New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

BUG: DatetimeIndex.astype doesn't fully handle tz aware dtypes #18951

Closed
jschendel opened this Issue Dec 27, 2017 · 0 comments

Comments

Projects
None yet
2 participants
@jschendel
Member

jschendel commented Dec 27, 2017

Code Sample, a copy-pastable example if possible

Setup:

In [2]: dti_naive = pd.date_range('2017-01-01', periods=4)
   ...: dti_east = pd.date_range('2017-01-01', periods=4, tz='US/Eastern')
   ...: dti_west = pd.date_range('2017-01-01', periods=4, tz='US/Pacific')
   ...:

Attempting to convert between aware always converts to UTC and becomes naive:

In [3]: dti_west.astype(dti_east.dtype)
Out[3]:
DatetimeIndex(['2017-01-01 08:00:00', '2017-01-02 08:00:00',
               '2017-01-03 08:00:00', '2017-01-04 08:00:00'],
              dtype='datetime64[ns]', freq='D')

Converting naive to aware does nothing:

In [4]: dti_naive.astype(dti_east.dtype)
Out[4]: DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq='D')

Converting aware to naive appears to work:

In [5]: dti_west.astype(dti_naive.dtype)
Out[5]:
DatetimeIndex(['2017-01-01 08:00:00', '2017-01-02 08:00:00',
               '2017-01-03 08:00:00', '2017-01-04 08:00:00'],
              dtype='datetime64[ns]', freq='D')

Expected Output

For [3]:

In [3]: dti_west.astype(dti_east.dtype)
Out[3]:
DatetimeIndex(['2017-01-01 03:00:00-05:00', '2017-01-02 03:00:00-05:00',
               '2017-01-03 03:00:00-05:00', '2017-01-04 03:00:00-05:00'],
              dtype='datetime64[ns, US/Eastern]', freq='D')

For [4]:

In [4]: dti_naive.astype(dti_east.dtype)
Out[4]:
DatetimeIndex(['2017-01-01 00:00:00-05:00', '2017-01-02 00:00:00-05:00',
               '2017-01-03 00:00:00-05:00', '2017-01-04 00:00:00-05:00'],
              dtype='datetime64[ns, US/Eastern]', freq='D')

Output of pd.show_versions()

INSTALLED VERSIONS

commit: a18d725
python: 3.6.1.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 78 Stepping 3, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None
LOCALE: None.None

pandas: 0.22.0.dev0+433.ga18d725
pytest: 3.1.2
pip: 9.0.1
setuptools: 27.2.0
Cython: 0.25.2
numpy: 1.13.1
scipy: 0.19.1
pyarrow: 0.6.0
xarray: 0.9.6
IPython: 6.1.0
sphinx: 1.5.6
patsy: 0.4.1
dateutil: 2.6.0
pytz: 2017.2
blosc: None
bottleneck: None
tables: 3.4.2
numexpr: 2.6.2
feather: 0.4.0
matplotlib: 2.0.2
openpyxl: 2.4.8
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 0.9.8
lxml: 3.8.0
bs4: None
html5lib: 0.999
sqlalchemy: 1.1.13
pymysql: None
psycopg2: None
jinja2: 2.9.6
s3fs: None
fastparquet: 0.1.0
pandas_gbq: None
pandas_datareader: None

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment