Skip to content
main
Switch branches/tags
Code


drawing


An english representation of machine learning. Modify what you want, let us handle the rest.

Build Status Downloads

Overview

Nylon is a python library that lets you customize automated machine learning workflows through a concise, JSON syntax. It provides a built in grammar, in which you can access different operations in ML with the english language.

Installation

Install latest release version:

pip install -U nylon-ai

Install directory from github:

git clone https://github.com/Palashio/nylon.git
cd nylon-ai
pip install .

Usage: the basics

A new Polymer object should be created everytime you're working with a new dataset. When initializing an object, a dataset in the form of a .csv or .xs file should be passed to it by path:

nylon_object = Polymer('housing.csv')

Now, it's time to create a specifications file using the nylon grammar. Here's a basic one, that lets Nylon handle most of the work. Nylon currently has four major parts in it's grammar: the data reader, preprocessor, modeler, and analysis modules. In the example below, you can see that we're specifying the target column under data (which is always required), and manually specifying the type of preprocessing we'd like. Everything we haven't specified will be handled for us.

{
  "data": {
    "target": "ocean_proximity"
  },
  "preprocessor": {
    "fill": "ALL",
    "label-encode": "ocean_proximity"
  }
}

Now, we can override more components to take advantage of the built in ensembling of SVM's, and nearest neighbors modeling in nylon.

 json_file = {
    "data": {
        "target": "ocean_proximity"
    },
    "preprocessor": {
        "fill": "ALL",
        "label-encode": "ocean_proximity"
    },
    "modeling": {
        "type": ["svms", "neighbors"]
    }
}

Now we can call,

nylon_object.run(json_file)

This will return a fully trained nylon object. You can access all information about this particular iteration in the .results field of the object.

Demos

alt text alt text

Asking for help

Welcome to the Nylon community!

If you have any questions, feel free to:

  1. Read the Docs
  2. Search through the issues
  3. Join our Discord

Contact

Shoot me an email at hello@paraglide.ai if you'd like to get in touch!

Follow me on twitter for updates and my insights about modern AI!

About

An intelligent, flexible grammar of machine learning.

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages