Permalink
Cannot retrieve contributors at this time
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
executable file
465 lines (395 sloc)
14.6 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
""" | |
Analyze docstrings to detect errors. | |
If no argument is provided, it does a quick check of docstrings and returns | |
a csv with all API functions and results of basic checks. | |
If a function or method is provided in the form "pandas.function", | |
"pandas.module.class.method", etc. a list of all errors in the docstring for | |
the specified function or method. | |
Usage:: | |
$ ./validate_docstrings.py | |
$ ./validate_docstrings.py pandas.DataFrame.head | |
""" | |
from __future__ import annotations | |
import argparse | |
import doctest | |
import importlib | |
import io | |
import json | |
import os | |
import pathlib | |
import subprocess | |
import sys | |
import tempfile | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy | |
from numpydoc.docscrape import get_doc_object | |
from numpydoc.validate import ( | |
Validator, | |
validate, | |
) | |
import pandas | |
# With template backend, matplotlib plots nothing | |
matplotlib.use("template") | |
PRIVATE_CLASSES = ["NDFrame", "IndexOpsMixin"] | |
ERROR_MSGS = { | |
"GL04": "Private classes ({mentioned_private_classes}) should not be " | |
"mentioned in public docstrings", | |
"GL05": "Use 'array-like' rather than 'array_like' in docstrings.", | |
"SA05": "{reference_name} in `See Also` section does not need `pandas` " | |
"prefix, use {right_reference} instead.", | |
"EX02": "Examples do not pass tests:\n{doctest_log}", | |
"EX03": "flake8 error: {error_code} {error_message}{times_happening}", | |
"EX04": "Do not import {imported_library}, as it is imported " | |
"automatically for the examples (numpy as np, pandas as pd)", | |
} | |
def pandas_error(code, **kwargs): | |
""" | |
Copy of the numpydoc error function, since ERROR_MSGS can't be updated | |
with our custom errors yet. | |
""" | |
return (code, ERROR_MSGS[code].format(**kwargs)) | |
def get_api_items(api_doc_fd): | |
""" | |
Yield information about all public API items. | |
Parse api.rst file from the documentation, and extract all the functions, | |
methods, classes, attributes... This should include all pandas public API. | |
Parameters | |
---------- | |
api_doc_fd : file descriptor | |
A file descriptor of the API documentation page, containing the table | |
of contents with all the public API. | |
Yields | |
------ | |
name : str | |
The name of the object (e.g. 'pandas.Series.str.upper). | |
func : function | |
The object itself. In most cases this will be a function or method, | |
but it can also be classes, properties, cython objects... | |
section : str | |
The name of the section in the API page where the object item is | |
located. | |
subsection : str | |
The name of the subsection in the API page where the object item is | |
located. | |
""" | |
current_module = "pandas" | |
previous_line = current_section = current_subsection = "" | |
position = None | |
for line in api_doc_fd: | |
line = line.strip() | |
if len(line) == len(previous_line): | |
if set(line) == set("-"): | |
current_section = previous_line | |
continue | |
if set(line) == set("~"): | |
current_subsection = previous_line | |
continue | |
if line.startswith(".. currentmodule::"): | |
current_module = line.replace(".. currentmodule::", "").strip() | |
continue | |
if line == ".. autosummary::": | |
position = "autosummary" | |
continue | |
if position == "autosummary": | |
if line == "": | |
position = "items" | |
continue | |
if position == "items": | |
if line == "": | |
position = None | |
continue | |
item = line.strip() | |
func = importlib.import_module(current_module) | |
for part in item.split("."): | |
func = getattr(func, part) | |
yield ( | |
".".join([current_module, item]), | |
func, | |
current_section, | |
current_subsection, | |
) | |
previous_line = line | |
class PandasDocstring(Validator): | |
def __init__(self, func_name: str, doc_obj=None) -> None: | |
self.func_name = func_name | |
if doc_obj is None: | |
doc_obj = get_doc_object(Validator._load_obj(func_name)) | |
super().__init__(doc_obj) | |
@property | |
def name(self): | |
return self.func_name | |
@property | |
def mentioned_private_classes(self): | |
return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc] | |
@property | |
def examples_errors(self): | |
flags = doctest.NORMALIZE_WHITESPACE | doctest.IGNORE_EXCEPTION_DETAIL | |
finder = doctest.DocTestFinder() | |
runner = doctest.DocTestRunner(optionflags=flags) | |
context = {"np": numpy, "pd": pandas} | |
error_msgs = "" | |
current_dir = set(os.listdir()) | |
for test in finder.find(self.raw_doc, self.name, globs=context): | |
f = io.StringIO() | |
runner.run(test, out=f.write) | |
error_msgs += f.getvalue() | |
leftovers = set(os.listdir()).difference(current_dir) | |
if leftovers: | |
for leftover in leftovers: | |
path = pathlib.Path(leftover).resolve() | |
if path.is_dir(): | |
path.rmdir() | |
elif path.is_file(): | |
path.unlink(missing_ok=True) | |
raise Exception( | |
f"The following files were leftover from the doctest: " | |
f"{leftovers}. Please use # doctest: +SKIP" | |
) | |
return error_msgs | |
@property | |
def examples_source_code(self): | |
lines = doctest.DocTestParser().get_examples(self.raw_doc) | |
return [line.source for line in lines] | |
def validate_pep8(self): | |
if not self.examples: | |
return | |
# F401 is needed to not generate flake8 errors in examples | |
# that do not user numpy or pandas | |
content = "".join( | |
( | |
"import numpy as np # noqa: F401\n", | |
"import pandas as pd # noqa: F401\n", | |
*self.examples_source_code, | |
) | |
) | |
error_messages = [] | |
with tempfile.NamedTemporaryFile(mode="w", encoding="utf-8") as file: | |
file.write(content) | |
file.flush() | |
cmd = ["python", "-m", "flake8", "--quiet", "--statistics", file.name] | |
response = subprocess.run(cmd, capture_output=True, text=True) | |
stdout = response.stdout | |
stdout = stdout.replace(file.name, "") | |
messages = stdout.strip("\n") | |
if messages: | |
error_messages.append(messages) | |
for error_message in error_messages: | |
error_count, error_code, message = error_message.split(maxsplit=2) | |
yield error_code, message, int(error_count) | |
def non_hyphenated_array_like(self): | |
return "array_like" in self.raw_doc | |
def pandas_validate(func_name: str): | |
""" | |
Call the numpydoc validation, and add the errors specific to pandas. | |
Parameters | |
---------- | |
func_name : str | |
Name of the object of the docstring to validate. | |
Returns | |
------- | |
dict | |
Information about the docstring and the errors found. | |
""" | |
func_obj = Validator._load_obj(func_name) | |
doc_obj = get_doc_object(func_obj) | |
doc = PandasDocstring(func_name, doc_obj) | |
result = validate(doc_obj) | |
mentioned_errs = doc.mentioned_private_classes | |
if mentioned_errs: | |
result["errors"].append( | |
pandas_error("GL04", mentioned_private_classes=", ".join(mentioned_errs)) | |
) | |
if doc.see_also: | |
for rel_name in doc.see_also: | |
if rel_name.startswith("pandas."): | |
result["errors"].append( | |
pandas_error( | |
"SA05", | |
reference_name=rel_name, | |
right_reference=rel_name[len("pandas.") :], | |
) | |
) | |
result["examples_errs"] = "" | |
if doc.examples: | |
result["examples_errs"] = doc.examples_errors | |
if result["examples_errs"]: | |
result["errors"].append( | |
pandas_error("EX02", doctest_log=result["examples_errs"]) | |
) | |
for error_code, error_message, error_count in doc.validate_pep8(): | |
times_happening = f" ({error_count} times)" if error_count > 1 else "" | |
result["errors"].append( | |
pandas_error( | |
"EX03", | |
error_code=error_code, | |
error_message=error_message, | |
times_happening=times_happening, | |
) | |
) | |
examples_source_code = "".join(doc.examples_source_code) | |
for wrong_import in ("numpy", "pandas"): | |
if f"import {wrong_import}" in examples_source_code: | |
result["errors"].append( | |
pandas_error("EX04", imported_library=wrong_import) | |
) | |
if doc.non_hyphenated_array_like(): | |
result["errors"].append(pandas_error("GL05")) | |
plt.close("all") | |
return result | |
def validate_all(prefix, ignore_deprecated=False): | |
""" | |
Execute the validation of all docstrings, and return a dict with the | |
results. | |
Parameters | |
---------- | |
prefix : str or None | |
If provided, only the docstrings that start with this pattern will be | |
validated. If None, all docstrings will be validated. | |
ignore_deprecated: bool, default False | |
If True, deprecated objects are ignored when validating docstrings. | |
Returns | |
------- | |
dict | |
A dictionary with an item for every function/method... containing | |
all the validation information. | |
""" | |
result = {} | |
seen = {} | |
base_path = pathlib.Path(__file__).parent.parent | |
api_doc_fnames = pathlib.Path(base_path, "doc", "source", "reference") | |
api_items = [] | |
for api_doc_fname in api_doc_fnames.glob("*.rst"): | |
with open(api_doc_fname) as f: | |
api_items += list(get_api_items(f)) | |
for func_name, _, section, subsection in api_items: | |
if prefix and not func_name.startswith(prefix): | |
continue | |
doc_info = pandas_validate(func_name) | |
if ignore_deprecated and doc_info["deprecated"]: | |
continue | |
result[func_name] = doc_info | |
shared_code_key = doc_info["file"], doc_info["file_line"] | |
shared_code = seen.get(shared_code_key, "") | |
result[func_name].update( | |
{ | |
"in_api": True, | |
"section": section, | |
"subsection": subsection, | |
"shared_code_with": shared_code, | |
} | |
) | |
seen[shared_code_key] = func_name | |
return result | |
def print_validate_all_results( | |
prefix: str, | |
errors: list[str] | None, | |
output_format: str, | |
ignore_deprecated: bool, | |
): | |
if output_format not in ("default", "json", "actions"): | |
raise ValueError(f'Unknown output_format "{output_format}"') | |
result = validate_all(prefix, ignore_deprecated) | |
if output_format == "json": | |
sys.stdout.write(json.dumps(result)) | |
return 0 | |
prefix = "##[error]" if output_format == "actions" else "" | |
exit_status = 0 | |
for name, res in result.items(): | |
for err_code, err_desc in res["errors"]: | |
if errors and err_code not in errors: | |
continue | |
sys.stdout.write( | |
f'{prefix}{res["file"]}:{res["file_line"]}:' | |
f"{err_code}:{name}:{err_desc}\n" | |
) | |
exit_status += 1 | |
return exit_status | |
def print_validate_one_results(func_name: str): | |
def header(title, width=80, char="#"): | |
full_line = char * width | |
side_len = (width - len(title) - 2) // 2 | |
adj = "" if len(title) % 2 == 0 else " " | |
title_line = f"{char * side_len} {title}{adj} {char * side_len}" | |
return f"\n{full_line}\n{title_line}\n{full_line}\n\n" | |
result = pandas_validate(func_name) | |
sys.stderr.write(header(f"Docstring ({func_name})")) | |
sys.stderr.write(f"{result['docstring']}\n") | |
sys.stderr.write(header("Validation")) | |
if result["errors"]: | |
sys.stderr.write(f'{len(result["errors"])} Errors found:\n') | |
for err_code, err_desc in result["errors"]: | |
if err_code == "EX02": # Failing examples are printed at the end | |
sys.stderr.write("\tExamples do not pass tests\n") | |
continue | |
sys.stderr.write(f"\t{err_desc}\n") | |
else: | |
sys.stderr.write(f'Docstring for "{func_name}" correct. :)\n') | |
if result["examples_errs"]: | |
sys.stderr.write(header("Doctests")) | |
sys.stderr.write(result["examples_errs"]) | |
def main(func_name, prefix, errors, output_format, ignore_deprecated): | |
""" | |
Main entry point. Call the validation for one or for all docstrings. | |
""" | |
if func_name is None: | |
return print_validate_all_results( | |
prefix, errors, output_format, ignore_deprecated | |
) | |
else: | |
print_validate_one_results(func_name) | |
return 0 | |
if __name__ == "__main__": | |
format_opts = "default", "json", "actions" | |
func_help = ( | |
"function or method to validate (e.g. pandas.DataFrame.head) " | |
"if not provided, all docstrings are validated and returned " | |
"as JSON" | |
) | |
argparser = argparse.ArgumentParser(description="validate pandas docstrings") | |
argparser.add_argument("function", nargs="?", default=None, help=func_help) | |
argparser.add_argument( | |
"--format", | |
default="default", | |
choices=format_opts, | |
help="format of the output when validating " | |
"multiple docstrings (ignored when validating one). " | |
"It can be {str(format_opts)[1:-1]}", | |
) | |
argparser.add_argument( | |
"--prefix", | |
default=None, | |
help="pattern for the " | |
"docstring names, in order to decide which ones " | |
'will be validated. A prefix "pandas.Series.str."' | |
"will make the script validate all the docstrings " | |
"of methods starting by this pattern. It is " | |
"ignored if parameter function is provided", | |
) | |
argparser.add_argument( | |
"--errors", | |
default=None, | |
help="comma separated " | |
"list of error codes to validate. By default it " | |
"validates all errors (ignored when validating " | |
"a single docstring)", | |
) | |
argparser.add_argument( | |
"--ignore_deprecated", | |
default=False, | |
action="store_true", | |
help="if this flag is set, " | |
"deprecated objects are ignored when validating " | |
"all docstrings", | |
) | |
args = argparser.parse_args() | |
sys.exit( | |
main( | |
args.function, | |
args.prefix, | |
args.errors.split(",") if args.errors else None, | |
args.format, | |
args.ignore_deprecated, | |
) | |
) |