342 lines (224 sloc) 10.8 KB


Jinja2 supports extensions that can add extra filters, tests, globals or even extend the parser. The main motivation of extensions is to move often used code into a reusable class like adding support for internationalization.

Adding Extensions

Extensions are added to the Jinja2 environment at creation time. Once the environment is created additional extensions cannot be added. To add an extension pass a list of extension classes or import paths to the extensions parameter of the :class:`Environment` constructor. The following example creates a Jinja2 environment with the i18n extension loaded:

jinja_env = Environment(extensions=['jinja2.ext.i18n'])

i18n Extension

Import name: jinja2.ext.i18n

The i18n extension can be used in combination with gettext or babel. If the i18n extension is enabled Jinja2 provides a trans statement that marks the wrapped string as translatable and calls gettext.

After enabling, dummy _ function that forwards calls to gettext is added to the environment globals. An internationalized application then has to provide a gettext function and optionally an ngettext function into the namespace, either globally or for each rendering.

Environment Methods

After enabling the extension, the environment provides the following additional methods:

.. method:: jinja2.Environment.install_gettext_translations(translations, newstyle=False)

    Installs a translation globally for that environment.  The translations
    object provided must implement at least `ugettext` and `ungettext`.
    The `gettext.NullTranslations` and `gettext.GNUTranslations` classes
    as well as `Babel`_\s `Translations` class are supported.

    .. versionchanged:: 2.5 newstyle gettext added

.. method:: jinja2.Environment.install_null_translations(newstyle=False)

    Install dummy gettext functions.  This is useful if you want to prepare
    the application for internationalization but don't want to implement the
    full internationalization system yet.

    .. versionchanged:: 2.5 newstyle gettext added

.. method:: jinja2.Environment.install_gettext_callables(gettext, ngettext, newstyle=False)

    Installs the given `gettext` and `ngettext` callables into the
    environment as globals.  They are supposed to behave exactly like the
    standard library's :func:`gettext.ugettext` and
    :func:`gettext.ungettext` functions.

    If `newstyle` is activated, the callables are wrapped to work like
    newstyle callables.  See :ref:`newstyle-gettext` for more information.

    .. versionadded:: 2.5

.. method:: jinja2.Environment.uninstall_gettext_translations()

    Uninstall the translations again.

.. method:: jinja2.Environment.extract_translations(source)

    Extract localizable strings from the given template node or source.

    For every string found this function yields a ``(lineno, function,
    message)`` tuple, where:

    * `lineno` is the number of the line on which the string was found,
    * `function` is the name of the `gettext` function used (if the
      string was extracted from embedded Python code), and
    *  `message` is the string itself (a `unicode` object, or a tuple
       of `unicode` objects for functions with multiple string arguments).

    If `Babel`_ is installed, :ref:`the babel integration <babel-integration>`
    can be used to extract strings for babel.

For a web application that is available in multiple languages but gives all the users the same language (for example a multilingual forum software installed for a French community) may load the translations once and add the translation methods to the environment at environment generation time:

translations = get_gettext_translations()
env = Environment(extensions=['jinja2.ext.i18n'])

The get_gettext_translations function would return the translator for the current configuration. (For example by using gettext.find)

The usage of the i18n extension for template designers is covered as part :ref:`of the template documentation <i18n-in-templates>`.

Newstyle Gettext

.. versionadded:: 2.5

Starting with version 2.5 you can use newstyle gettext calls. These are inspired by trac's internal gettext functions and are fully supported by the babel extraction tool. They might not work as expected by other extraction tools in case you are not using Babel's.

What's the big difference between standard and newstyle gettext calls? In general they are less to type and less error prone. Also if they are used in an autoescaping environment they better support automatic escaping. Here are some common differences between old and new calls:

standard gettext:

{{ gettext('Hello World!') }}
{{ gettext('Hello %(name)s!')|format(name='World') }}
{{ ngettext('%(num)d apple', '%(num)d apples', apples|count)|format(

newstyle gettext looks like this instead:

{{ gettext('Hello World!') }}
{{ gettext('Hello %(name)s!', name='World') }}
{{ ngettext('%(num)d apple', '%(num)d apples', apples|count) }}

The advantages of newstyle gettext are that you have less to type and that named placeholders become mandatory. The latter sounds like a disadvantage but solves a lot of troubles translators are often facing when they are unable to switch the positions of two placeholder. With newstyle gettext, all format strings look the same.

Furthermore with newstyle gettext, string formatting is also used if no placeholders are used which makes all strings behave exactly the same. Last but not least are newstyle gettext calls able to properly mark strings for autoescaping which solves lots of escaping related issues many templates are experiencing over time when using autoescaping.

Expression Statement

Import name:

The "do" aka expression-statement extension adds a simple do tag to the template engine that works like a variable expression but ignores the return value.

Loop Controls

Import name: jinja2.ext.loopcontrols

This extension adds support for break and continue in loops. After enabling, Jinja2 provides those two keywords which work exactly like in Python.

With Statement

Import name: jinja2.ext.with_

.. versionchanged:: 2.9

This extension is now built-in and no longer does anything.

Autoescape Extension

Import name: jinja2.ext.autoescape

.. versionchanged:: 2.9

This extension was removed and is now built-in. Enabling the extension no longer does anything.

Writing Extensions

.. module:: jinja2.ext

By writing extensions you can add custom tags to Jinja2. This is a non-trivial task and usually not needed as the default tags and expressions cover all common use cases. The i18n extension is a good example of why extensions are useful. Another one would be fragment caching.

When writing extensions you have to keep in mind that you are working with the Jinja2 template compiler which does not validate the node tree you are passing to it. If the AST is malformed you will get all kinds of compiler or runtime errors that are horrible to debug. Always make sure you are using the nodes you create correctly. The API documentation below shows which nodes exist and how to use them.

Example Extension

The following example implements a cache tag for Jinja2 by using the Werkzeug caching contrib module:

.. literalinclude::
    :language: python

And here is how you use it in an environment:

from jinja2 import Environment
from werkzeug.contrib.cache import SimpleCache

env = Environment(extensions=[FragmentCacheExtension])
env.fragment_cache = SimpleCache()

Inside the template it's then possible to mark blocks as cacheable. The following example caches a sidebar for 300 seconds:

{% cache 'sidebar', 300 %}
<div class="sidebar">
{% endcache %}

Extension API

Extensions always have to extend the :class:`jinja2.ext.Extension` class:

.. autoclass:: Extension
    :members: preprocess, filter_stream, parse, attr, call_method

    .. attribute:: identifier

        The identifier of the extension.  This is always the true import name
        of the extension class and must not be changed.

    .. attribute:: tags

        If the extension implements custom tags this is a set of tag names
        the extension is listening for.

Parser API

The parser passed to :meth:`Extension.parse` provides ways to parse expressions of different types. The following methods may be used by extensions:

.. autoclass:: jinja2.parser.Parser
    :members: parse_expression, parse_tuple, parse_assign_target,
              parse_statements, free_identifier, fail

    .. attribute:: filename

        The filename of the template the parser processes.  This is **not**
        the load name of the template.  For the load name see :attr:`name`.
        For templates that were not loaded form the file system this is

    .. attribute:: name

        The load name of the template.

    .. attribute:: stream

        The current :class:`~jinja2.lexer.TokenStream`

.. autoclass:: jinja2.lexer.TokenStream
   :members: push, look, eos, skip, next, next_if, skip_if, expect

   .. attribute:: current

        The current :class:`~jinja2.lexer.Token`.

.. autoclass:: jinja2.lexer.Token
    :members: test, test_any

    .. attribute:: lineno

        The line number of the token

    .. attribute:: type

        The type of the token.  This string is interned so you may compare
        it with arbitrary strings using the `is` operator.

    .. attribute:: value

        The value of the token.

There is also a utility function in the lexer module that can count newline characters in strings:

.. autofunction:: jinja2.lexer.count_newlines


The AST (Abstract Syntax Tree) is used to represent a template after parsing. It's build of nodes that the compiler then converts into executable Python code objects. Extensions that provide custom statements can return nodes to execute custom Python code.

The list below describes all nodes that are currently available. The AST may change between Jinja2 versions but will stay backwards compatible.

For more information have a look at the repr of :meth:`jinja2.Environment.parse`.

.. module:: jinja2.nodes

.. jinjanodes::

.. autoexception:: Impossible