Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
random-forest-importances/notebooks/permutation-importances-regressor.Rmd
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
168 lines (133 sloc)
5.44 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "R Notebook" | |
output: pdf_notebook | |
--- | |
```{r setup, include=FALSE} | |
knitr::opts_chunk$set(echo = TRUE, warning = F, message = F) | |
``` | |
```{r warning=FALSE, message=FALSE} | |
library(tidyverse) | |
library(randomForest) | |
library(cowplot) | |
library(gridExtra) | |
``` | |
```{r} | |
rents <- read.csv('./data/rent.csv') | |
glimpse(rents) | |
``` | |
```{r} | |
features <- c('bathrooms', 'bedrooms', 'longitude', 'latitude', 'price') | |
df <- rents[,features] | |
df$price <- log(df$price) | |
# with random column | |
df['random'] <- runif(nrow(df)) | |
head(df) | |
``` | |
## PLOTTING FUNCTIONS | |
```{r} | |
create_rfplot <- function(rf, type){ | |
imp <- importance(rf, type=type, scale = F) | |
featureImportance <- data.frame(Feature=row.names(imp), Importance=imp[,1]) | |
p <- ggplot(featureImportance, aes(x=reorder(Feature, Importance), y=Importance)) + | |
geom_bar(stat="identity", fill="#53cfff", width = 0.65) + | |
coord_flip() + | |
theme_light(base_size=20) + | |
theme(axis.title.x=element_blank(), | |
axis.title.y=element_blank(), | |
axis.text.x = element_text(size = 15, color = "black"), | |
axis.text.y = element_text(size = 15, color = "black")) | |
return(p) | |
} | |
create_ggplot <- function(featureImportance){ | |
p <- ggplot(featureImportance, aes(x=reorder(Feature, Importance), y=Importance)) + | |
geom_bar(stat="identity", fill="#53cfff", width = 0.65) + | |
coord_flip() + | |
theme_light(base_size=20) + | |
theme(axis.title.x=element_blank(), | |
axis.title.y=element_blank(), | |
axis.text.x = element_text(size = 15, color = "black"), | |
axis.text.y = element_text(size = 15, color = "black")) | |
return(p) | |
} | |
``` | |
## BUILT-IN IMPORTANCE | |
**Important Note: Unscaled Feature importances are used while assessing built-in feature importances** | |
"Here are the definitions of the variable importance measures. The first measure is computed from permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is recorded (error rate for classification, MSE for regression). Then the same is done after permuting each predictor variable. The difference between the two are then averaged over all trees, and normalized by the standard deviation of the differences. If the standard deviation of the differences is equal to 0 for a variable, the division is not done (but the average is almost always equal to 0 in that case). | |
The second measure is the total decrease in node impurities from splitting on the variable, averaged over all trees. For classification, the node impurity is measured by the Gini index. For regression, it is measured by residual sum of squares." | |
From : http://ugrad.stat.ubc.ca/R/library/randomForest/html/importance.html | |
#### TYPE 1 = Mean decrease in MSE by **Permutation** | |
```{r} | |
# without random column | |
rf1 <- randomForest(price~., data = df[, 1:5], mtry=4, | |
ntree = 40, importance=T) | |
importance(rf1, scale=F) | |
p1 <- create_rfplot(rf1, type = 1) | |
#ggsave('../article/images/regr_permute_R.svg', | |
#plot = p1, device = 'svg', height = 4, width = 6) | |
``` | |
```{r} | |
# with random column | |
rf2 <- randomForest(price~., data = df, mtry = 4, | |
ntree = 40, importance=T) | |
importance(rf2, scale=F) | |
p2 <- create_rfplot(rf2, type = 1) | |
#ggsave('../article/images/regr_permute_random_R.svg', | |
#plot = p2, device = 'svg', height = 4, width = 6) | |
imp1 <- data.frame(importance(rf2, type = 1, scale=F)) | |
write.csv(imp1, file="./data/imp_R_regr_MSE.csv") | |
``` | |
#### TYPE 2 = Mean decrease in node impurity (RSS) by splitting on columns, **Python's default** | |
```{r} | |
# without random column | |
rf1 <- randomForest(price~., data = df[, 1:5], mtry=4, | |
ntree = 40, importance=T) | |
p1 <- create_rfplot(rf1, type = 2) | |
#ggsave('../article/images/regr_dflt_R.svg', | |
#plot = p1, device = 'svg', height = 4, width = 6) | |
``` | |
```{r} | |
# with random column | |
rf2 <- randomForest(price~., data = df, mtry = 4, | |
ntree = 40, importance=T) | |
p2 <- create_rfplot(rf2, type = 2) | |
#ggsave('../article/images/regr_dflt_random_R.svg', | |
#plot = p2, device = 'svg', height = 4, width = 6) | |
imp1 <- data.frame(importance(rf2, type = 2,scale=F)) | |
write.csv(imp1, file="./data/imp_R_regr_RSS.csv") | |
``` | |
## EXAMINE COST BY DROPPING | |
```{r, eval=F} | |
# PARAMS : ntree = 40, mtry = 2, nodesize = 1 | |
get_drop_imp <- function(df, columns){ | |
X <- df[,c(columns, 'price')] # data | |
rf <- randomForest(price~., data = X, | |
ntree = 40, mtry=2, nodesize=1, importance=T) | |
full_rsq <- mean(rf$rsq) # R-squared | |
imp <- c() | |
for (c in columns){ | |
X_sub <- X[, !(colnames(X) == c)] | |
rf <- randomForest(price~., data = X_sub, | |
ntree = 40, mtry=2, nodesize=1, importance=T) | |
sub_rsq <- mean(rf$rsq) # R-squared | |
diff_rsq <- full_rsq - sub_rsq | |
imp <- c(imp, diff_rsq) | |
} | |
featureImportance <- data.frame(Feature=columns, Importance=imp) | |
return(featureImportance) | |
} | |
``` | |
```{r, eval=F} | |
columns <- c('bathrooms', 'bedrooms', 'longitude', 'latitude') | |
featureImportance <- get_drop_imp(df, columns) | |
p1 <- create_ggplot(featureImportance) | |
#ggsave('../article/images/regr_drop_R.svg', | |
#plot = p1, device = 'svg', height = 4, width = 6) | |
``` | |
```{r, eval=F} | |
columns <- c('bathrooms', 'bedrooms', 'longitude', 'latitude', 'random') | |
featureImportance <- get_drop_imp(df, columns) | |
p2 <- create_ggplot(featureImportance) | |
#ggsave('../article/images/regr_drop_random_R.svg', | |
#plot = p2, device = 'svg', height = 4, width = 6) | |
write.csv(featureImportance, file="./data/imp_R_regr_drop.csv") | |
``` | |