Static Symmetric Searchable Encryption over Attributes in SQL Databases

In this work we consider the following scenario. A user U wants to store a collection of confidential documents $\mathbf{D} = \{D_0, ..., D_m\}$ at untrusted server S. To preserve data confidentiality, U encrypts D to obtain $\mathbf{C} = \{C_0, ..., C_m\}$, which is outsourced to **S** in such a way that 1) **S** will learn as less as possible useful information about \bm{D} ; and that 2) \bm{S} can be given the ability to search through the collection and return appropriate (encrypted) documents to U . We consider S stores encrypted documents using relational data model and U is able to use well defined SQL language to query S in order to upload or retrieve encrypted documents.

A traditional symmetric searchable encryption mechanism allows searching the keywords directly in C , without compromising data confidentiality nor query privacy. Searchable keywords are selected by U and are part of a dictionary $\Delta = \{w_0, ..., w_d\}$ of *d* unique words ordered lexicographically. Considering relational data model, we can say that single document $D_j = \{w_l^{0,j}, ..., w_l^{n,j}\}$, is a *j*-th record in relation, while a single keyword $w_l^{i,j} \in \Delta$, $l \leftarrow \{1, d\}$, $i \in \{0, n\}$, $j \in \{0, m\}$, labeled by *i*-th attribute and *j*-th record is an attribute value (see Figure 1).

	attribute 0	<i>attribute</i> 1	attribute 2	\cdots	attribute n
record 0	$W_1^{0,0}$	$W_i^{1,0}$	$W^{2,0}_1$		$w_l^{n,0}$
record 1	$w_i^{0,1}$	$W^{1,1}$	$W^{2,1}$		$w^{n,1}$
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
record m	$W^{0,1}_1$	W	$W^{2,1}$	\ddots	$w_i^{n,1}$

Figure 1: Plaintext relation in SQL database

In [Curtmola et. al] the authors formally defined a static index-based symmetric searchable encryption scheme by the following algorithms (see Definition 4.1):

 $K \leftarrow Gen(1^k)$: is a probabilistic key generation algorithm that is run by the user to setup the scheme. It takes as input a security parameter k , and outputs a secret key K .

 $(I, C) \leftarrow Enc(K, D)$: is a probabilistic algorithm run by the user to encrypt the document collection. It takes as input a secret key K and a document collection $\mathbf{D} = \{D_0, ..., D_m\}$, and outputs a secure index I and a sequence of ciphertexts $\mathbf{C} = \{C_0, ..., C_m\}.$

 $t \leftarrow Trpdf(K, w)$: is a deterministic algorithm run by the user to generate a trapdoor for a given keyword. It takes as input a secret key K and a keyword w , and outputs a trapdoor t .

 $X \leftarrow Search(I, t)$: is a deterministic algorithm run by the server to search for the documents in **D** that contain a keyword w. It takes as input an encrypted index I for a data collection \bm{D} and a trapdoor t and outputs a set X of (lexicographically-ordered) document identifiers.

 $D_i \leftarrow Dec(K, C_i)$: is a deterministic algorithm run by the client to recover a document. It takes as input a secret key K and a ciphertext C_j , and outputs a document D_j .

In order to formally outline Ciphersweet's scheme, we use two cryptographic primitives: a CPA-secure symmetric encryption scheme and a pseudo-random function (PRF). We also use one utility function that performs PRF output truncation. Let's dente $SKE = (Gen, Enc, Dec) - CPA$ -secure symmetric encryption scheme and $f = \{0,1\}^k \times \{0,1\}^k \rightarrow \{0,1\}^y$ – pseudo-random function. Let also Truncate(p, value) \rightarrow *value* $\binom{p}{0}$ be a function that truncates bit vector *value* to its first p bits. We call "blind index" a truncated PRF output.

Now we are ready to formally define construction of our scheme in context of Curtmola's notion. It is described in Figure 2.

Gen(1^k): sample $K_1 \leftarrow \{0,1\}^k$, sample $p \leftarrow \{1, y\}$, generate $K_2 \leftarrow \text{SKE}$. Gen(1^k) and, finally, output $K = \{K_1, p, K_2\}$

- Enc(K, **D**): encrypt each document $D_j = \{w_l^{0,j}, ..., w_l^{n,j}\}\$ from collection **D** and create blind indexes for each keyword $w_l^{i,j}$:
	- 1) for $0 \leq j \leq m$
		- let BI_i be a *n*-length set of blind indexes for document D_i
		- let C_i be a *n*-length set of encrypted keywords of D_i
		- for $0 \le i \le n$
			- \bullet $C_j[i] = \text{SKE}$. $Enc(K_2, w_i^{i,j})$
			- \blacksquare Bl_j[i] = Truncate(p, f(K₁, w_iⁱ,))
	- 2) output (I, C) , where $I = {BI_0, ..., BI_m}$ and $C = {C_0, ..., C_m}$

 $Trpdr(K, w)$: output $t = (i, Truncate(p, f(K_1, w)))$, where $i \in \{0, n\}$ is a searchable attribute number

Search (I, t) : compare t with each blind index from each I 's element:

- 1) Parse t as $(attribute, value)$
- 2) let $r_{attribute}$ be a set of document identifiers
- 3) initialize counter *ctr*
- 4) for $0 \le j \le m$

• let
$$
BI_j = I[j]
$$

- if $BI_j[attribute] = val$ then:
	- $\mathbf{r}[ctr] = i$
	- **•** set $ctr = str + 1$
- 5) Output *X*, where $X = r$

 $Dec(K, C_j)$: decrypt each keyword in C_j :

- 1) for $0 \le i \le n$, let $D_j = \text{SKE}$. Dec(K_2 , $C_j[i]$)
- 2) output D_i

Figure 2: A formal describing of Ciphersweet's scheme

Note that we have to introduce a separate index relation along in order to demonstrate the way, how server should store encrypted collection of documents $\mathbf{C} = \{C_0, ..., C_m\}$, $C_j = \{c_1^{0,j}, ..., c_l^{n,j}\}$, and $c_l^{i,j}$ is a single encrypted keyword. Index relation stores $I = \{BI_0, ..., BI_m\}$ that itself consists from sets of blind indexes $BI_j = \{bi_l^{0,j}, ..., bi_l^{n,j}\}\$ for each encrypted keyword. Figure 3 shows encrypted relation itself, while Figure 4 shows index relation.

	attribute 0	<i>attribute</i> 1	attribute 2	\cdots	attribute n
record 0	0,0				$\epsilon_{n,0}$
record 1					
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
record m				\cdots	

Figure 3: Encrypted relation

	attribute 0	<i>attribute</i> 1	attribute 2	\ddotsc	attribute n
record 0	$bi^{0,0}_1$	$b i^{1,0}_t$	$bi_1^{2,0}$		$bi_1^{n,0}$
record 1	$bi^{0,1}$.1,1			$bi_1^{n,1}$
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
record m	$bi_1^{0,1}$				$bi_l^{n,1}$
				\ddotsc	

Figure 4: Index relation