
NARS implementation in MeTTA

Peter Isaev, Patrick Hammer

January 2024

1 Introduction

This document provides an overview of the basic principles behind Non-Axiomatic
Reasoning System (NARS) implemented in MeTTa programming language and
justifies the design decisions according to the specifics of the language. It also
outlines a POC demonstrating procedure learning in MeTTa and summarizes
issues and limitations observed.

2 Overall Architecture

The MeTTa implementation of NARS follows design paradigms borrowed from
OpenNARS for Applications (ONA)[1] utilizing Non-Axiomatic Logic (NAL)[2],
concept-centric semantic memory[3] and control mechanism, including declara-
tive, temporal and procedural types of reasoning. The inference control frame-
work is shown in Figure 1. The control is mainly concerned with which premises
to pick and which NAL inference rules to apply on a cyclic basis to derive knowl-
edge, trigger a decision or lead to the derivations of subgoals.

Figure 1: Overview of ONA, the NARS implementation

1

Describing the functionality and structure of the control components in detail
is well beyond the scope of this document, however, we will recall the most
relevant definitions of the components within the corresponding sections of the
report to allow the reader to understand their principle functionalities.

3 Code Structure

The reasoning system consists of the following three (3) main components:

• Logic

• Memory

• Control

Whereby each of them is further subdivided into multiple parts as can be seen
in code organization Figure 2.

Figure 2: Code Structure Flowchart

Important to note that at the time of the creation of this document, the
MeTTa language did not offer a reliable code importing process and therefore
the simple concatenation of the source files was performed instead by using
building scripts to construct each of the components from the corresponding
smaller MeTTa files.

Hereby, the logic component is built using multiple smaller MeTTa files
for NAL inference rules, NAL Truth Functions and Term Reductions, while
the memory of the system is divided into Events and Concepts. Given the
complexity of NARS reasoning, the control of the system is a more substantial
entity consisting of the following sub-parts, each conforming to the type of
reasoning:

• Declarative (deriving events and knowledge from events)

• Temporal (sequence and temporal implication formation)

• Procedural (decision making with subgoaling and planning)

The build script build.sh at the root of the directory performs the concate-
nation process of the initial source code files into 3 larger chunks and eventually
into a single NARS reasoner NARS.metta as seen in Fig. 2.

2

4 Standard library extensions

In addition to the main three components discussed above, MeTTa-NARS fea-
tures a small utility package within util.metta that defines the commonly used
procedures as well as basic mathematical functions. Below are descriptions of
the select procedures defined within util.metta.

TupleConcat:

TupleConcat concatenates two given tuples into a single one by explicitly using
inbuilt superpose.

(= (TupleConcat $Ev1 $Ev2)
(collapse (superpose ((superpose $Ev1) (superpose $Ev2)))))

Basic math functions:

(= (max $1 $2) (if (> $1 $2) $1 $2))
(= (min $1 $2) (if (< $1 $2) $1 $2))
(= (abs $x) (if (< $x 0) (- 0 $x) $x))

Sequential:

A wrapper for the sequential instructions evaluation and modifications. Cur-
rently using inbuilt superpose however might face certain concerns as noted in
the “Issues and Limitations” section.

(: sequential (-> Expression %Undefined%))
(= (sequential $1) (superpose $1))

CollapseCardinality:

Given that MeTTa currently does not provide an easy inbuilt way of knowing
the length of a tuple, CollapseCardinality is used to determine tuple size. To
allow this happening, BuildTupleCounts creates a map by adding tuples of up-to
the given size with their cardinality to the atom space in the background.

(= (BuildTupleCounts $TOld $C $N)
(let $T (collapse (superpose (1 (superpose $TOld))))

(superpose ((add-atom &self (= (TupleCount $T) (+ $C 2)))
(If (< $C $N) (BuildTupleCounts $T (+ $C 1) $N))))))

Do and If:

Do is trivial procedure returning an empty tuple, idea of returning None, when
the output is not desired, thus many functions within the control code are
wrapped in Do procedure. Additionally, since MeTTa only provide If-else con-
struct, more common definition of if-else statement is provided.

(: do (-> Expression %Undefined%))
(= (do $1) (case $1 ()))
(: If (-> Bool Atom Atom))
(= (If True $then) $then)
(= (If False $then) ())
(: If (-> Bool Atom Atom Atom))
(= (If $cond $then $else) (if $cond $then $else))

Please note, the type annotations are necessary to hamper it from evaluating
the input expression.

3

5 The Logic

Non-Axiomatic Logic (NAL)[2] specifies which information can be derived from
combinations of at most two premises with support of uncertainty estimation. It
incorporates inference rules for learning from event streams, goal reasoning and
decision making, as well as functions to estimate the uncertainty of statements
based on evidential support. Hence, a means-end reasoner can be built to learn
from experience using NAL.

NAL is defined using multiple layers (1-5) with corresponding truth functions
for uncertainty estimation, whereby logic becomes more advanced with each
layer. Inference Rules along with truth functions are being explicitly defined
within the Logic component of MeTTa-NARS. Below are examples of basic
inference rules representation following the convention of Hyperon-PLN which
uses entails operator.

NAL-1 Inference Rules for Inheritance:

(= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($a --> $c) (Truth_Deduction $T1 $T2)))
(= (|- (($a --> $b) $T1) (($a --> $c) $T2)) (($c --> $b) (Truth_Induction $T1 $T2)))
(= (|- (($a --> $c) $T1) (($b --> $c) $T2)) (($b --> $a) (Truth_Abduction $T1 $T2)))

NAL-5 Inference Rules for Implication and Equivalence:

(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($A ==> $C) (Truth_Deduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($A ==> $C) $T2)) (($C ==> $B) (Truth_Induction $T1 $T2)))
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) (($B ==> $A) (Truth_Abduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($C ==> $A) (Truth_Exemplification $T1 $T2)))
(= (|- (($S <=> $P) $T)) (($P <=> $S) (Truth_StructuralIntersection $T)))
(= (|- (($S ==> $P) $T1) (($P ==> $S) $T2)) (($S <=> $P) (Truth_Intersection $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S ==> $M) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($M ==> $S) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($S <=> $M) $T2)) (($S ==> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S <=> $M) $T2)) (($P ==> $S) (Truth_Analogy $T1 $T2)))
(= (|- (($M <=> $P) $T1) (($S <=> $M) $T2)) (($S <=> $P) (Truth_Resemblance $T1 $T2)))

Selected Truth Functions:

(= (Truth_Deduction ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $f1 $f2) (* $c1 $c2))))
(= (Truth_Abduction ($f1 $c1) ($f2 $c2)) ($f2 (Truth_w2c (* (* $f1 $c1) $c2))))
(= (Truth_Induction $T1 $T2) (Truth_Abduction $T2 $T1))
(= (Truth_Exemplification ($f1 $c1) ($f2 $c2)) (1.0 (Truth_w2c (* (* $f1 $f2) (* $c1 $c2)))))

Additionally, to allow structural term reduction during derivation process,
term reduction rules are being featured in Logic component and applied at the
time of deriving new or updating existing knowledge.

Selected NAL term reductions:

(= ($A & $A) $A)
(= ($A | $A) $A)
(= ($A && $A) $A)
(= ($A || $A) $A)
(= (({ $A }) | ({ $B })) ({ $A $B }))
(= (({ $A $B }) | ({ $C })) ({ ($A . $B) $C }))
(= (({ $C }) | ({ $A $B })) ({ $C ($A . $B) }))

4

6 Memory

Memory in NARS follows a concept-centric semantic memory structure in ac-
cordance with the NAL term logic the system uses. It can be viewed as a
graph where concepts are represented as nodes and links designate relationships
among them as in Figure 1. Technically, NARS memory is a collection of con-
cepts representing a conceptual network with prioritized nodes. Concept is
a major entity, an identifiable unit of system’s experience that has grounded
meaning. It is also considered as a unit of storage to hold various components
of knowledge. For more details on functionality, memory types and semantics
see [3].

In MeTTa-NARS implementation, the memory part is found within Mem-
ory.metta source file, which is being built using Events and Concepts located
in events.metta and concepts.metta respectively. Below we provide explanations
of the important procedures and data structures to allow the reader understand
the functionality of the system.

Events

Events part of NARS Memory sets up two Atom spaces with related functions
for Beliefs and Goals which together with Attentional Focus space, found within
concepts.metta, serve as a working term memory of the system. In original
NARS implementation the atom spaces for Beliefs and Goals are implemented
using priority queues, prioritised by a priority (importance) value of items. Since
at the current stage no efficient data structure is provided, we bound ourselves
to use Atom Spaces and then linearly iterate over them retrieving the best can-
didate. Because of such limitation, the Atom Spaces have been currently limited
to 10 elements. For details on budget and resource allocation of NARS, see [4],
hereby we will provide an overview of procedures found within events.metta.

(= (ProcessBeliefEvent $Ev $t)

ProcessBeliefEvent is called from AddBeliefEvent found in the temporal control,
which is the entry point to system. The role is to add input event to the Belief
space and create or update a concept for it (discussed in the concept section).

(= (SelectHighestPriorityEvent $collection $t)

Currently it iteratively selects the highest priority item from either Belief or
Goal spaces based on the event occurrence time and current time of the system
measured in cycles (discussed in Control section).

(= (BoundEvents $collection $Threshold $Increment $TargetAmount $t)

BoundEvents maintains the constant number of items (TargetAmount) within
the Belief or Goal Atom spaces by recursively calling itself with incremented
threshold until the collection has exactly TargetAmount number of items.

5

Additionally, the Reasoner State is defined within events.metta. Reasoner
state is a valuable concept that captures current cycle of the system and stamp
id for derivations and inputs. Reasoner state is being constantly queried by
system’s control during reasoning for events creation, anticipation and evidential
base setups.

Concepts

The main purpose of the concepts.metta is to create, update and maintain sys-
tem’s concepts, revise beliefs and maintain attentional focus of the system.
There are two Atom spaces used for attentional focus of the system and concept
memory, long-term system’s experience storage. At the current moment, to
make the system responsive, the system attentional focus is bounded to 10 ele-
ments which suffices for running procedural learning experiments and testings,
while the long-term concept memory is unbound. In addition, the concept.metta
provides estimation of priority for the concepts. The subject of attention alloca-
tion and priority estimation will be discussed in the later section. The following
select procedures are found within concepts.metta:

(= (RevisionAndChoice (Event $ev1) (Event $ev2)))

RevisionAndChoice revises the belief of existing knowledge with the newly added
or derived knowledge given its evidential bases do not overlap, i.e. the knowledge
being derived from different evidential traces. In the case of both of the beliefs
share one or more components within their evidential base, the system makes
the choice regarding which knowledge to utilize based on the confidence of the
belief.

(= (UpdateConcept $NewEvent $t)

The given procedure creates new or updates an existing concept. In the case of
the new event to the system, either an input or a derivation, the given procedure
creates a concept and adds it to the attentional focus Atom space. If a concept
for a given event is already present, either in attentional focus or in concept
Atom spaces, the procedures calls RevisionAndChoice to revise beliefs, updates
the concept’s priority and insert the concept into attentional focus Atom space.
It is important to note that the concept only exists within attentional focus or
concept Atom spaces but not in both, thus if a concept has lost the competition
for resources it remains only in the concept Atom space.

(= (BoundAttention $Threshold $Increment $TargetAmount $t)

BoundAttention is being called from declarative control (discussed later), the
purpose is to maintain the size of the attentional focus Atom space. Concepts
whose priority is less than the given threshold are being moved from attentional
focus to concepts Atom space. The procedure recursively calls itself until the
size of attentional focus has reached provided target number.

6

7 Control Mechanism

Attentional control is performed by using the Beliefs and Goals spaces as a
priority queue where in each cycle only the highest-priority event is selected.
Hereby input events have priority 1.

For derived belief events, the priority is the parent event’s priority (the first
premise), multiplied with the belief concept’s priority (where the second premise
came from), multiplied with the truth expectation of the conclusion event. For
derived goal events, there is no belief concept involved so that factor is omitted.

(= (ConclusionPriority $EPrio $CPrio $ConcTV)

(* (* $EPrio $CPrio) (Truth_Expectation $ConcTV)))

(= (SubgoalPriority $EPrio $ConcTV) (* $EPrio (Truth_Expectation $ConcTV)))

8 Data Structures and corresponding spaces

8.1 A space as a PQ

8.1.1 Maximum element selection

The following function can be used to extract a maximum-valued element (ac-
cording to a passed function which assigns an element a value) from a tuple,
which can be used to find a maximum element of a tuple and hence collapse call
and space via (collapse (get-atoms &space)).

;retrieve the best candidate (allows to use tuples / collapse results / spaces as a PQ)
(= (BestCandidate $tuple $bestCandidate $evaluateCandidateFunction $t)

(if (== $tuple ())
$bestCandidate
(let* (($head (car-atom $tuple))

($tail (cdr-atom $tuple)))
(if (> ($evaluateCandidateFunction $head $t)

($evaluateCandidateFunction $bestCandidate $t))
(BestCandidate $tail $head $evaluateCandidateFunction $t)
(BestCandidate $tail $bestCandidate $evaluateCandidateFunction $t)))))

8.2 Bound via thresholding

In NARS priority (attention) values are between 0 and 1. Since this is the case,
starting from 0 one can slowly increase a bound, removing items below that
bound, until the space only contains the desired maximum amount of items.

;bound the size of the attentional focus for tasks / events
(= (BoundEvents $collection $Threshold $Increment $TargetAmount $t)

(sequential ((let* (($Ev (get-atoms $collection))
((Event $Sentence ($Time $Evidence $EPrio)) $Ev))

(if (< (EventPriorityNow $EPrio $t) $Threshold) (remove-atom $collection $Ev) nop))
(let $CurrentAmount (CollapseCardinality (get-atoms $collection))

(if (and (> $CurrentAmount $TargetAmount) (< $Threshold 1.0))
(BoundEvents $collection (+ $Threshold $Increment) $Increment $TargetAmount $t) nop)))))

7

8.3 Belief updating
;;update beliefs in existing concept with the new event or create new concept to enter the new evidence
(= (UpdateConcept $NewEvent $t)

(let* (((Event ($Term $TV) ($Time $Evidence $EPrio)) $NewEvent)
($NewEventEternalized (Eternalize $NewEvent))
($MatchConcept (Concept $Term $Belief $BeliefEvent $CPrio)))

(sequential ((case (match &attentional_focus $MatchConcept $MatchConcept)
(($MatchConcept (sequential ((remove-atom &attentional_focus $MatchConcept)

(let* (($RevisedBelief
(RevisionAndChoice $Belief $NewEventEternalized))

($MaxPrio (if (> (EventPriorityNow $EPrio $t)
(ConceptPriorityNow $CPrio $t))

$EPrio $CPrio)))
(add-atom &attentional_focus

(Concept $Term $RevisedBelief $NewEvent $MaxPrio))))))
(%void% (case (match &concepts $MatchConcept $MatchConcept)

(($MatchConcept (sequential ((remove-atom &concepts $MatchConcept)
(add-atom &attentional_focus $MatchConcept)
(UpdateConcept $NewEvent $t))))

(%void% (add-atom &attentional_focus
(Concept $Term $NewEventEternalized $NewEvent $EPrio))))))))))))

A few important mechanisms are at play here:

1. Retrieving evidence from concept memory into attentional focus if a con-
cept with the term of the event already exists

2. Creating of a new concept if there was no matched one in attentional focus
and also not in concepts (realized by nesting case expressions)

3. Definition of a match pattern which has variables which are resolved in
the lines after.

4. An implicit constraint of the term of the concept (represented by the
match pattern) to have the same term as NewEvent has as the variable
$Term is used again in the definition of MatchConcept.

9 Issues and workarounds

1. The first issue, discovered on August 11, had to do with inefficiency (multi-
ple seconds for just 10 items) Recursive tuple/list performance issue when
counting the amount of items in a space. This was traced down to being
slow in recursive list deconstrunction (and construction). The workaround
was building a lookup table via add-atom. BuildTupleCounts

2. The second issue was about import statements. Import issue 1 (which as
Alexey Potapov found has to do with superpose not including stdlib type
definitions) and Import issue 2 which is yet unexplained. A satisfactory
workaround was to glue files together with Linux cat command, e.g.

cat file1.metta file2.metta > RUN.metta && metta RUN.metta

8

https://github.com/trueagi-io/hyperon-experimental/issues/394
https://gist.github.com/patham9/aa3e93bb369e3fc1660cb473e7e74b55
https://github.com/trueagi-io/hyperon-experimental/issues/396
https://github.com/trueagi-io/hyperon-experimental/issues/397

10 Tests

• tests0.metta: NAL inference rule application examples

• tests1.metta: Multistep declarative inference example

• tests2.metta: Pong-like procedure learning example

• tests3.metta: Multi-step decision making (planning) example

11 Future Research and Optimizations

While manipulating large lists with even 10’s of items recursively can take sec-
onds in MeTTa at this stage, some operations on spaces are relatively fast. For
instance lookup for a pattern is quick. This can be exploited for instance in
evidental base overlap check by generating all the tuples up to a certain length.

Furthermore, spaces can be used as sets to check for evidential base overlaps
faster than recursive versions.

References

[1] P. Hammer and T. Lofthouse, ‘OpenNARS for Applications’: Architecture
and Control, 07 2020, pp. 193–204.

[2] P. Wang, Non-axiomatic logic: A model of intelligent reasoning. World
Scientific, 2013.

[3] P. Isaev and P. Hammer, “Memory system and memory types for real-
time reasoning systems,” in Artificial General Intelligence, P. Hammer,
M. Alirezaie, and C. Stranneg̊ard, Eds. Cham: Springer Nature Switzer-
land, 2023, pp. 147–157.

[4] ——, “An attentional control mechanism for reasoning and learning,” in
Artificial General Intelligence, B. Goertzel, A. I. Panov, A. Potapov, and
R. Yampolskiy, Eds. Cham: Springer International Publishing, 2020, pp.
221–230.

9

	Introduction
	Overall Architecture
	Code Structure
	Standard library extensions
	The Logic
	Memory
	Control Mechanism
	Data Structures and corresponding spaces
	A space as a PQ
	Maximum element selection

	Bound via thresholding
	Belief updating

	Issues and workarounds
	Tests
	Future Research and Optimizations

