-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmod.rs
515 lines (471 loc) · 19.6 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
// This file is part of substrate-desub.
//
// substrate-desub is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// substrate-desub is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with substrate-desub. If not, see <http://www.gnu.org/licenses/>.
//! Given some [`Metadata`] obtained from a substrate node, this module exposes the functionality to
//! decode various SCALE encoded values, such as extrinsics, that are compatible with that metadata.
//!
//! See [`decode_extrinsics`], [`decode_extrinsic`], and [`decode_unwrapped_extrinsic`] for the most
//! common extrinsic decoding needs.
//!
//! See [`decode_storage()`] and then the documentation on [`StorageDecoder`] to decode storage lookups.
mod decode_storage;
mod decode_value;
mod extrinsic_bytes;
use crate::metadata::Metadata;
use crate::value::Value;
use crate::TypeId;
use codec::{Compact, Decode};
use extrinsic_bytes::{AllExtrinsicBytes, ExtrinsicBytesError};
use serde::Serialize;
use sp_runtime::{AccountId32, MultiAddress, MultiSignature};
use std::borrow::Cow;
// Re-export the DecodeValueError here, which we expose in our global `DecodeError` enum.
pub use decode_value::DecodeValueError;
// Re-export storage related types that are part of our public interface.
pub use decode_storage::{
StorageDecodeError, StorageDecoder, StorageEntry, StorageEntryType, StorageHasher, StorageMapKey,
};
/// An enum of the possible errors that can be returned from attempting to decode bytes
/// using the functions in this module.
#[derive(Clone, Debug, thiserror::Error)]
pub enum DecodeError {
#[error("Failed to parse the provided vector of extrinsics: {0}")]
UnexpectedExtrinsicsShape(#[from] ExtrinsicBytesError),
#[error("Failed to decode: {0}")]
CodecError(#[from] codec::Error),
#[error("Failed to decode type: {0}")]
DecodeValueError(#[from] DecodeValueError),
#[error("Failed to decode: expected more data")]
EarlyEof(&'static str),
#[error("Failed to decode extrinsics: {0} bytes of the input were not consumed")]
ExcessBytes(usize),
#[error("Failed to decode unsupported extrinsic version '{0}'")]
CannotDecodeExtrinsicVersion(u8),
#[error("Cannot find call corresponding to extrinsic with pallet index {0} and call index {1}")]
CannotFindCall(u8, u8),
#[error("Failed to decode extrinsic: cannot find type ID {0}")]
CannotFindType(u32),
}
/// Decode a single [`Value`] from a piece of scale encoded data, given some metadata and the ID of the type that we
/// are expecting it to decode into.
pub fn decode_value_by_id<'a, Id: Into<TypeId>>(
metadata: &'a Metadata,
ty: Id,
data: &mut &[u8],
) -> Result<Value<TypeId>, DecodeValueError> {
decode_value::decode_value_by_id(data, ty, metadata.types())
}
/// Generate a [`StorageDecoder`] struct which is capable of decoding SCALE encoded storage keys. It's advisable
/// to cache this struct if you are decoding lots of storage entries, since it is non-trivial to create.
///
/// # Example
///
/// ```rust
/// use hex;
/// use desub_current::{
/// Metadata,
/// decoder::{ self, StorageHasher },
/// value::{ Value, ValueDef, Composite, Primitive },
/// };
/// use codec::Encode;
///
/// // Get hold of the metadata (normally by making an RPC call
/// // to the node you want to interact with):
/// let metadata_scale_encoded = include_bytes!("../../tests/data/v14_metadata_polkadot.scale");
/// let metadata = Metadata::from_bytes(metadata_scale_encoded).unwrap();
///
/// // With the help of our metadata, we can create a storage decoder:
/// let storage_decoder = decoder::decode_storage(&metadata);
///
/// // Hex representing a lookup like `System.BlockHash(1000)`
/// // (which contains values of type `[u8; 32]`):
/// let storage_key_hex = "0x26aa394eea5630e07c48ae0c9558cef7a44704b568d21667356a5a050c118746b6ff6f7d467b87a9e8030000";
/// let storage_key_bytes = hex::decode(storage_key_hex.strip_prefix("0x").unwrap()).unwrap();
/// let storage_key_cursor = &mut &*storage_key_bytes;
///
/// // Now, decode our storage key into something meaningful:
/// let entry = storage_decoder.decode_key(&metadata, storage_key_cursor).expect("can decode storage");
/// assert!(storage_key_cursor.is_empty(), "No more bytes expected");
/// assert_eq!(entry.prefix, "System");
/// assert_eq!(entry.name, "BlockHash");
///
/// let keys = entry.details.map_keys();
///
/// // Because the hasher is Twox64Concat, we can see the decoded original map key:
/// assert_eq!(keys.len(), 1);
/// if let StorageHasher::Twox64Concat(val) = keys[0].hasher.clone() {
/// assert_eq!(val.without_context(), Value::u32(1000))
/// }
///
/// // We can also decode values at this storage location using the type info we get back:
/// let bytes = [1u8; 32].encode();
/// let val = decoder::decode_value_by_id(&metadata, &entry.ty, &mut &*bytes).unwrap();
/// # assert_eq!(
/// # val.without_context(),
/// # // The Type in this case is something like a newtype-wrapped [u8; 32]:
/// # Value::unnamed_composite(vec![
/// # Value::unnamed_composite(vec![Value::u8(1); 32])
/// # ])
/// # );
/// ```
pub fn decode_storage(metadata: &Metadata) -> StorageDecoder {
decode_storage::StorageDecoder::generate_from_metadata(metadata)
}
/// Decode a SCALE encoded vector of extrinsics against the metadata provided. Conceptually, extrinsics are
/// expected to be provided in a SCALE-encoded form equivalent to `Vec<(Compact<u32>,Extrinsic)>`; in other words, we
/// start with a compact encoded count of how many extrinsics exist, and then each extrinsic is prefixed by
/// a compact encoding of its byte length.
///
/// # Example
///
/// ```rust
/// use hex;
/// use desub_current::{ Metadata, decoder };
///
/// let metadata_scale_encoded = include_bytes!("../../tests/data/v14_metadata_polkadot.scale");
/// let metadata = Metadata::from_bytes(metadata_scale_encoded).unwrap();
///
/// // the same extrinsic repeated 3 times:
/// let extrinsics_hex = "0x0C2004480104080c10142004480104080c10142004480104080c1014";
/// let extrinsics_bytes = hex::decode(extrinsics_hex.strip_prefix("0x").unwrap()).unwrap();
/// let extrinsics_cursor = &mut &*extrinsics_bytes;
///
/// let extrinsics = decoder::decode_extrinsics(&metadata, extrinsics_cursor).unwrap();
///
/// assert_eq!(extrinsics_cursor.len(), 0);
/// assert_eq!(extrinsics.len(), 3);
/// ```
pub fn decode_extrinsics<'a>(
metadata: &'a Metadata,
data: &mut &[u8],
) -> Result<Vec<Extrinsic<'a>>, (Vec<Extrinsic<'a>>, DecodeError)> {
let extrinsic_bytes = AllExtrinsicBytes::new(*data).map_err(|e| (Vec::new(), e.into()))?;
log::trace!("Decoding {} Total Extrinsics.", extrinsic_bytes.len());
let mut out = Vec::with_capacity(extrinsic_bytes.len());
let mut extrinsics_iter = extrinsic_bytes.iter();
for res in &mut extrinsics_iter {
let single_extrinsic = match res {
Ok(bytes) => bytes,
Err(e) => return Err((out, e.into())),
};
log::trace!("Extrinsic:{:?}", single_extrinsic.bytes());
let bytes = &mut single_extrinsic.bytes();
let ext = match decode_unwrapped_extrinsic(metadata, bytes) {
Ok(ext) => ext,
Err(e) => return Err((out, e)),
};
// If decoding didn't consume all extrinsic bytes, something went wrong.
// Hand back whatever we have but note the error.
if !bytes.is_empty() {
return Err((out, DecodeError::ExcessBytes(bytes.len())));
}
out.push(ext);
}
// Shift our externally provided data cursor forwards to the right spot,
// so that one can continue to decode more bytes if there are any:
*data = extrinsics_iter.remaining_bytes();
Ok(out)
}
/// Decode a SCALE encoded extrinsic against the metadata provided. Conceptually, an individual extrinsic is expected
/// to be represented in terms of a compact encoded count of its length in bytes, and then the actual extrinsic
/// information (the optional signature and call data).
///
/// If your extrinsic is not prefixed by its byte length, use [`decode_unwrapped_extrinsic`] to
/// decode it instead.
///
/// # Example
///
/// ```rust
/// use hex;
/// use desub_current::{ Metadata, decoder };
///
/// let metadata_scale_encoded = include_bytes!("../../tests/data/v14_metadata_polkadot.scale");
/// let metadata = Metadata::from_bytes(metadata_scale_encoded).unwrap();
///
/// let extrinsic_hex = "0x2004480104080c1014";
/// let extrinsic_bytes = hex::decode(extrinsic_hex.strip_prefix("0x").unwrap()).unwrap();
/// let extrinsic_cursor = &mut &*extrinsic_bytes;
///
/// let extrinsic = decoder::decode_extrinsic(&metadata, extrinsic_cursor).unwrap();
///
/// assert_eq!(extrinsic_cursor.len(), 0);
/// assert_eq!(extrinsic.call_data.pallet_name, "Auctions");
/// assert_eq!(&*extrinsic.call_data.ty.name(), "bid");
/// ```
pub fn decode_extrinsic<'a>(metadata: &'a Metadata, data: &mut &[u8]) -> Result<Extrinsic<'a>, DecodeError> {
// Ignore the expected extrinsic length here at the moment, since `decode_unwrapped_extrinsic` will
// error accordingly if the wrong number of bytes are consumed.
let _len = <Compact<u32>>::decode(data)?;
decode_unwrapped_extrinsic(metadata, data)
}
/// Decode a SCALE encoded extrinsic against the metadata provided. Unlike [`decode_extrinsic`], this
/// assumes that the bytes provided do *not* start with a compact encoded count of the extrinsic byte length
/// (ie, the extrinsic has been "unwrapped" already, and here we deal directly with the signature and call data).
///
/// # Example
///
/// ```rust
/// use hex;
/// use desub_current::{ Metadata, decoder };
///
/// let metadata_scale_encoded = include_bytes!("../../tests/data/v14_metadata_polkadot.scale");
/// let metadata = Metadata::from_bytes(metadata_scale_encoded).unwrap();
///
/// let call_data_hex = "0x480104080c1014";
/// // Prepend 04 to the call data hex to create a valid, unwrapped (no length prefix)
/// // and unsigned extrinsic:
/// let extrinsic_hex = "0x04480104080c1014";
///
/// let extrinsic_bytes = hex::decode(extrinsic_hex.strip_prefix("0x").unwrap()).unwrap();
/// let extrinsic_cursor = &mut &*extrinsic_bytes;
///
/// // Decode the "unwrapped" (no length prefix) extrinsic like so:
/// let extrinsic = decoder::decode_unwrapped_extrinsic(&metadata, extrinsic_cursor).unwrap();
///
/// assert_eq!(extrinsic_cursor.len(), 0);
/// assert_eq!(extrinsic.call_data.pallet_name, "Auctions");
/// assert_eq!(&*extrinsic.call_data.ty.name(), "bid");
/// ```
pub fn decode_unwrapped_extrinsic<'a>(metadata: &'a Metadata, data: &mut &[u8]) -> Result<Extrinsic<'a>, DecodeError> {
if data.is_empty() {
return Err(DecodeError::EarlyEof("unwrapped extrinsic byte length should be > 0"));
}
// V4 extrinsics (the format we can decode here) are laid out roughly as follows:
//
// first byte: abbbbbbb (a = 0 for unsigned, 1 for signed, b = version)
//
// signature, which is made up of (in order):
// - sp_runtime::MultiAddress enum (sender)
// - sp_runtime::MultiSignature enum
// - For polkadot, these extensions (but can vary by chain, so we decode generically):
// - sp_runtime::generic::Era enum
// - compact encoded u32 (nonce; prior transaction count)
// - compact encoded u128 (tip paid to block producer/treasury)
//
// call, which is made up roughly of:
// - u8 enum pallet index (for pallets variant)
// - u8 call index (for inner variant)
// - call args (types can be pulled from metadata for each arg we expect)
//
// So, we start by getting the version/signed from the first byte and go from there.
let is_signed = data[0] & 0b1000_0000 != 0;
let version = data[0] & 0b0111_1111;
*data = &data[1..];
// We only know how to decode V4 extrinsics at the moment
if version != 4 {
return Err(DecodeError::CannotDecodeExtrinsicVersion(version));
}
// If the extrinsic is signed, decode the signature next.
let signature = match is_signed {
true => Some(decode_signature(metadata, data)?),
false => None,
};
// Finally, decode the call data.
let call_data = decode_call_data(metadata, data)?;
Ok(Extrinsic { call_data, signature })
}
/// Decode SCALE encoded call data. Conceptually, this is expected to take the form of
/// `(u8, u8, arguments)`, where the specific pallet call variant indexes are determined by
/// the `u8`s, and then arguments according to the specific variant are expected to follow.
///
/// # Example
///
/// ```rust
/// use hex;
/// use desub_current::{ Metadata, decoder };
///
/// let metadata_scale_encoded = include_bytes!("../../tests/data/v14_metadata_polkadot.scale");
/// let metadata = Metadata::from_bytes(metadata_scale_encoded).unwrap();
///
/// let call_data_hex = "0x480104080c1014";
///
/// let call_data_bytes = hex::decode(call_data_hex.strip_prefix("0x").unwrap()).unwrap();
/// let call_data_cursor = &mut &*call_data_bytes;
///
/// // Decode the call data like so:
/// let call_data = decoder::decode_call_data(&metadata, call_data_cursor).unwrap();
///
/// assert_eq!(call_data_cursor.len(), 0);
/// assert_eq!(call_data.pallet_name, "Auctions");
/// assert_eq!(&*call_data.ty.name(), "bid");
/// ```
pub fn decode_call_data<'a>(metadata: &'a Metadata, data: &mut &[u8]) -> Result<CallData<'a>, DecodeError> {
// Pluck out the u8's representing the pallet and call enum next.
if data.len() < 2 {
return Err(DecodeError::EarlyEof("expected at least 2 more bytes for the pallet/call index"));
}
let pallet_index = u8::decode(data)?;
let call_index = u8::decode(data)?;
log::trace!("pallet index: {}, call index: {}", pallet_index, call_index);
// Work out which call the extrinsic data represents and get type info for it:
let (pallet_name, variant) = match metadata.call_variant_by_enum_index(pallet_index, call_index) {
Some(call) => call,
None => return Err(DecodeError::CannotFindCall(pallet_index, call_index)),
};
// Decode each of the argument values in the extrinsic:
let arguments = variant
.fields()
.iter()
.map(|field| {
let id = field.ty().id();
decode_value_by_id(metadata, TypeId::from_u32(id), data).map_err(DecodeError::DecodeValueError)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(CallData { pallet_name: Cow::Borrowed(pallet_name), ty: Cow::Borrowed(variant), arguments })
}
/// Decode the SCALE encoded data that, once signed, is used to construct a signed extrinsic. The encoded payload has the following shape:
/// `(call_data, signed_extensions, additional_signed)`.
pub fn decode_signer_payload<'a>(metadata: &'a Metadata, data: &mut &[u8]) -> Result<SignerPayload<'a>, DecodeError> {
let call_data = decode_call_data(metadata, data)?;
let signed_extensions = decode_signed_extensions(metadata, data)?;
let additional_signed = decode_additional_signed(metadata, data)?;
let extensions = signed_extensions
.into_iter()
.zip(additional_signed)
.map(|((name, extension), (_, additional))| (name, SignedExtensionWithAdditional { additional, extension }))
.collect();
Ok(SignerPayload { call_data, extensions })
}
/// Decode the signature part of a SCALE encoded extrinsic.
///
/// Ordinarily, one should prefer to use [`decode_extrinsic`] directly to decode the entire extrinsic at once.
pub fn decode_signature<'a>(metadata: &'a Metadata, data: &mut &[u8]) -> Result<ExtrinsicSignature<'a>, DecodeError> {
let address = <MultiAddress<AccountId32, u32>>::decode(data)?;
let signature = MultiSignature::decode(data)?;
let extensions = decode_signed_extensions(metadata, data)?;
Ok(ExtrinsicSignature { address, signature, extensions })
}
/// Decode the signed extensions part of a SCALE encoded extrinsic.
///
/// Ordinarily, one should prefer to use [`decode_extrinsic`] directly to decode the entire extrinsic at once.
#[allow(clippy::type_complexity)]
pub fn decode_signed_extensions<'a>(
metadata: &'a Metadata,
data: &mut &[u8],
) -> Result<Vec<(Cow<'a, str>, Value<TypeId>)>, DecodeError> {
metadata
.extrinsic()
.signed_extensions()
.iter()
.map(|ext| {
let val = decode_value_by_id(metadata, &ext.ty, data)?;
let name = Cow::Borrowed(&*ext.identifier);
Ok((name, val))
})
.collect()
}
/// Decode the additional signed data.
///
/// Ordinarily, one should prefer to use [`decode_signer_payload`], to decode the entire signer payload at once.
#[allow(clippy::type_complexity)]
pub fn decode_additional_signed<'a>(
metadata: &'a Metadata,
data: &mut &[u8],
) -> Result<Vec<(Cow<'a, str>, Value<TypeId>)>, DecodeError> {
metadata
.extrinsic()
.signed_extensions()
.iter()
.map(|ext| {
let val = decode_value_by_id(metadata, &ext.additional_signed, data)?;
let name = Cow::Borrowed(&*ext.identifier);
Ok((name, val))
})
.collect()
}
/// Decoded call data and associated type information.
#[derive(Serialize, Debug, Clone, PartialEq)]
pub struct CallData<'a> {
/// The name of the pallet
#[serde(borrow)]
pub pallet_name: Cow<'a, str>,
/// The type information for this call (including the name
/// of the call and information about each argument)
pub ty: Cow<'a, scale_info::Variant<scale_info::form::PortableForm>>,
/// The decoded argument data
pub arguments: Vec<Value<TypeId>>,
}
impl<'a> CallData<'a> {
pub fn into_owned(self) -> CallData<'static> {
CallData {
pallet_name: Cow::Owned(self.pallet_name.into_owned()),
ty: Cow::Owned(self.ty.into_owned()),
arguments: self.arguments,
}
}
}
/// The result of successfully decoding an extrinsic.
#[derive(Serialize, Debug, Clone, PartialEq)]
pub struct Extrinsic<'a> {
/// Decoded call data and associated type information about the call.
#[serde(borrow)]
pub call_data: CallData<'a>,
/// The signature and signed extensions (if any) associated with the extrinsic
#[serde(borrow)]
pub signature: Option<ExtrinsicSignature<'a>>,
}
impl<'a> Extrinsic<'a> {
pub fn into_owned(self) -> Extrinsic<'static> {
Extrinsic { call_data: self.call_data.into_owned(), signature: self.signature.map(|s| s.into_owned()) }
}
}
/// The signature information embedded in an extrinsic.
#[derive(Serialize, Debug, Clone, PartialEq)]
pub struct ExtrinsicSignature<'a> {
/// Address the extrinsic is being sent from
#[serde(with = "desub_common::RemoteAddress")]
pub address: MultiAddress<AccountId32, u32>,
/// Signature to prove validity
pub signature: MultiSignature,
/// Signed extensions, which can vary by node. Here, we
/// return the name and value of each.
#[serde(borrow)]
pub extensions: Vec<(Cow<'a, str>, Value<TypeId>)>,
}
impl<'a> ExtrinsicSignature<'a> {
pub fn into_owned(self) -> ExtrinsicSignature<'static> {
ExtrinsicSignature {
address: self.address,
signature: self.signature,
extensions: self.extensions.into_iter().map(|(k, v)| (Cow::Owned(k.into_owned()), v)).collect(),
}
}
}
/// The decoded signer payload.
#[derive(Serialize, Debug, Clone, PartialEq)]
pub struct SignerPayload<'a> {
/// Decoded call data and associated type information about the call.
#[serde(borrow)]
pub call_data: CallData<'a>,
/// Signed extensions as well as additional data to be signed. These
/// are packaged together in the metadata.
pub extensions: Vec<(Cow<'a, str>, SignedExtensionWithAdditional)>,
}
impl<'a> SignerPayload<'a> {
pub fn into_owned(self) -> SignerPayload<'static> {
SignerPayload {
call_data: self.call_data.into_owned(),
extensions: self.extensions.into_iter().map(|(k, v)| (Cow::Owned(k.into_owned()), v)).collect(),
}
}
}
/// The decoded signed extensions and additional data.
#[derive(Serialize, Debug, Clone, PartialEq)]
pub struct SignedExtensionWithAdditional {
/// The signed extension value at this position
pub extension: Value<TypeId>,
/// The additional signed value at this position
pub additional: Value<TypeId>,
}