Corriges Documentation
Version 1.0

Thierry Parmentelat & Arnaud Legout

déc. 20, 2017

Table des matieres

1 Corrigés

1.1

1.2

1
Corrigésdelasemaine 2 o i i e e e e e e e e e e e e 1
1.1.1 pythonid (regexp) - Semaine 2 Séquence 2 Lo 1
1.1.2 pythonid (bis) - Semaine 2 Séquence 2o 1
1.1.3 agenda (regexp) - Semaine 2 Séquence 2 oL e e e 1
1.1.4 phone (regexp) - Semaine 2 Séquence 2o ot i e e 2
1.1.5 url (regexp) - Semaine 2 SEQUENCE 2 i it e e e e e e 2
1.1.6 label - Semaine 2 Séquence 6 Lo e e e e e e 2
1.1.7 label (bis) - Semaine 2 Séquence 6 e e e 3
1.1.8 label (ter) - Semaine 2 Séquence 6l 3
1.1.9 inconnue - Semaine 2 Séquence 6l e e e 3
1.1.10 inconnue (bis) - Semaine 2 Séquence 6 L. e e e e 3
1.1.11 laccess - Semaine 2 Séquence 6 e e e e e 3
1.1.12 laccess (bis) - Semaine 2 Séquence 6o e e 4
1.1.13 divisible - Semaine 2 Séquence 6 e 4
1.1.14 divisible (bis) - Semaine 2 Séquence 6 Lo 4
1.1.15 morceaux - Semaine 2 SEQUENCE 6o e e e e e e e 4
1.1.16 morceaux (bis) - Semaine 2 Séquence 6 Lo e e e 5
1.1.17 morceaux (ter) - Semaine 2 Séquence 6o e 5
1.1.18 liste_P-Semaine 2 Séquence 7 5
1.1.19 liste_P (bis) - Semaine 2 Séquence 7 oo i i e e e e 5
1.1.20 carre- Semaine 2 SEqUeNce 7o i e e e e e e 5
1.1.21 carre (bis) - Semaine 2 SEquence 7 i it e e e e e e e 6
Corrigésdelasemaine 3 L L e e e e e e e 6
1.2.1 comptage - Semaine 3 Séquence 2 oLl o e 6
1.2.2 comptage (bis) - Semaine 3 Séquence 2 Lo 7
1.2.3 comptage (ter) - Semaine 3 Séquence 2o 7
1.2.4 surgery - Semaine 3 SEQUENCE 2 L. e e e e e e e e e e 7
1.2.5 graph_dict- Semaine 3 Séquence 4. e 8
1.2.6 graph_dict (bis) - Semaine 3 Séquence 4 Lo oL 8
1.2.7 index - Semaine 3 Séquence 4 Lo 8
1.2.8 index (bis) - Semaine 3 Séquence 4. 9
1.2.9 index (ter) - Semaine 3 Séquence 4 e e e e e 9
1.2.10 merge - Semaine 3 Séquence 4 o e e e e 9
1.2.11 merge (bis) - Semaine 3 Séquence 4 Lo Lo 10
1.2.12 merge (ter) - Semaine 3 Séquence 4o 10

1.3

1.4

1.2.13 read_set- Semaine 3 Séquence S L. e 11
1.2.14 read_set (bis) - Semaine 3 Séquence S e e e 11
1.2.15 search_in_set - Semaine 3 Séquence S L e 11
1.2.16 search_in_set (bis) - Semaine 3 Séquence S o oL 12
1.2.17 diff - Semaine 3 Séquence S 12
1.2.18 diff (bis) - Semaine 3 Séquence 5. e 13
1.2.19 diff (ter) - Semaine 3 Séquence S e e e 13
1.2.20 diff (quater) - Semaine 3 Séquence S e e 14
1.2.21 fifo-Semaine 3 Séquence 8 L L 14
1.2.22 fifo (bis) - Semaine 3 Séquence 8 14
Corrigésde lasemaine 4 e e e e 15
1.3.1 dispatchl - Semaine 4 Séquence 2 15
1.3.2 dispatch2 - Semaine 4 Séquence 2 e e e 15
1.3.3 libelle - Semaine 4 Séquence 2 Lo e e e e e e e 15
1.3.4 pged-Semaine4 Séquence 3 oLl e 16
1.3.5 pged (bis) - Semaine 4 Séquence 3 L.l 16
1.3.6 pged (ter) - Semaine 4 Séquence 3 L. 17
1.3.7 taxes-Semaine 4 Séquence 3. e e e e e e 17
1.3.8 taxes (bis) - Semaine 4 Séquence 3 L. oL e e e e 17
1.3.9 distance - Semaine 4 Séquence 6 oLl oo 18
1.3.10 distance (bis) - Semaine 4 Séquence 6l e e 18
1.3.11 numbers - Semaine 4 Séquence 6o o e 19
1.3.12 numbers (bis) - Semaine 4 Séquence 6 e e 19
Corrigésdelasemaine S o o L e e e e e e e e e e 19
1.4.1 multi_tri-SemaineS Séquence2.o e 19
1.42 multi_tri_reverse - Semaine S Séquence 2ol e e e e e 20
1.4.3 doubler_premier - Semaine 5 Séquence 2 Lo e e 20
1.44 doubler_premier (bis) - Semaine 5 Séquence 2. L. oL 20
1.4.5 doubler_premier_kwds - Semaine 5 Séquence 2o 20
1.4.6 compare_all - Semaine 5 Séquence 2 Lo 21
1.477 compare_args - Semaine 5 Séquence 2o oo 21
1.4.8 aplatir- Semaine S Séquence 3 L. e 21
1.4.9 alternat - Semaine 5 Séquence 3 L. 22
1.4.10 alternat (bis) - Semaine 5 Séquence 3 e e 22
1.4.11 intersect - Semaine S Séquence 3 e e e 22
1.4.12 produit_scalaire - Semaine 5 Séquence 4 oL oL 22
1.4.13 produit_scalaire (bis) - Semaine 5 Séquence 4 23
1.4.14 produit_scalaire (ter) - Semaine 5 Séquence 4 oo 23
1.4.15 decode_zen - Semaine 5 Séquence 7ot e e e 23
1.4.16 decode_zen (bis) - Semaine 5 Séquence 7o e 24
1.4.17 decode_zen (ter) - Semaine S Séquence 7o e e 24

cHAPITRE 1

Corrigés

1.1 Corrigés de la semaine 2

1.1.1 pythonid (regexp) - Semaine 2 Séquence 2

un identificateur commence par une lettre ou un underscore
et peut étre suivi par n'importe quel nombre de

lettre, chiffre ou underscore, ce qui se trouve étre \w

si on ne se met pas en mode unicode

pythonid = "[a-zA-Z_]\wx"

#
#
#
#

1.1.2 pythonid (bis) - Semaine 2 Séquence 2

on peut aussi bien sidr 1'écrire en clair
pythonid_bis = "[a-zA-Z_][a-zA-Z0-9_]+"

1.1.3 agenda (regexp) - Semaine 2 Séquence 2

1'exercice est basé sur re.match, ce qui signifie que

le match est cherché au début de la chaine

MAIS il nous faut bien mettre \Z a la fin de notre regexp,
sinon par exemple avec la cinquiéeme entrée le nom 'Du Pré'
sera reconnu partiellement comme simplement 'Du'

au lieu d'étre rejeté a cause de 1'espace

du coup pensez a bien toujours définir
vos regexps avec des raw-strings

S H R R H R W HH R R

r.r

mettre ou non un deuxieme séparateur

remarquez sinon 1'utilisation a la fin de :? pour signifier qu'on peut

Corriges Documentation, Version 1.0

#
agenda = r"\A (?P<prenom>[-\w]*) : (?P<nom>[-\w]+) :2\2"

1.1.4 phone (regexp) - Semaine 2 Séquence 2

idem concernant le \Z final

#

11 faut bien backslasher le + dans le +33
car sinon cela veut dire 'un ou plusieurs'
#

phone = r" (\+33|0) (?P<number>[0-9]{9})\z2"

1.1.5 url (regexp) - Semaine 2 Séquence 2

en ignorant la casse on pourra ne mentionner les noms de protocoles
qu'en minuscules

i_flag = "(21i)"

pour élaborer la chaine (protol|protoZ2/...)
protos_list = ['http', 'https', 'ftp', 'ssh',]

protos = "(?P<proto>" + "|".join(protos_list) + ")"

a 1'intérieur de la zone 'user/password', la partie

password est optionnelle — mais on ne veut pas le ':' dans
le groupe 'password' - il nous faut deux groupes
password = r" (: (?P<password>[":]+))2"

la partie user-password elle-méme est optionnelle

on utilise ici un raw f-string avec le préfixe rf

pour insérer la regexp <password> dans la regexp <user>

user = rf" ((?P<user>\w+) {password}@) 2"

pour le hostname on accepte des lettres, chiffres, underscore et '.'
attention a backslaher . car sinon ceci va matcher tout y compris /
hostname = r" (?P<hostname>[\w\.]+)"

le port est optionnel
port = r" (: (?P<port>\d+))?2"

apres le premier slash
path = r" (?P<path>.x)"

on assemble le tout
url = i_flag + protos + "://" + user + hostname + port + '/' + path

1.1.6 label - Semaine 2 Séquence 6

def label (prenom, note):
if note < 10:
return f" {prenom} est recalé"
elif note < 16:
return f" {prenom} est recu"

2 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

else:
return f"félicitations a {prenom}"

1.1.7 label (bis) - Semaine 2 Séquence 6

def label_bis (prenom, note):
if note < 10:
return f" {prenom} est recalé"
on n'en a pas vraiment besoin ici, mais
juste pour illustrer cette construction
elif 10 <= note < 16:
return f" ({prenom} est recu"
else:
return f"félicitations a {prenom}"

1.1.8 label (ter) - Semaine 2 Séquence 6

on n'a pas encore vu 1'expression conditionnelle
et dans ce cas précis ce n'est pas forcément une
idée géniale, mais pour votre curiosité on peut aussi
faire comme ceci
def label_ter (prenom, note):
return f" {prenom} est recalé" if note < 10 \
else f"{prenom} est recu" if 10 <= note < 16 \
else f"félicitations a {prenom}"

1.1.9 inconnue - Semaine 2 Séquence 6

pour enlever a gauche et a droite une chaine de longueur x
on peut faire composite[x : -x]
or ici x vaut len (connue)
def inconnue (composite, connue) :
return composite[len(connue) : -len(connue)]

1.1.10 inconnue (bis) - Semaine 2 Séquence 6

ce quil peut aussi s'écrire comme ceci si on préfere
def inconnue_bis (composite, connue):
return composite[len(connue) : len(composite)-len(connue) |

1.1.11 laccess - Semaine 2 Séquence 6

def laccess(liste):
mmwn

retourne un élément de la liste selon la taille
mmwn

si la liste est vide il n'y a rien a faire
if not liste:

1.1. Corrigés de la semaine 2 3

Corriges Documentation, Version 1.0

return
si la liste est de taille paire
if len(liste) % == 0:

return liste[-1]
else:

return liste[len(liste)//2]

1.1.12 laccess (bis) - Semaine 2 Séquence 6

une autre version qui utilise

un trait qu'on n'a pas encore vu

def laccess(liste):
si la liste est vide il n'y a rien a faire
if not liste:

return
1'index a utiliser selon la taille
index = -1 if len(liste) % 2 == 0 else len(liste) // 2

return liste[index]

1.1.13 divisible - Semaine 2 Séquence 6

def divisible(a, b):
"renvoie True si un des deux arguments divise 1'autre"
b divise a si et seulement si le reste
de la division de a par b est nul
if a $ b ==
return True
et i1l faut regarder aussi si a divise b
if b $ a ==
return True
return False

1.1.14 divisible (bis) - Semaine 2 Séquence 6

def divisible_bis(a, b):
"renvoie True si un des deux arguments divise 1l'autre"
on n'a pas encore vu les opérateurs logiques, mais
on peut aussi faire tout simplement comme c¢a
sans faire de if du tout

o) <)

return a $ b == 0 or b $ a == 0

1.1.15 morceaux - Semaine 2 Séquence 6

def morceaux (x) :
if x <= -5:
return -x - 5
elif x <= 5:
return 0
else:
return x / 5 - 1

4 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

1.1.16 morceaux (bis) - Semaine 2 Séquence 6

def morceaux_bis (x):
if x <= -5:
return -x - 5
if x <= 5:
return 0O
return x / 5 - 1

1.1.17 morceaux (ter) - Semaine 2 Séquence 6

on peut aussi faire des tests d'intervalle
comme ceci 0 <= x <= 10
def morceaux_ter (x):

if x <= -5
return -x - 5
elif -5 <= x <= 5:
return 0O
else:
return x / 5 - 1

1.1.18 liste_P - Semaine 2 Séquence 7

def P (x):
return 2 * x**x2 — 3 x X — 2

def liste_P(liste_x):
mmn
retourne la liste des valeurs de P
sur les entrées figurant dans liste_x

mmn

return [P (x) for x in liste_x]

1.1.19 liste_P (bis) - Semaine 2 Séquence 7

On peut bien entendu faire aussi de maniere pédestre
def liste_P_bis(liste_x):
liste_y = []
for x in liste_x:
liste_y.append (P (x))
return liste_y

1.1.20 carre - Semaine 2 Séquence 7

def carre(line):
on enleve les espaces et les tabulations
line = line.replace(' ', '').replace('\t','")
la ligne suivante fait le plus gros du travail
d'abord on appelle split () pour découper selon les ';'
dans le cas ou on a des ';' en trop, on obtient dans le

1.1. Corrigés de la semaine 2 5

Corriges Documentation, Version 1.0

résultat du split un 'token' vide, que 1'on ignore
ici avec le clause 'if token'
enfin on convertit tous les tokens restants en entiers avec int ()
entiers = [int (token) for token in line.split (";")
en éliminant les entrées vides qui correspondent
a des point-virgules en trop
if token]
11 n'y a plus qu'a mettre au carré, retraduire en strings,
et a recoudre le tout avec join et ':'
return ":".Jjoin([str(entierxx2) for entier in entiers])

1.1.21 carre (bis) - Semaine 2 Séquence 7

def carre_bis(line):
pareil mais avec, a la place des compréhensions
des expressions génératrices que - rassurez-vous -
1'on n'a pas vues encore, on en parlera en semaine 5
le point que je veux illustrer ici c'est que c'est
exactement le méme code mais avec () au lieu de []

line = line.replace(' ', '').replace('\t','")
entiers = (int (token) for token in line.split(";")
if token)

1.2 Corrigés de la semaine 3

1.2.1 comptage - Semaine 3 Séquence 2

def comptage (in_filename, out_filename):
mmwn
retranscrit le fichier in filename dans le fichier out__filename
en ajoutant des annotations sur les nombres de lignes, de mots
et de caractéeres

mmn

on ouvre le fichier d'entrée en lecture
on ouvre la sortie en écriture

lineno = 1
pour toutes les lignes du fichier d'entrée
le numéro de ligne commence a 1
for line in input:
autant de mots que d'éléments dans split /()

nb_words = len(line.split())
autant de caracteres que d'éléments dans la ligne
nb_chars = len(line)

on écrit la ligne de sortie; pas besoin

de newline (\n) car line en a déja un

output.write (f" {lineno}: {nb words}:{nb chars}:{line}")
lineno += 1

6 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

1.2.2 comptage (bis) - Semaine 3 Séquence 2

def comptage_bis(in_filename, out_filename) :

mmn

un peu plus pythonique avec enumerate
mrmmn

enumerate (.., 1) pour commencer avec une ligne
numérotée 1 et pas 0
for lineno, line in enumerate (input, 1):
une astuce : si on met deux chaines
collées comme ceci elle sont concaténées
et on n'a pas besoin de mettre de backslash
puisqu'on est dans des parentheses
output.write(f"{lineno}:{len(line.split ())}:"
f"{len(line) }:{1ine}")

1.2.3 comptage (ter) - Semaine 3 Séquence 2

def comptage_ter (in_filename, out_filename) :
mmwn

pareil mais avec un seul with

mmn

for lineno, line in enumerate (input, 1):
output .write (f"{lineno}:{len(line.split ())}:"
f"{len(line) }:{1line}")

1.2.4 surgery - Semaine 3 Séquence 2

def surgery(liste):
Prend en argument une liste, et retourne la liste modifiée:
* taille paire: on intervertit les deux premiers éléments
* taille impaire >= 3: on fait tourner les 3 premiers éléments
mmwn
si la liste est de taille 0 ou 1, il n'y a rien a faire
if len(liste) < 2:
pass
si la liste est de taille paire
elif len(liste) % 2 ==
on intervertit les deux premiers éléments
liste[0], liste[l] = liste[l], listel[O0]
si elle est de taille impaire
else:
liste[-2], liste[-1] = liste[-1], liste[-2]
et on n'oublie pas de retourner la liste dans tous les cas
return liste

1.2. Corrigés de la semaine 3 7

Corriges Documentation, Version 1.0

1.2.5 graph_dict - Semaine 3 Séquence 4

une premiere solution avec un defaultdict
from collections import defaultdict

def graph_dict (filename) :
mrmmn
construit une stucture de données de graphe
a partir du nom du fichier d'entrée
mrmmn
on déclare le defaultdict de type 1list
de cette fagon si une clé manque elle
sera initialisée avec un appel a 1ist()
g = defaultdict (list)

with open(filename) as f:
for line in f:
on coupe la ligne en trois parties
begin, value, end = line.split ()
comme c'est un defaultdict on n'a
pas besoin de 1'initialiser
g[begin] .append((end, int (value)))
return g

1.2.6 graph_dict (bis) - Semaine 3 Séquence 4

def graph_dict_bis(filename) :

mmn

pareil mais sans defaultdict
mmn

un dictionnaire vide normal
g = {1}

with open(filename) as f:
for line in f:

begin, value, end = line.split ()

c'est cette partie

qu'on économise avec un defaultdict

if begin not in g:

glbegin] = []

sinon c'est tout pareil

g[begin] .append((end, int (value)))
return g

1.2.7 index - Semaine 3 Séquence 4

def index (bateaux):
mmn
Calcule sous la forme d'un dictionnaire indexé par les ids
un index de tous les bateaux présents dans la liste en argument
Comme les données étendues et abrégées ont toutes leur id
en premiere position on peut en fait utiliser ce code
avec les deux types de données

Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

mmn

c'est une simple compréhension de dictionnaire
return {bateau[0] : bateau for bateau in bateaux}

1.2.8 index (bis) - Semaine 3 Séquence 4

def index_bis (bateaux) :
mmwn

La méme chose mais de maniere itérative
wn
si on veut décortiquer
resultat = {}
for bateau in bateaux:
resultat [bateau[0]] = bateau
return resultat

1.2.9 index (ter) - Semaine 3 Séquence 4

def index_ter (bateaux) :

mon

Encore une autre, avec un extended unpacking

mrmmn

si on veut décortiquer

resultat = {}

for bateau in bateaux:
avec un extended unpacking on peut extraire
le premier champ; en appelant le reste _
on indique qu'on n'en fera en fait rien
id, *_ = bateau
resultat[id] = bateau

return resultat

1.2.10 merge - Semaine 3 Séquence 4

def merge (extended, abbreviated):

mmwn

Consolide des données étendues et des données abrégées

comme décrit dans 1'énoncé

Le cout de cette fonction est linéaire dans la taille

des données (longueur commune des deux listes)

mmn

on initialise le résultat avec un dictionnaire vide

result = {}

pour les données étendues

on affecte les 6 premiers champs

et on ignore les champs de rang 6 et au dela

for id, latitude, longitude, timestamp, name, country, +_ in extended:
on crée une entrée dans le résultat,
avec la mesure correspondant aux données étendues
result[id] = [name, country, (latitude, longitude, timestamp)]

maintenant on peut compléter le résultat avec les données abrégées

for id, latitude, longitude, timestamp in abbreviated:

1.2. Corrigés de la semaine 3 9

Corriges Documentation, Version 1.0

et avec les hypotheses on sait que le bateau a déja été
inscrit dans le résultat, donc result[id] doit déja exister
et on peut se contenter d'ajouter la mesure abrégée
dans 1'entrée correspondante dans result
result [id] .append((latitude, longitude, timestamp))
et retourner le résultat
return result

1.2.11 merge (bis) - Semaine 3 Séquence 4

def merge_bis (extended, abbreviated):
mrrmn
Une deuxieme version, linéaire également
mais qui utilise les indices plutdét que 1'unpacking
mrmmn
on initialise le résultat avec un dictionnaire vide
result = {}
on remplit d'abord a partir des données étendues
for ship in extended:

id = ship[0]
on crée la liste avec le nom et le pays
result [id] = ship[4:6]

on ajoute un tuple correspondant a la position
result [id] .append (tuple (ship[l:4]))

pareil que pour la premiére solution,

on sait d'apres les hypotheses

que les id trouvées dans abbreviated

sont déja présentes dans le resultat

for ship in abbreviated:
id = shipl[0]
on ajoute un tuple correspondant a la position
result [id] .append (tuple (ship[l:4]))

return result

1.2.12 merge (ter) - Semaine 3 Séquence 4

def merge_ter (extended, abbreviated):
mrmmn
Une troisieme solution
a cause du tri que 1l'on fait au départ, cette
solution n'est plus linéaire mais en O(n.log(n))
mmwmn
ici on va tirer profit du fait que les id sont
en premiéere position dans les deux tableaux
si bien que si on les trie,
on va mettre les deux tableaux 'en phase’

c'est une technique qui marche dans ce cas précis
parce qu'on sait que les deux tableaux contiennent des données
pour exactement le méme ensemble de bateaux

on a deux choix, selon qu'on peut se permettre ou non de
modifier les données en entrée. Supposons que oui:
extended.sort ()

HHeoH O H H I H H R I W H

10 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

abbreviated.sort ()
si ¢a n'avait pas été le cas on aurait fait plutdt
extended = extended.sorted() et idem pour 1'autre

en découpant des tranches
et en les transformant en tuples pour les positions
puisque c'est ce qui est demandé
return ({
e[0] : e[4:6] + [tuple(e[l:4]), tuple(all:4]) 1
for (e,a) in zip (extended, abbreviated)

}

#
#
#
11 ne reste plus qu'a assembler le résultat
#
#
#

1.2.13 read_set - Semaine 3 Séquence 5

on suppose que le fichier existe
def read_set (filename) :

mmn

crée un ensemble des mots—-lignes trouvés dans le fichier
mmwn

on crée un ensemble vide

result = set ()

on parcourt le fichier
with open(filename) as f:
for line in f:
avec strip() on enléve la fin de ligne,
et les espaces au début et a la fin
result.add(line.strip())
return result

1.2.14 read_set (bis) - Semaine 3 Séquence 5

on peut aussi utiliser une compréhension d'ensemble
(voir semaine 5); c¢a se présente comme
une compréhension de liste mais on remplace
les [] par des ({}
def read_set_bis(filename) :
with open(filename) as f:
return {line.strip() for line in f}

1.2.15 search_in_set - Semaine 3 Séquence 5

ici aussi on suppose que les fichiers existent
def search_in_set (filename_reference, filename) :
mmwn
cherche les mots—-lignes de filename parmi ceux
qui sont presents dans filename_reference

mmn

on tire profit de la fonction précédente
reference_set = read_set (filename_reference)

1.2. Corrigés de la semaine 3 11

Corriges Documentation, Version 1.0

on crée une liste vide
result = []
with open(filename) as f:
for line in f:
token = line.strip/()
result.append((token, token in reference_set))

return result

1.2.16 search_in_set (bis) - Semaine 3 Séquence 5

def search_in_set_bis(filename_reference, filename) :

on tire profit de la fonction précédente
reference_set = read_set (filename_reference)

c'est un plus clair avec une compréhension
mais moins efficace car on calcule strip() deux fois
with open(filename) as f:
return [(line.strip(), line.strip() in reference_set)
for line in f]

1.2.17 diff - Semaine 3 Séquence 5

def diff (extended, abbreviated):
"""Calcule comme demandé dans 1'exercice, et sous formes d'ensembles
(#) les noms des bateaux seulement dans extended
(+#) les noms des bateaux présents dans les deux listes

(*) les ids des bateaux seulement dans abbreviated
mmwn

on n'utilise que des ensembles dans tous 1'exercice

les ids de tous les bateaux dans extended

avec ce qu'on a vu jusqu'ici le moyen le plus naturel
consiste a calculer une compréhension de liste

et a la traduire en ensemble comme ceci

extended_ids = set ([ship[0] for ship in extended])

les ids de tous les bateaux dans abbreviated

je fais expres de ne pas mettre les []

de la compréhension de liste, c'est pour vous introduire
les expressions génératrices - volir semaine 5
abbreviated_ids = set (ship[0] for ship in abbreviated)

les ids des bateaux seulement dans abbreviated
une difference d'ensembles
abbreviated_only_ids = abbreviated_ids - extended_ids

les ids des bateaux dans les deux listes
une intersection d'ensembles
both_ids = abbreviated_ids & extended_ids

12 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

les ids des bateaux seulement dans extended
ditto
extended_only_ids = extended_ids - abbreviated_ids

pour les deux catégories ou c'est possible
on recalcule les noms des bateaux
par une compréhension d'ensemble

both_names = \
set ([ship[4] for ship in extended if ship[0] in both_ids])
extended_only_names = \

set ([ship[4] for ship in extended if ship[0] in extended_only_ids])
enfin on retourne les 3 ensembles sous forme d'un tuple
return extended_only_names, both_names, abbreviated_only_ids

1.2.18 diff (bis) - Semaine 3 Séquence 5

def diff_bis (extended, abbreviated):
mmwn
Méme code mais qui utilise les compréhensions d'ensemble
que l'on n'a pas encore vues — a nouveau, volr semaine 5
mais vous allez voir que c'est assez intuitif
extended_ids = {ship[0] for ship in extended}
abbreviated_ids = {ship[0] for ship in abbreviated}

abbreviated_only_ids = abbreviated_ids - extended_ids
both_ids = abbreviated_ids & extended_ids
extended_only_ids = extended_ids - abbreviated_ids

both_names = \

{ship[4] for ship in extended if ship[0] in both_ids}
extended_only_names = \

{ship[4] for ship in extended if ship[0] in extended_only_ids}

return extended_only_names, both_names, abbreviated_only_ids

1.2.19 diff (ter) - Semaine 3 Séquence 5

def diff_ter (extended, abbreviated):
mmwn
Idem sans les calculs d'ensembles intermédiaires
en utilisant les conditions dans les compréhensions

mon

extended_ids = {ship[0] for ship in extended}
abbreviated_ids = {ship[0] for ship in abbreviated}
abbreviated_only = {ship[0] for ship in abbreviated
if ship[0] not in extended_ids}
extended_only = {ship[4] for ship in extended
if ship[0] not in abbreviated_ids}
both = {ship[4] for ship in extended

if ship[0] in abbreviated_ids}
return extended_only, both, abbreviated_only

1.2. Corrigés de la semaine 3 13

Corriges Documentation, Version 1.0

1.2.20 diff (quater) - Semaine 3 Séquence 5

def diff_quater (extended, abbreviated):

mmn

Idem sans indices

mmn

extended_ids = {id for id, *_ in extended}
abbreviated_ids = {id for id, +*_ in abbreviated}
abbreviated_only = {id for id, »*_ in abbreviated

if id not in extended_ids}

extended_only = {name for id, _, _, _, name, *_

if id not in abbreviated_ids}

both = {name for id, _, _, _, name, *_

if id in abbreviated_ids}
return extended_only, both, abbreviated_only

in extended

in extended

1.2.21 fifo - Semaine 3 Séquence 8

class Fifo:

mmn

Une classe FIFO implémentée avec une simple liste

mmn

def _ init_ (self):
1'attribut queue est un objet liste
self.queue = []

def incoming(self, x):
on insere au début de la liste
self.queue.insert (0, x)

def outgoing(self):
une premiere facon de falire consiste a
utiliser un try/except
try:
return self.queue.pop ()
except IndexError:
return None

1.2.22 fifo (bis) - Semaine 3 Séquence 8

class FifoBis (Fifo):
mmn
une alternative en testant directement
plutdét que d'attraper 1'exception
mmn
def _ init__ (self):
self.queue = []

def incoming(self, x):
self.queue.insert (0, x)

def outgoing(self):
plus concis mais peut—-étre moins lisible

14

Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

if len(self.queue):
return self.queue.pop ()
en fait on n'a méme plus besoin du else..

1.3 Corrigés de la semaine 4

1.3.1 dispatch1 - Semaine 4 Séquence 2

def dispatchl (a, b):

"""dispatchl comme spécifié"""
si les deux arguments sont pairs
if a%2 == 0 and b%2 == 0:

return axa + bxb
si a est pair et b est impair
elif a%2 == 0 and b%2 != 0:

return ax* (b-1)
si a est impair et b est pair
elif a%2 != 0 and b%2 ==

return (a-1)+*b
sinon - c'est que a et b sont impairs
else:

return axa — bxb

1.3.2 dispatch2 - Semaine 4 Séquence 2

def dispatch2(a, b, A, B):
""rdispatch?2 comme spécifié"""
les deux cas de la diagonale \
if (a in A and b in B) or (a not in A and b not in B):
return axa + bxb
sinon si b n'est pas dans B
ce qui alors implique que a est dans A
elif b not in B:
return ax (b-1)
le dernier cas, on sait forcément que
b est dans B et a n'est pas dans A
else:
return (a-1)xb

1.3.3 libelle - Semaine 4 Séquence 2

def libelle(ligne):
on enleve les espaces et les tabulations
ligne = ligne.replace(' ', '').replace('\t','")
on cherche les 3 champs
mots = ligne.split(',")
si on n'a pas le bon nombre de champs
rappelez-vous que 'return' tout court
est équivalent a 'return None'
if len(mots) != 3:

1.3. Corrigés de la semaine 4 15

Corriges Documentation, Version 1.0

return
maintenant on a les trois valeurs
nom, prenom, rang = mots
comment présenter le rang
rang_ieme = "ler" if rang == "1" \
else "2nd" if rang == "2" \

else f"{rangj}—-eme"
return f"{prenom}.{nom} ({rang_ieme})"

1.3.4 pgcd - Semaine 4 Séquence 3

def pgcd(a, b):
"le pgcd de a et b par l'algorithme d'Euclide"
1l'algorithme suppose que a >= b
donc si ce n'est pas le cas
il faut inverser les deux entrées

if b > a
a, b =D>b, a
if b == 0:
return a

boucle sans fin
while True:
on calcule le reste
r=as%hb
si le reste est nul, on a terminé
if r == 0:
return b
sinon on passe a l'itération suivante
a, b =D>b, r

1.3.5 pgcd (bis) - Semaine 4 Séquence 3

11 se trouve qu'en fait la premiere inversion n'est
pas nécessaire
en effet si a <= b, la premiére itération de la boucle
while va faire
#r =a%b-=a
et ensuite
#a, b=>b, r=>b a
ce qui provoque 1'inversion
def pgcd_bis(a, b):
si 1'on des deux est nul on retourne 1'autre
if a » b == 0:
return a or b
sinon on fait une boucle sans fin
while True:
on calcule le reste
r=as%hb
si le reste est nul, on a terminé
if r == 0:
return b
sinon on passe a l'itération suivante
a, b=D>o, r

16

Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

1.3.6 pgcd (ter) - Semaine 4 Séquence 3

une autre alternative, qui fonctionne aussi
plus court, mais on passe du temps a se convaincre
que ¢a fonctionne bien comme demandé
def pgcd_ter(a, b):
si on n'aime pas les boucles sans fin
on peut faire aussi comme ceci

while b:
a, b=Db, a%b
return a

1.3.7 taxes - Semaine 4 Séquence 3

une solution tres élégante proposée par adrienollier

les tranches en ordre décroissant
TaxRate = (

(150_000, 45),

(45_000, 40),

(11_500, 20),

(0, 0),

def taxes (income) :
mmwn
U.K. income taxes calculator
https://www.gov.uk/income-tax-rates
mmwn
due = 0
for floor, rate in TaxRate:
if income > floor:
due += (income - floor) * rate / 100
income = floor
return int (due)

1.3.8 taxes (bis) - Semaine 4 Séquence 3

cette solution est plus lourde

je la retiens parce qu'elle montre un cas de for .. else
qui ne soit pas trop tiré par les cheveux

quoique

H R HH

bands [
a partir de 0. le taux est nul
(0, 0.),
jusqu'a 11 500 ou il devient de 20%
(11500, 20/100),
etc.
(45000, 40/100),
(150_000, 45/100),

def taxes_bis(income) :

1.3. Corrigés de la semaine 4 17

Corriges Documentation, Version 1.0

mmn

utilise un for avec un else

mmn

amount = 0

en faisant ce zip un peu étrange, on va
considérer les couples de tuples consécutifs dans
la liste bands
for (bandl, ratel), (band2, _) in zip(bands, bands[1l:]):
le salaire est au-dela de cette tranche
if income >= band2:
amount += (band2-bandl) % ratel
le salaire est dans cette tranche
else:
amount += (income-bandl) * ratel
du coup on peut sortir du for par un break
et on ne passera pas par le else du for
break
on ne passe ici qu'avec les salaires dans la derniere tranche
en effet pour les autres on est sorti du for par un break
else:
band_top, rate_top = bands[-1]
amount += (income - band_top) % rate_top
return (int (amount))

1.3.9 distance - Semaine 4 Séquence 6

import math

def distance (xargs):
"la racine de la somme des carrés des arguments"
avec une compréhension on calcule la liste des carrés des arguments
on applique ensuite sum pour en faire la somme
vous pourrez d'ailleurs vérifier que sum ([]) = 0
enfin on extrait la racine avec math.sqgrt
return math.sqgrt (sum([x++2 for x in args]))

1.3.10 distance (bis) - Semaine 4 Séquence 6

def distance_bis (*xargs):
"idem mais avec une expression génératrice"
on n'a pas encore vu cette forme - cf Semaine 6

mais pour vous donner un avant-golt d'une expression
génératrice on peut faire aussi ceci

observez 1'absence de crochets []

la différence c'est juste qu'on ne

construit pas la liste des carrés,

car on n'en a pas besoin

et donc un itérateur nous suffit

return math.sqgrt (sum(x*+x2 for x in args))

S oH W HH W R R

18 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

1.3.11 numbers - Semaine 4 Séquence 6

def numbers(xliste):
wnn
retourne un tuple contenant
(%) la somme
(*#) le minimum
(#) le maximum
des éléments de la liste

mmn

if not liste:
return 0, 0, O

return (
la builtin 'sum' renvoie la somme
sum(liste),
les builtin 'min' et 'max' font ce qu'on veut aussi
min (liste),
max (liste),

1.3.12 numbers (bis) - Semaine 4 Séquence 6

en regardant bien la documentation de sum, max et min,

on voit qu'on peut aussi traiter le cas singulier

(pas d'argument) en passant

start a sum

et default a min ou max

comme ceci

def numbers_bis(xliste):

return (

attention:
la signature de sum est: sum(iterable[, start])
du coup on ne PEUT PAS passer a sum start=0
parce que start n'a pas de valeur par défaut
sum(liste, 0),
par contre avec min c'est min (iterable, *[, key, default])
du coup on DOIT appeler min avec default=0 qui est plus clair
1'étoile qui apparait dans la signature
rend le parametre default keyword-only
min(liste, default=0),
max (liste, default=0),

1.4 Corrigés de la semaine 5

1.4.1 multi_tri - Semaine 5 Séquence 2

def multi_tri(listes):
mmwn
trie toutes les sous—-listes
et retourne listes

mmn

1.4. Corrigés de la semaine 5 19

Corriges Documentation, Version 1.0

for liste in listes:
sort fait un effet de bord
liste.sort ()
et on retourne la liste de départ
return listes

1.4.2 multi_tri_reverse - Semaine 5 Séquence 2

def multi_tri_reverse(listes, reverses):

mmwn

trie toutes les sous listes, dans une direction

précisée par le second argument

mmwn

zip () permet de faire correspondre les éléments

de listes avec ceux de reverses

for liste, reverse in zip(listes, reverses):
on appelle sort en précisant reverse=
liste.sort (reverse=reverse)

on retourne la liste de départ

return listes

1.4.3 doubler_premier - Semaine 5 Séquence 2

def doubler_premier(f, first, xargs):
mrmmn
renvoie le résultat de la fonction f appliquée sur
f(2 « first, =*args)
mrmmn
une fois qu'on a écrit la signature on a presque fini le travail
en effet on a isolé la fonction, son premier argument, et le reste
des arguments
11 ne reste qu'a appeler f, apres avoir doublé first
return f (2+first, =args)

1.4.4 doubler_premier (bis) - Semaine 5 Séquence 2

def doubler_ premier_bis(f, *args):
"marche aussi mais moins élégant"
first = args[0]
remains = args[l:]
return f (2+first, +remains)

1.4.5 doubler_premier_kwds - Semaine 5 Séquence 2

def doubler premier_kwds (f, first, =*args, =xkeywords):
mmwn

équivalent a doubler_ premier

mais on peut aussi passer des arguments nommés
mrmmn

c'est exactement la méme chose

20 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

return f (2+first, xargs, =xkeywords)

Complément - niveau avancé

[

I1 y a un cas qui ne fonctionne pas avec cette implémentation,
quand le premier argument de f a une valeur par défaut

*et+ on veut pouvoir appeler doubler_premier

en nommant ce premier argument

#

par exemple — avec f=muln telle que définie dans 1'énoncé
#def muln(x=1, y=1): return x+y

alors ceci

#doubler_premier_kwds (muln, x=1, y=2)

ne marche pas car on n'a pas les deux arguments requis
par doubler_premier_Kkwds

et pour écrire, disons doubler_permier3, qui marcherait aussi comme cela

S W W R H

il faudrait faire une hypothése sur le nom du premier argument...

1.4.6 compare_all - Semaine 5 Séquence 2

def compare_all(f, g, entrees):
mmwn
retourne une liste de booléens, un par entree dans entrees
qui indique si f (entree) == g(entree)
mmwn
on vérifie pour chaque entrée si f et g retournent
des résultats égaux avec ==
et on assemble le tout avec une comprehension de liste
return [f (entree) == (entree) for entree in entrees]

1.4.7 compare_args - Semaine 5 Séquence 2

def compare_args(f, g, argument_tuples):
mmn
retourne une liste de booléens, un par entree dans entrees
qui indique si f (xtuple) == g(*xtuple)
mmwn
c'est presque exactement comme compare, sauf qu'on s'attend
a recevoir une liste de tuples d'arguments, qu'on applique
aux deux fonctions avec la forme * au lieu de les passer directement
return [f (xtuple) == g(+xtuple) for tuple in argument_tuples]

1.4.8 aplatir - Semaine 5 Séquence 3

def aplatir (conteneurs):
"retourne une liste des éléments des éléments de conteneurs"
on peut concaténer les éléments de deuxieme niveau
par une simple imbrication de deux compréhensions de liste
return [element for conteneur in conteneurs for element in conteneur]

1.4. Corrigés de la semaine 5 21

Corriges Documentation, Version 1.0

1.4.9 alternat - Semaine 5 Séquence 3

def alternat (11, 12):
"renvoie une liste des éléments pris un sur deux dans 11 et dans 12"
pour réaliser 1'alternance on peut combiner zip avec aplatir
telle qu'on vient de la réaliser
return aplatir(zip(ll, 12))

1.4.10 alternat (bis) - Semaine 5 Séquence 3

def alternat_bis (11, 12):
"une deuxieme version de alternat"
la méme idée mais directement, sans utiliser aplatir
return [element for conteneur in zip(ll, 12) for element in conteneur]

1.4.11 intersect - Semaine 5 Séquence 3

def intersect (A, B):
mmwn
prend en entrée deux listes de tuples de la forme
(entier, valeur)
renvoie la liste des valeurs associées dans A ou B
aux entiers présents dans A et B
mmn
pour montrer un exemple de fonction locale:
une fonction qui renvoie 1'ensemble des entiers
présents dans une des deux listes d'entrée
def keys (S):
return {k for k, val in S}
on 1'applique a A et B
keys_A = keys(A)
keys_B = keys (B)
#
les entiers présents dans A et B
avec une intersection d'ensembles
common_keys = keys_A & keys_B
et pour conclure on fait une union sur deux
compréhensions d'ensembles
return {vala for k, vala in A if k in common_keys} \
| {valb for k, valb in B if k in common_keys}

1.4.12 produit_scalaire - Semaine 5 Séquence 4

def produit_scalaire (X, Y):
mrmmn
retourne le produit scalaire
de deux listes de méme taille
mrmn
on utilise la fonction builtin sum sur une itération
des produits x*y
avec zip() on peut faire correspondre les X avec les Y
remarquez bien qu'on utilise ici une expression génératrice

22 Chapitre 1. Corrigés

Corriges Documentation, Version 1.0

et PAS une compréhension car on n'a pas du tout besoin de
créer la liste des produits xxy
return sum(x » y for x, y in zip(X, Y))

1.4.13 produit_scalaire (bis) - Semaine 5 Séquence 4

I1 y a plein d'autres solutions qui marchent aussi
def produit_scalaire_bis (X, Y):

initialisation du résultat

scalaire = 0

for x, y in zip(X, Y):

scalaire += x » y
on retourne le résultat
return scalaire

1.4.14 produit_scalaire (ter) - Semaine 5 Séquence 4

et encore une: celle-ci par contre est assez peu "pythonique"
je la donne plutdét comme un exemple de ce qu'il faut éviter
on aime bien en général éviter les boucles du genre
for i1 in range(len(iterable)):
iterable[1i]
def produit_scalaire_ter (X, Y):
scalaire = 0
n = len (X)

for i in range(n):
scalaire += X[i] * Y[1]
return scalaire

1.4.15 decode_zen - Semaine 5 Séquence 7

le module this est implémenté comme une petite énigme
comme le laissent entrevoir les indices, on y trouve

(#) dans 1'attribut 's' une version encodée du manifeste
(#) dans 1'attribut 'd' le code a utiliser pour décoder

ce qui veut dire qu'en premiere approximation on pourrait
obtenir une liste des caracteres du manifeste en faisant

[this.d[c] for ¢ in this.s]

mais ce serait le cas seulement si le code agissait sur
tous les caracteres; comme ce n'est pas le cas il faut
laisser intacts les caracteres de this.s qui ne sont pas
dans this.d (dans le sens "c in this.d")

je fais exprés de ne pas appeler 1'argument this pour
illustrer le fait qu'un module est un objet comme un autre

S oH O O W O R R O R W W R R R R H%

def decode_zen (this_module) :
"décode le zen de python a partir du module this"
la version encodée du manifeste

1.4. Corrigés de la semaine 5

23

Corriges Documentation, Version 1.0

encoded = this_module.s

le 'code'

code = this_module.d

si un caractere est dans le code, on applique le code

sinon on garde le caractere tel quel

aussi, on appelle 'join' pour refaire une chaine a partir

de la liste des caracteres décodés

return ''.join([code[c] if c in code else c¢ for c in encoded])

1.4.16 decode_zen (bis) - Semaine 5 Séquence 7

une autre version un peu plus courte

on utilise la méthode get d'un dictionnaire, qui permet de spécifier
(en second argument) quelle valeur on veut utiliser dans les cas ou la
clé n'est pas présente dans le dictionnaire

dict.get (key, default)
retourne dict[key] si elle eset présente, et default sinon

H o HH R W R R

def decode_zen bis(this_module) :
"une autre version plus courte"
return "".join([this_module.d.get(c, c) for c in this_module.s])

1.4.17 decode_zen (ter) - Semaine 5 Séquence 7

presque la méme chose, mais en utilisant une expression génératrice

a la place de la compréhension; la seule différence avec la version bis
est 1'absence des crochets carrés []

ici je triche, nous n'avons pas encore vu ces expressions-la,

nous les verrons en semaine 6, mais ¢a me permet de les introduire
pour les curieux donc:

avec ce code, #*+*on ne crée pas la listex+ qui est passée au join(),
c'est comme si cette liste était cette fois

parcourue a travers *#un Iitérateur*x*

on est donc un peu plus efficace — méme si ¢a n'est évidemment
pas tres sensible dans ce cas précis

S H R W H R W R R W R

def decode_zen_ter (this_module) :
"une version avec une expression génératrice plutdét qu'une compréhension"
return "".join(this_module.d.get (c, c) for c¢ in this_module.s)

24 Chapitre 1. Corrigés

	Corrigés
	Corrigés de la semaine 2
	pythonid (regexp) - Semaine 2 Séquence 2
	pythonid (bis) - Semaine 2 Séquence 2
	agenda (regexp) - Semaine 2 Séquence 2
	phone (regexp) - Semaine 2 Séquence 2
	url (regexp) - Semaine 2 Séquence 2
	label - Semaine 2 Séquence 6
	label (bis) - Semaine 2 Séquence 6
	label (ter) - Semaine 2 Séquence 6
	inconnue - Semaine 2 Séquence 6
	inconnue (bis) - Semaine 2 Séquence 6
	laccess - Semaine 2 Séquence 6
	laccess (bis) - Semaine 2 Séquence 6
	divisible - Semaine 2 Séquence 6
	divisible (bis) - Semaine 2 Séquence 6
	morceaux - Semaine 2 Séquence 6
	morceaux (bis) - Semaine 2 Séquence 6
	morceaux (ter) - Semaine 2 Séquence 6
	liste_P - Semaine 2 Séquence 7
	liste_P (bis) - Semaine 2 Séquence 7
	carre - Semaine 2 Séquence 7
	carre (bis) - Semaine 2 Séquence 7

	Corrigés de la semaine 3
	comptage - Semaine 3 Séquence 2
	comptage (bis) - Semaine 3 Séquence 2
	comptage (ter) - Semaine 3 Séquence 2
	surgery - Semaine 3 Séquence 2
	graph_dict - Semaine 3 Séquence 4
	graph_dict (bis) - Semaine 3 Séquence 4
	index - Semaine 3 Séquence 4
	index (bis) - Semaine 3 Séquence 4
	index (ter) - Semaine 3 Séquence 4
	merge - Semaine 3 Séquence 4
	merge (bis) - Semaine 3 Séquence 4
	merge (ter) - Semaine 3 Séquence 4
	read_set - Semaine 3 Séquence 5
	read_set (bis) - Semaine 3 Séquence 5
	search_in_set - Semaine 3 Séquence 5
	search_in_set (bis) - Semaine 3 Séquence 5
	diff - Semaine 3 Séquence 5
	diff (bis) - Semaine 3 Séquence 5
	diff (ter) - Semaine 3 Séquence 5
	diff (quater) - Semaine 3 Séquence 5
	fifo - Semaine 3 Séquence 8
	fifo (bis) - Semaine 3 Séquence 8

	Corrigés de la semaine 4
	dispatch1 - Semaine 4 Séquence 2
	dispatch2 - Semaine 4 Séquence 2
	libelle - Semaine 4 Séquence 2
	pgcd - Semaine 4 Séquence 3
	pgcd (bis) - Semaine 4 Séquence 3
	pgcd (ter) - Semaine 4 Séquence 3
	taxes - Semaine 4 Séquence 3
	taxes (bis) - Semaine 4 Séquence 3
	distance - Semaine 4 Séquence 6
	distance (bis) - Semaine 4 Séquence 6
	numbers - Semaine 4 Séquence 6
	numbers (bis) - Semaine 4 Séquence 6

	Corrigés de la semaine 5
	multi_tri - Semaine 5 Séquence 2
	multi_tri_reverse - Semaine 5 Séquence 2
	doubler_premier - Semaine 5 Séquence 2
	doubler_premier (bis) - Semaine 5 Séquence 2
	doubler_premier_kwds - Semaine 5 Séquence 2
	compare_all - Semaine 5 Séquence 2
	compare_args - Semaine 5 Séquence 2
	aplatir - Semaine 5 Séquence 3
	alternat - Semaine 5 Séquence 3
	alternat (bis) - Semaine 5 Séquence 3
	intersect - Semaine 5 Séquence 3
	produit_scalaire - Semaine 5 Séquence 4
	produit_scalaire (bis) - Semaine 5 Séquence 4
	produit_scalaire (ter) - Semaine 5 Séquence 4
	decode_zen - Semaine 5 Séquence 7
	decode_zen (bis) - Semaine 5 Séquence 7
	decode_zen (ter) - Semaine 5 Séquence 7

