diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 68ea6795d47dd..6092368e2b944 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -9038,16 +9038,6 @@ def combine( 0 0 -5.0 1 0 4.0 - However, if the same element in both dataframes is None, that None - is preserved - - >>> df1 = pd.DataFrame({"A": [0, 0], "B": [None, 4]}) - >>> df2 = pd.DataFrame({"A": [1, 1], "B": [None, 3]}) - >>> df1.combine(df2, take_smaller, fill_value=-5) - A B - 0 0 -5.0 - 1 0 3.0 - Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. @@ -13820,8 +13810,8 @@ def quantile( 0.1 1 1 0.5 3 100 - Specifying `numeric_only=False` will also compute the quantile of - datetime and timedelta data. + Specifying `numeric_only=False` will compute the quantiles for all + columns. >>> df = pd.DataFrame( ... { diff --git a/pandas/core/series.py b/pandas/core/series.py index fe71a3ab91933..f2fc338c99c55 100644 --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -3112,8 +3112,8 @@ def combine( Combine the Series and `other` using `func` to perform elementwise selection for combined Series. - `fill_value` is assumed when value is missing at some index - from one of the two objects being combined. + `fill_value` is assumed when value is not present at some index + from one of the two Series being combined. Parameters ----------