types are serializable (and emitable) and
howthisdatawouldbehandled independentof aparticular extern,we imagine
that serializable types could lead toP4programmersbeing able to createuseful
type abstractions.

For instance,we foresee serializable enumand bool typesbeingused in header

definitions to allow for use symbolic names for types andmatches in the transi-
tion select statement, as in the ether_t example in the serializable enum section.

We can also imagine serializable struct fields being used in a header to al-
low for headers that have shared structure to express this shared structuremore

11



succinctly. This is currently possible through use of the C preprocessor, but we
find this a bit of a clumsy way to handle this.

7. A note about implementation
Serializable types need not be represented as in their serializable format inter-
nal to the data plane. The serializable layout is only required for reading from
the wire or writing to the wire, or in other extern functions or methods that
specify a serializablemodifier.

7.1. Why might the compiler decide on a different layout?
In some cases the serialized layout might impact performance when referenc-
ing or updating data. For instance, on a CPU, extracting bit fields, may require
shifting andmasking to extract a field. In cases where the field is accessed fre-
quently, it might make more sense to choose an internal representation that
is more efficient for referencing the field, and then do the work necessary to
serialize this when the serialized layout is needed.

It is up to the compiler to determinewhat the representation should be, the
serializable indicator only requires that when the value is passed to an extern
function or method requiring the serialized data that it be serialized.

12


	1. The need to specify serializability
	2. Adding serializable type modifiers
	2.1. Marking arguments as =-1LuxiMono navyserializable
	2.2. Marking =-1LuxiMono navyserializable aggregate types

	3. Casts
	4. Making serializable =-1LuxiMono navyenums
	5. Extending other types to be serializable
	5.1. Extending emit behavior to scalar types
	5.2. Extending =-1LuxiMono navyheader types
	5.3. Make =-1LuxiMono navybool types serializable

	6. Implications of serializable types
	7. A note about implementation
	7.1. Why might the compiler decide on a different layout?


