Skip to content
The code for the paper "Discriminative CNN image representations via replication equation for object retrieval"
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
utils
ROIs.m
ReSW.m
Select_Weight_Replicator.m
apply_whiten.m
compute_rewards_replicator.m
create_mean_med.m
crop_qim.m
feature_100k.m
feature_extract.m
feature_query.m
preprocess.m
readme.md Update readme.md Feb 1, 2018
replicator.m
setup.m
test.m

readme.md

What is it?

This repository contains an MATLAB implementation of the following paper:

Shanmin Pang, Jihua Zhu, Jiaxing Wang, Vicente Ordonez and Jianru Xue, Discriminative CNN image representations via replication equation for object retrieval, submitted to Pattern Recognition.

This code implements

a) ReSW image representation

b) Image/object retrieval based on ReSW on public datasets: Oxford5k, Paris6k and Holidays.

The code is written by: Jin Ma (m799133891@stu.xjtu.edu.cn) and Shanmin Pang (pangsm@xjtu.edu.cn). If you have any question, please contact Jin Ma or Shanmin Pang.

Setup

Dependencies

  1. MatConvNet v1.0-beta18 or above (http://www.vlfeat.org/matconvnet/).
  2. Optional but highly recommended: Yael_matlab (http://yael.gforge.inria.fr/index.html). All affiliated functions used in this program have already been contained in 'utils' folder.
  3. For siaMAC features, see this page: siaMAC(http://cmp.felk.cvut.cz/cnnimageretrieval/)
  4. For netvlad features, see this page: netvlad (https://github.com/Relja/netvlad)

Models:

Three models used in our experiment are as follows:

  1. Vgg16: imagenet-matconvnet-vgg-verydeep-16 (http://www.vlfeat.org/matconvnet/models/imagenet-matconvnet-vgg-verydeep-16.mat)
  2. SiaMAC: retrievalSfM120k-siamac-vgg (http://cmp.felk.cvut.cz/cnnimageretrieval/networks/retrieval-SfM-120k/retrievalSfM120k-gem-vgg.mat)
  3. Netvlad: The best model of netvlad(VGG-16+NetVLAD+whitening, trained on Pittsburgh) http://www.di.ens.fr/willow/research/netvlad/data/models/vd16_pitts30k_conv5_3_vlad_preL2_intra_white.mat

Dataset

  1. Oxford5k: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
  2. Paris6k: http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
  3. INRIA Holidays: https://lear.inrialpes.fr/~jegou/data.php#holidays
  4. Flickr 100k: http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/flickr100k.html

Execution

  1. Extract features: See 'feature_extract.m'/'feature_query.m'/'feature_100k.m' file, please change the pathname to the correct folder where you store images.
  2. 'Test.m' file shows details of our experiment, including computation of final representation and image retrieval process.
You can’t perform that action at this time.