Static Symmetric Searchable Encryption over Attributes in SQL Databases

In this work we consider the following scenario. A user U wants to store a collection of confidential
documents D = {D,, ..., D,,,} at untrusted server S. To preserve data confidentiality, U encrypts D to obtain
C = {Cy, ..., C;p}, which is outsourced to S in such a way that 1) S will learn as less as possible useful
information about D; and that 2) S can be given the ability to search through the collection and return
appropriate (encrypted) documents to U. We consider S stores encrypted documents using relational data
model and U is able to use well defined SQL language to query S in order to upload or retrieve encrypted
documents.

A traditional symmetric searchable encryption mechanism allows searching the keywords directly in C,
without compromising data confidentiality nor query privacy. Searchable keywords are selected by U and are
part of a dictionary A= {w,, ..., w,} of d unique words ordered lexicographically. Considering relational data

model, we can say that single document D; = (w7, ...,w]*"}, is a j-th record in relation, while a single

keyword wli’j e A, l «{1,d},i€{0,n}, je{0,m} labeled by i-th attribute and j-th record is an attribute
value (see Figure 1).

attribute O | attribute 1 | attribute 2 . attribute n
record 0 WlO,O Wll,O WIZ'O Wln,O
record 1 w wit w2 w!
record m w! wit w?! ‘ . wht

Figure 1: Plaintext relation in SQL database

In [Curtmola et. al] the authors formally defined a static index-based symmetric searchable encryption
scheme by the following algorithms (see Definition 4.1):

K < Gen(1*): is a probabilistic key generation algorithm that is run by the user to setup the scheme. It
takes as input a security parameter k, and outputs a secret key K.

(1,€) « Enc(K, D): is a probabilistic algorithm run by the user to encrypt the document collection. It
takes as input a secret key K and a document collection D = {D,, ..., D,,}, and outputs a secure index I and a
sequence of ciphertexts € = {C,, ..., C;n}-

t « Trpdr(K,w): is a deterministic algorithm run by the user to generate a trapdoor for a given
keyword. It takes as input a secret key K and a keyword w, and outputs a trapdoor t.

X « Search(l,t): is a deterministic algorithm run by the server to search for the documents in D that
contain a keyword w. It takes as input an encrypted index I for a data collection D and a trapdoor t and outputs
a set X of (lexicographically-ordered) document identifiers.

D; < Dec(K, C;): is a deterministic algorithm run by the client to recover a document. It takes as input
a secret key K and a ciphertext C;, and outputs a document D;.

In order to formally outline Ciphersweet’s scheme, we use two cryptographic primitives: a CPA-secure
symmetric encryption scheme and a pseudo-random function (PRF). We also use one utility function that
performs PRF output truncation. Let’s dente SKE = (Gen, Enc, Dec) — CPA-secure symmetric encryption
scheme and f = {0,1}* x {0,1}* - {0,1}” — pseudo-random function. Let also Truncate(p, value) -
value |5 be a function that truncates bit vector value to its first p bits. We call “blind index” a truncated PRF
output.

Now we are ready to formally define construction of our scheme in context of Curtmola’s notion. It is
described in Figure 2.

Gen(1%): sample K; « {0,1}*, sample p < {1,y}, generate K, « SKE.Gen(1%) and, finally, output
K = {K1,p, K3}

Enc(K, D): encrypt each document D; = {wlo'j , ...,wl"’j } from collection D and create blind indexes for
each keyword w,”’:
1) for0<j<m
e let BI; be a n-length set of blind indexes for document D;
e let C; be a n-length set of encrypted keywords of D;
efor0<i<n
= C;[i] = SKE.Enc(K,, w;”) -
» BLi[i] = Truncate(p,f(Kl,Wll’]))
2) output (I,C), where I = {BI,, ..., Bl,,} and C = {C,, ..., C;,}

Trpdr(K,w): output t = (i, Truncate(p, f (K;,w))), where i € {0,n} is a searchable attribute number

Search(l, t): compare t with each blind index from each I’s element:
1) Parse t as (attribute, value)
2) let ryrerivure D€ @ set of document identifiers
3) initialize counter ctr
4) for0<j<m
o let BI; = I[j]
o if Bl;[attribute] = val then:
" rlctr] =j
msetctr =ctr+1
5) Output X, where X =r

Dec(K, C;): decrypt each keyword in C;:
1) for 0 <i <n, let D; = SKE.Dec(K,, C;[i])
2) output D;

Figure 2: A formal describing of Ciphersweet’s scheme

Note that we have to introduce a separate index relation along in order to demonstrate the way, how
server should store encrypted collection of documents € = {C, ..., Cpn}, C; = {¢;”, ..., ¢["’}, and ¢’ is asingle
encrypted keyword. Index relation stores I = {BI,, ..., Bl,,} that itself consists from sets of blind indexes
Bl; = {bi}”, ..., bi}"’} for each encrypted keyword. Figure 3 shows encrypted relation itself, while Figure 4
shows index relation.

attribute O | attribute 1 | attribute 2 . attribute n
record 0 c2? c”° '’ e’
record 1 e " ! ot
record m et " ! e ct

Figure 3: Encrypted relation

attribute 0 | attribute 1 | attribute 2
record 0 bi®® bi,"° bi°
record 1 bi®! bi)! bil!
recordm | piot il bil!

Figure 4: Index relation

attribute n
bi"°
bi*

-n,1

