
Moving windows
There are a number of ways to apply a function in a moving window. Here I review a couple of ideas. I found that with

low numbers of data points simple for loops are more than sufficient, but the pandas implementation is far easier and

faster so should be used. If you have a lot of data, then it may be worth taking the time to broadcast to a numpy array.

Applying a function
The standard functions which are applied in a moving window are averages and variances/std. As a result pandas has

a built in method to handle this. To be fair to all methods, we will test with a user-defined function: the mean absolute

deviation (http://en.wikipedia.org/wiki/Absolute_deviation#Mean_absolute_deviation_.28MAD.29_.28about_mean.29)

Lets get started by coding this function and some test data

In [52]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

%matplotlib inline

The user defined function we want to apply in a moving window
mad = lambda x: np.fabs(x - x.mean()).mean()

Some random data
N = 1000
t = np.linspace(0, 10, N)
x = np.random.randn(N).cumsum()

The moving window parameters
window_length = 300
window_shift = 1

Plot the data
plt.plot(t, x)
plt.show()

The for loop
The simplest, but slowest, method is obviously the good old for loop. Let's test this first

In [53]: def ForLoop(f):
 moving_val = []
 moving_time = []
 for i in xrange(0, N-window_length, window_shift):
 moving_val.append(f(x[i:i+window_length]))
 moving_time.append(np.average(t[i:i+window_length]))
 return moving_time, moving_val

plt.plot(*ForLoop(mad))
plt.show()

%timeit ForLoop(mad)

Pandas rolling_apply
Next up is the inspiration for all this, pandas.rolling_apply. This is by far the easiest method since it can be

implemented in one line. However, as far as I can see there is no way to set the window_shift

In [54]: out = pd.rolling_apply(x, window_length, mad, center=True)

plt.plot(t, out)
plt.show()

%timeit out = pd.rolling_apply(x, window_length, mad)

Numpy broadcast to array
Next we will broadcast the 1D array to a 2D array, compute the function along the new axis. This will require some

effort to rewrite the function so it handles the shapes correctly. For help in understanding how this is done I really

recommend taking a look at this scipy page (http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)

10 loops, best of 3: 40.2 ms per loop

10 loops, best of 3: 26.2 ms per loop

In [55]: def NumpyArray():

 mad_array = lambda x: np.fabs(x.T - x.mean(axis=1)).mean(axis=0)

 vert_idx_list = np.arange(0, N - window_length, window_shift)
 hori_idx_list = np.arange(window_length)
 A, B = np.meshgrid(hori_idx_list, vert_idx_list)
 idx_array = A + B
 x_array = x[idx_array]

 return t[vert_idx_list+int(window_length/2.)], mad_array(x_array)

plt.plot(*NumpyArray())
plt.show()

%timeit NumpyArray()

Additional
There is also a rolling apply function proposed by Erik Rigtorp (http://www.rigtorp.se/2011/01/01/rolling-statistics-
numpy.html). I still don't really understand how this works, but there is useful discussions to be found here
(http://numpy-discussion.10968.n7.nabble.com/Rolling-window-moving-average-moving-std-and-more-td4744.html).
I've not included because I could not get it to work. If you can see how to do this please let me know!

In []:

100 loops, best of 3: 11.4 ms per loop

