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In this work we consider the following scenario. A user 𝑼 wants to store a collection of confidential  

documents 𝑫 = {𝐷0, … , 𝐷𝑚} at untrusted server 𝑺. To preserve data confidentiality, 𝑼 encrypts 𝑫 to obtain 

𝑪 = {𝐶0, … , 𝐶𝑚}, which is outsourced to 𝑺 in such a way that 1) 𝑺 will learn as less as possible useful 

information about 𝑫; and that 2) 𝑺 can be given the ability to search through the collection and return 

appropriate (encrypted) documents to 𝑼. We consider 𝑺 stores encrypted documents using relational data 

model and 𝑼 is able to use well defined SQL language to query 𝑺 in order to upload or retrieve encrypted 

documents. 

A traditional symmetric searchable encryption mechanism allows searching the keywords directly in 𝑪, 

without compromising data confidentiality nor query privacy. Searchable keywords are selected by 𝑼 and are 

part of a dictionary △= {𝑤0, … , 𝑤𝑑} of d unique words ordered lexicographically. Considering relational data 

model, we can say that single document 𝐷𝑗 = {𝑤𝑙
0,𝑗

, … , 𝑤𝑙
𝑛,𝑗

}, is a 𝑗-th record in relation, while a single 

keyword 𝑤𝑙
𝑖,𝑗

∊ △, 𝑙 ← {1, 𝑑}, 𝑖 ∊ {0, 𝑛}, 𝑗 ∊ {0, 𝑚}, labeled by 𝑖-th attribute and 𝑗-th record is an attribute 

value (see Figure 1). 

 

 

Figure 1: Plaintext relation in SQL database 

 

In [Curtmola et. al] the authors formally defined a static index-based symmetric searchable encryption 

scheme by the following algorithms (see Definition 4.1): 

 

𝐾 ← 𝐺𝑒𝑛(1𝑘 ): is a probabilistic key generation algorithm that is run by the user to setup the scheme. It 

takes as input a security parameter 𝑘, and outputs a secret key 𝐾.  

(𝐼, 𝑪) ← 𝐸𝑛𝑐(𝐾, 𝑫): is a probabilistic algorithm run by the user to encrypt the document collection. It 

takes as input a secret key 𝐾 and a document collection 𝑫 = {𝐷0, … , 𝐷𝑚}, and outputs a secure index 𝐼 and a 

sequence of ciphertexts 𝑪 = {𝐶0, … , 𝐶𝑚}.  

 𝑡 ← 𝑇𝑟𝑝𝑑𝑟(𝐾, 𝑤): is a deterministic algorithm run by the user to generate a trapdoor for a given 

keyword. It takes as input a secret key 𝐾 and a keyword 𝑤, and outputs a trapdoor 𝑡.  

𝑋 ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝐼, 𝑡): is a deterministic algorithm run by the server to search for the documents in 𝑫 that 

contain a keyword 𝑤. It takes as input an encrypted index 𝐼 for a data collection 𝑫 and a trapdoor 𝑡 and outputs 

a set 𝑋 of (lexicographically-ordered) document identifiers.  

𝐷𝑗 ← 𝐷𝑒𝑐(𝐾, 𝐶𝑗): is a deterministic algorithm run by the client to recover a document. It takes as input 

a secret key 𝐾 and a ciphertext 𝐶𝑗, and outputs a document 𝐷𝑗 . 

 

In order to formally outline Ciphersweet’s scheme, we use two cryptographic primitives: a CPA-secure 

symmetric encryption scheme and a pseudo-random function (PRF). We also use one utility function that 

performs PRF output truncation. Let’s dente SKE = (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) – CPA-secure symmetric encryption 

scheme and 𝑓 = {0,1}𝑘 × {0,1}𝑥 → {0,1}𝑦 – pseudo-random function. Let also Truncate(𝑝, 𝑣𝑎𝑙𝑢𝑒) →

𝑣𝑎𝑙𝑢𝑒 |0
𝑝
 be a function that truncates bit vector  𝑣𝑎𝑙𝑢𝑒 to its first 𝑝 bits. We call “blind index” a truncated PRF 

output. 

 attribute 0 attribute 1 attribute 2 . . . attribute 𝑛 

record 0 𝑤𝑙
0,0

 𝑤𝑙
1,0

 𝑤𝑙
2,0

  𝑤𝑙
𝑛,0

 

record 1 𝑤𝑙
0,1

 𝑤𝑙
1,1

 𝑤𝑙
2,1

  𝑤𝑙
𝑛,1

 

. . . . . . . . . . . . . . . . . . 

      

record 𝑚 𝑤𝑙
0,1

 𝑤𝑙
1,1

 𝑤𝑙
2,1

 . . . 𝑤𝑙
𝑛,1

 

 

 



Now we are ready to formally define construction of our scheme in context of Curtmola’s notion. It is 

described in Figure 2. 

Figure 2: A formal describing of Ciphersweet’s scheme 

Note that we have to introduce a separate index relation along in order to demonstrate the way, how 

server should store encrypted collection of documents 𝑪 = {𝐶0, … , 𝐶𝑚}, 𝐶𝑗 = {𝑐𝑙
0,𝑗

, … , 𝑐𝑙
𝑛,𝑗

}, and 𝑐𝑙
𝑖,𝑗

is a single 

encrypted keyword. Index relation stores 𝐼 = {𝐵𝐼0, … , 𝐵𝐼𝑚} that itself consists from sets of blind indexes 

𝐵𝐼𝑗 = {𝑏𝑖𝑙
0,𝑗

, … , 𝑏𝑖𝑙
𝑛,𝑗

} for each encrypted keyword. Figure 3 shows encrypted relation itself, while Figure 4 

shows index relation. 

 

 

Figure 3: Encrypted relation 

 attribute 0 attribute 1 attribute 2 . . . attribute 𝑛 

record 0 𝑐𝑙
0,0

 𝑐𝑙
1,0

 𝑐𝑙
2,0

  𝑐𝑙
𝑛,0

 

record 1 𝑐𝑙
0,1

 𝑐𝑙
1,1

 𝑐𝑙
2,1

  𝑐𝑙
𝑛,1

 

. . . . . . . . . . . . . . . . . . 

      

record 𝑚 𝑐𝑙
0,1

 𝑐𝑙
1,1

 𝑐𝑙
2,1

 . . . 𝑐𝑙
𝑛,1

 

 

 

𝐺𝑒𝑛(1𝑘 ): sample 𝐾1 ← {0,1}𝑘, sample 𝑝 ← {1, 𝑦}, generate 𝐾2 ← SKE. 𝐺𝑒𝑛(1𝑘) and, finally, output  

𝐾 = {𝐾1, 𝑝, 𝐾2}  

 

𝐸𝑛𝑐(𝐾, 𝑫): encrypt each document 𝐷𝑗 = {𝑤𝑙
0,𝑗

, … , 𝑤𝑙
𝑛,𝑗

} from collection 𝑫 and create blind indexes for 

each keyword 𝑤𝑙
𝑖,𝑗

: 

1) for 0 ≤ 𝑗 ≤ 𝑚 

•  let 𝐵𝐼𝑗 be a 𝑛-length set of blind indexes for document 𝐷𝑗  

•  let 𝐶𝑗 be a 𝑛-length set of encrypted keywords of 𝐷𝑗  

•  for 0 ≤ 𝑖 ≤ 𝑛 

▪  𝐶𝑗[𝑖] = SKE. 𝐸𝑛𝑐(𝐾2, 𝑤𝑙
𝑖,𝑗

) 

▪  𝐵𝐼𝑗[𝑖] = 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑝, 𝑓(𝐾1, 𝑤𝑙
𝑖,𝑗

)) 

2) output (𝐼, 𝑪), where 𝐼 = {𝐵𝐼0, … , 𝐵𝐼𝑚} and 𝑪 = {𝐶0, … , 𝐶𝑚} 

 

𝑇𝑟𝑝𝑑𝑟(𝐾, 𝑤): output 𝑡 = (𝑖, 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑝, 𝑓(𝐾1, 𝑤))), where 𝑖 ∊ {0, 𝑛} is a searchable attribute number 

 

𝑆𝑒𝑎𝑟𝑐ℎ(𝐼, 𝑡): compare 𝑡 with each blind index from each 𝐼’s element: 

1) Parse 𝑡 as (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒) 

2) let 𝑟𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 be a set of document identifiers  

3) initialize counter 𝑐𝑡𝑟 

4) for 0 ≤ 𝑗 ≤ 𝑚 

•  let 𝐵𝐼𝑗 = 𝐼[𝑗]  

•  if 𝐵𝐼𝑗[𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] = 𝑣𝑎𝑙 then:  

▪  𝑟[𝑐𝑡𝑟] = 𝑗 

▪  set 𝑐𝑡𝑟 = 𝑐𝑡𝑟 + 1 

5) Output 𝑋, where 𝑋 = 𝑟 

 

 𝐷𝑒𝑐(𝐾, 𝐶𝑗): decrypt each keyword in 𝐶𝑗: 

1) for 0 ≤ 𝑖 ≤ 𝑛, let 𝐷𝑗 = SKE. 𝐷𝑒𝑐(𝐾2, 𝐶𝑗[𝑖]) 

2) output 𝐷𝑗  



 

Figure 4: Index relation 

 

 

 

 

 attribute 0 attribute 1 attribute 2 . . . attribute 𝑛 

record 0 𝑏𝑖𝑙
0,0

 𝑏𝑖𝑙
1,0

 𝑏𝑖𝑙
2,0

  𝑏𝑖𝑙
𝑛,0

 

record 1 𝑏𝑖𝑙
0,1

 𝑏𝑖𝑙
1,1

 𝑏𝑖𝑙
2,1

  𝑏𝑖𝑙
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. . . . . . . . . . . . . . . . . . 

      

record 𝑚 𝑏𝑖𝑙
0,1

 𝑏𝑖𝑙
1,1

 𝑏𝑖𝑙
2,1

 . . . 𝑏𝑖𝑙
𝑛,1

 

 

 


