

pandas Coding Style Guide

1 Background

Writing good code is not just about what you write. It is also about how you

write it. During Continuous Integration testing, several tools will be run to

check your code for stylistic errors. Generating any warnings will cause the

test to fail. Thus, good style is a requirement for submitting code to *pandas*.

This document serves as a supplement to the script demonstrating the proper

coding style required for contributing to *pandas*.

2 Patterns

2.1 Line Length

Line length is restricted to 80 characters to promote readability.

2.2 Header File

Every header file must include a header guard to avoid name collision if re-included.

2.3 foo._class_

pandas uses ‘type(foo)’ instead ‘foo.__class__’ as it is making the code more readable.

For example:

Good:

 foo = "bar"

 type(foo)

Bad:

 foo = "bar"

 foo.__class__

3 String Formatting

3.1 Concatenated Strings

3.1.1 f-strings

pandas uses f-strings formatting instead of ‘%’ and ‘.format()’ string formatters.

The convention of using f-strings on a string that is concatenated over serveral lines, is to prefix only the

lines containing the value needs to be interpeted.

For example:

Good:

 foo = "old_function"

 bar = "new_function"

 my_warning_message = (

 f"Warning, {foo} is deprecated, "

 "please use the new and way better "

 f"{bar}"

)

Bad:

 foo = "old_function"

 bar = "new_function"

 my_warning_message = (

 f"Warning, {foo} is deprecated, "

 f"please use the new and way better "

 f"{bar}"

)

3.1.2 White Spaces

Putting the white space only at the end of the previous line, so there is no whitespace at the beggining

of the concatenated string.

For example:

Good:

 example_string = (

 "Some long concatenated string, "

 "with good placement of the "

 "whitespaces"

)

Bad:

 example_string = (

 "Some long concatenated string,"

 " with bad placement of the"

 " whitespaces"

)

3.2 Representation function (aka 'repr()')

pandas uses ‘repr()’ instead of ‘%r’ and ‘!r’.

The use of ‘repr()’ will only happend when the value is not an obvious string.

For example:

Good:

 value = str

 f"Unknown recived value, got: {repr(value)}"

Bad:

 value = str

 f"Unknown recived type, got: '{type(value).__name__}'"

4 Types

pandas strongly encourages the use of PEP 484 style type hints. New development should contain

type hints and pull requests to annotate existing code are accepted as well!

4.1 Imports

Types imports should follow the `from typing import ...` convention.

Good:

 from typing import List, Optional, Union

 primes: List[int] = []

Bad:

 import typing

 primes: typing.List[int] = []

Optional should be used where applicable

Good:

 maybe_primes: List[Optional[int]] = []

Bad:

 maybe_primes: List[Union[int, None]] = []

