Static Symmetric Searchable Encryption over Attributes in SQL Databases

In this work we consider the following scenario. A user U wants to store a collection of confidential documents $D = \{D_0, ..., D_m\}$ at untrusted server S. To preserve data confidentiality, U encrypts D to obtain $C = \{C_0, ..., C_m\}$, which is outsourced to S in such a way that 1) S will learn as less as possible useful information about D; and that 2) S can be given the ability to search through the collection and return appropriate (encrypted) documents to U. We consider S stores encrypted documents using relational data model and U is able to use well defined SQL language to query S in order to upload or retrieve encrypted documents.

A traditional symmetric searchable encryption mechanism allows searching the keywords directly in C, without compromising data confidentiality nor query privacy. Searchable keywords are selected by U and are part of a dictionary $\Delta = \{w_0, ..., w_d\}$ of d unique words ordered lexicographically. Considering relational data model, we can say that single document $D_j = \{w_l^{0,j}, ..., w_l^{n,j}\}$, is a *j*-th record in relation, while a single keyword $w_l^{i,j} \in \Delta$, $l \leftarrow \{1, d\}$, $i \in \{0, n\}$, $j \in \{0, m\}$, labeled by *i*-th attribute and *j*-th record is an attribute value (see Figure 1).

	attribute 0	attribute 1	attribute 2		attribute n
record 0	$w_{l}^{0,0}$	$W_{l}^{1,0}$	$W_{l}^{2,0}$		$w_l^{n,0}$
record 1	$W_{l}^{0,1}$	$W_{l}^{1,1}$	$w_l^{2,1}$		$W_l^{n,1}$
• • •	• • •	• • •	• • •	• • •	•••
record m	w. ^{0,1}	w. ^{1,1}	w. ^{2,1}		<i>w</i> . ^{<i>n</i>,1}
	vv l	vvl	vv į		vvl

Figure 1: Plaintext relation in SQL database

In [Curtmola et. al] the authors formally defined a static index-based symmetric searchable encryption scheme by the following algorithms (see Definition 4.1):

 $K \leftarrow Gen(1^k)$: is a probabilistic key generation algorithm that is run by the user to setup the scheme. It takes as input a security parameter k, and outputs a secret key K.

 $(I, C) \leftarrow Enc(K, D)$: is a probabilistic algorithm run by the user to encrypt the document collection. It takes as input a secret key K and a document collection $D = \{D_0, \dots, D_m\}$, and outputs a secure index I and a sequence of ciphertexts $C = \{C_0, \dots, C_m\}$.

 $t \leftarrow Trpdr(K, w)$: is a deterministic algorithm run by the user to generate a trapdoor for a given keyword. It takes as input a secret key K and a keyword w, and outputs a trapdoor t.

 $X \leftarrow Search(I, t)$: is a deterministic algorithm run by the server to search for the documents in **D** that contain a keyword w. It takes as input an encrypted index I for a data collection **D** and a trapdoor t and outputs a set X of (lexicographically-ordered) document identifiers.

 $D_j \leftarrow Dec(K, C_j)$: is a deterministic algorithm run by the client to recover a document. It takes as input a secret key K and a ciphertext C_j , and outputs a document D_j .

In order to formally outline Ciphersweet's scheme, we use two cryptographic primitives: a CPA-secure symmetric encryption scheme and a pseudo-random function (PRF). We also use one utility function that performs PRF output truncation. Let's dente SKE = (Gen, Enc, Dec) - CPA-secure symmetric encryption scheme and $f = \{0,1\}^k \times \{0,1\}^x \rightarrow \{0,1\}^y$ – pseudo-random function. Let also Truncate $(p, value) \rightarrow value \mid_0^p$ be a function that truncates bit vector *value* to its first *p* bits. We call "blind index" a truncated PRF output.

Now we are ready to formally define construction of our scheme in context of Curtmola's notion. It is described in Figure 2.

 $Gen(1^k)$: sample $K_1 \leftarrow \{0,1\}^k$, sample $p \leftarrow \{1, y\}$, generate $K_2 \leftarrow SKE. Gen(1^k)$ and, finally, output $K = \{K_1, p, K_2\}$

- *Enc*(*K*, **D**): encrypt each document $D_j = \{w_l^{0,j}, ..., w_l^{n,j}\}$ from collection **D** and create blind indexes for each keyword $w_l^{i,j}$:
 - 1) for $0 \le j \le m$
 - let BI_i be a *n*-length set of blind indexes for document D_i
 - let C_i be a *n*-length set of encrypted keywords of D_i
 - for $0 \le i \le n$
 - $C_i[i] = \text{SKE}. Enc(K_2, w_i^{i,j})$
 - $BI_i[i] = Truncate(p, f(K_1, w_i^{i,j}))$
 - 2) output (I, C), where $I = \{BI_0, ..., BI_m\}$ and $C = \{C_0, ..., C_m\}$

Trpdr(K, w): output $t = (i, Truncate(p, f(K_1, w)))$, where $i \in \{0, n\}$ is a searchable attribute number

Search(I, t): compare t with each blind index from each I's element:

- 1) Parse *t* as (*attribute*, *value*)
- 2) let $r_{attribute}$ be a set of document identifiers
- 3) initialize counter *ctr*
- 4) for $0 \le j \le m$

• let
$$BI_j = I[j]$$

- if $BI_i[attribute] = val$ then:
 - r[ctr] = j
 - set ctr = ctr + 1
- 5) Output *X*, where X = r

 $Dec(K, C_j)$: decrypt each keyword in C_j :

- 1) for $0 \le i \le n$, let $D_i = \text{SKE}$. $Dec(K_2, C_i[i])$
- 2) output D_i

Figure 2: A formal describing of Ciphersweet's scheme

Note that we have to introduce a separate index relation along in order to demonstrate the way, how server should store encrypted collection of documents $C = \{C_0, ..., C_m\}$, $C_j = \{c_l^{0,j}, ..., c_l^{n,j}\}$, and $c_l^{i,j}$ is a single encrypted keyword. Index relation stores $I = \{BI_0, ..., BI_m\}$ that itself consists from sets of blind indexes $BI_j = \{bi_l^{0,j}, ..., bi_l^{n,j}\}$ for each encrypted keyword. Figure 3 shows encrypted relation itself, while Figure 4 shows index relation.

	attribute 0	attribute 1	attribute 2		attribute n
record 0	$c_{l}^{0,0}$	$c_{l}^{1,0}$	$c_{l}^{2,0}$		$c_l^{n,0}$
record 1	$c_{l}^{0,1}$	$c_{l}^{1,1}$	$c_{l}^{2,1}$		$c_l^{n,1}$
	•••	•••	•••	•••	
record m	$c_{l}^{0,1}$	$c_{l}^{1,1}$	$c_{l}^{2,1}$		$c_l^{n,1}$

Figure 3: Encrypted relation

	attribute 0	attribute 1	attribute 2	 attribute n
record 0	bi ₁ 0,0	bi ₁ ,0	$bi_{l}^{2,0}$	$bi_l^{n,0}$
record 1	$bi_l^{0,1}$	$bi_l^{1,1}$	$bi_l^{2,1}$	$bi_l^{n,1}$
record m	$hi^{0,1}$	$hi^{1,1}_{2}$	$hi^{2,1}_{2,1}$	 $hi^{n,1}$
record m	Dl_l	Dl_l	Dl_l	 Dl_l

Figure 4: Index relation