-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathalgorithms.yml
290 lines (289 loc) · 10.6 KB
/
algorithms.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
Supervised:
defaults:
metrics: classification
preprocessors:
- MM
AB:
base: !!python/name:sklearn.ensemble.AdaBoostClassifier
description: Adaptive Boosting
link: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
parameters:
static:
algorithm: SAMME.R
learning_rate: 1.
n_estimators: 50
random_state: 42
BN:
base: !!python/name:pbox.core.model.algorithm.weka.BayesNet # based on weka.classifiers.bayes.BayesNet
boolean: true
description: Bayesian Network
link: https://weka.sourceforge.io/doc.stable/weka/classifiers/bayes/BayesNet.html
parameters:
static:
E: weka.classifiers.bayes.net.estimate.SimpleEstimator # estimator algorithm
Q: weka.classifiers.bayes.net.search.SearchAlgorithm # search algorithm
BNB:
base: !!python/name:sklearn.naive_bayes.BernoulliNB
boolean: true
description: Bernoulli Naive Bayes
link: http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html
multiclass: false
parameters:
static:
alpha: 1.
binarize: 0.
fit_prior: true
class_prior: null
D:
base: !!python/name:pbox.core.model.algorithm.weka.Decorate # based on weka.classifiers.meta.Decorate
description: Decorate
link: https://weka.sourceforge.io/doc.stable/weka/classifiers/meta/Decorate.html
parameters:
static:
E: 15 # desired size of ensemble
R: 1.0 # factor that determines number of artificial examples to generate
S: 42 # random number seed
I: 50 # number of iterations
W: weka.classifiers.trees.J48 # full name of base classifier
DL85:
base: !!python/name:pydl85.DL85Classifier
description: DL8.5 (optimal decision tree)
link: https://dl85.readthedocs.io/en/latest/
multiclass: false
parameters:
static:
time_limit: 60
cv:
max_depth: !!python/object/new:range [3, 6]
DT:
base: !!python/name:sklearn.tree.DecisionTreeClassifier
description: Decision Tree
link: https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
parameters:
static:
class_weight: null
criterion: entropy
max_features: null
max_leaf_nodes: null
splitter: best
random_state: 42
cv:
max_depth: !!python/object/new:range [2, 13, 2]
GB:
base: !!python/name:sklearn.ensemble.GradientBoostingClassifier
description: Gradient Boosting
link: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
parameters:
static:
n_estimators: 30
random_state: 42
cv:
max_depth: !!python/object/new:range [3, 8]
GNB:
base: !!python/name:sklearn.naive_bayes.GaussianNB
description: Gaussian Naive Bayes
link: http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html
parameters:
static:
priors: null
J48:
base: !!python/name:pbox.core.model.algorithm.weka.J48 # based on weka.classifiers.trees.J48
description: Decision Tree (J48)
link: https://weka.sourceforge.io/doc.stable/weka/classifiers/trees/J48.html
parameters:
static:
C: 0.25 # confidence threshold for pruning
M: 2 # minimum number of instances per leaf
Q: 42 # random number seed
kNN:
base: !!python/name:sklearn.neighbors.KNeighborsClassifier
description: k-Nearest Neighbors
link: http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
parameters:
static:
leaf_size: 30
metric: minkowski
cv:
n_neighbors: !!python/object/new:range [1, 10, 2]
p: [1, 2] # euclidian distance
weights: ["distance", "uniform"]
preprocessors:
- Std
- PCA
LP:
base: !!python/name:sklearn.linear_model.Perceptron
description: Linear Perceptron
link: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html
parameters:
static:
max_iter: 1000
random_state: 42
LR:
base: !!python/name:pbox.core.model.algorithm.weka.Logistic # based on weka.classifiers.functions.Logistic
description: Logistic Regression
link: https://weka.sourceforge.io/doc.stable/weka/classifiers/functions/Logistic.html
parameters:
static:
M: -1 # maximum number of iterations (-1: until convergence)
LSVC:
base: !!python/name:sklearn.svm.LinearSVC
description: Linear Support Vector Classification
link: http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
parameters:
static:
dual: true
loss: squared_hinge
penalty: l2
random_state: 42
tol: !!float 1e-4
cv:
C: !!python/object/new:numpy.logspace [-1, 4, 6]
MLP:
base: !!python/name:sklearn.neural_network.MLPClassifier
description: Multi-Layer Perceptron
link: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
parameters:
static:
activation: relu
alpha: !!float 1e-4
hidden_layer_sizes: !!python/tuple [10, 2]
random_state: 42
solver: adam
MNB:
base: !!python/name:sklearn.naive_bayes.MultinomialNB
description: Multinomial Naive Bayes
link: http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html
parameters:
static:
alpha: 1.
fit_prior: true
class_prior: null
RF:
base: !!python/name:sklearn.ensemble.RandomForestClassifier
description: Random Forest
link: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
parameters:
static:
max_depth: null
max_features: sqrt
random_state: 42
cv:
criterion: ["entropy", "gini"]
max_depth: !!python/object/new:range [4, 11]
n_estimators: [10, 20, 30, 40]
SVM:
base: !!python/name:sklearn.svm.SVC
description: Support Vector Machine
link: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
parameters:
static:
C: 1.
degree: 3
gamma: auto
kernel: rbf
probability: true
random_state: 42
cv:
C: !!python/object/new:numpy.logspace [4, 6, 3]
gamma: !!python/object/new:numpy.logspace [-3, -1, 3]
Unsupervised:
defaults:
metrics:
- classification
- clustering
preprocessors:
- MM
AC:
base: !!python/name:sklearn.cluster.AgglomerativeClustering
description: Agglomerative Clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
parameters:
n_clusters: auto
distance_threshold: null
linkage: ward
AP:
base: !!python/name:sklearn.cluster.AffinityPropagation
description: Affinity Propagation clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
parameters:
static:
damping: 0.5
max_iter: 200
convergence_iter: 15
affinity : euclidean
Birch:
base: !!python/name:sklearn.cluster.Birch
description: BIRCH clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html
parameters:
static:
threshold: 0.5
branching_factor: 50
n_clusters: auto
DBSCAN:
base: !!python/name:sklearn.cluster.DBSCAN
description: Density-Based Spatial Clustering of Applications with Noise
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
parameters:
static:
eps: 0.5
min_samples: 5
leaf_size: 30
algorithm : auto
KMeans:
base: !!python/name:sklearn.cluster.KMeans
description: K-Means clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
parameters:
static:
n_clusters: auto
n_init: 10
max_iter: 300
tol: !!float 1e-4
algorithm: lloyd
MBKMeans:
base: !!python/name:sklearn.cluster.MiniBatchKMeans
description: Mini-Batch K-Means clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
parameters:
static:
n_clusters: auto
batch_size: 1024
max_iter: 300
tol: 0.0
max_no_improvement: 10
n_init: 3
reassignment_ratio: 0.1
MS:
base: !!python/name:sklearn.cluster.MeanShift
description: Mean Shift
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html
parameters:
static:
bandwidth: null
max_iter: 300
OPTICS:
base: !!python/name:sklearn.cluster.OPTICS
description: Ordering Points To Identify the Clustering Structure
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html
parameters:
static:
min_samples: 5
p: 2
min_cluster_size: null
cluster_method : xi
algorithm: auto
SC:
base: !!python/name:sklearn.cluster.SpectralClustering
description: Spectral Clustering
link: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
parameters:
static:
n_clusters: auto
n_components: 8
n_init: 10
gamma: 1.0
n_neighbors: 10
degree: 3
coef0: 0
eigen_solver: null