Skip to content
Find file
Fetching contributors…
Cannot retrieve contributors at this time
9860 lines (6911 sloc) 422 KB
Network Working Group R. Fielding
Request for Comments: 2616 UC Irvine
Obsoletes: 2068 J. Gettys
Category: Standards Track Compaq/W3C
J. Mogul
Compaq
H. Frystyk
W3C/MIT
L. Masinter
Xerox
P. Leach
Microsoft
T. Berners-Lee
W3C/MIT
June 1999
Hypertext Transfer Protocol -- HTTP/1.1
Status of this Memo
This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (1999). All Rights Reserved.
Abstract
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. It is a generic, stateless, protocol which can be used for
many tasks beyond its use for hypertext, such as name servers and
distributed object management systems, through extension of its
request methods, error codes and headers [47]. A feature of HTTP is
the typing and negotiation of data representation, allowing systems
to be built independently of the data being transferred.
HTTP has been in use by the World-Wide Web global information
initiative since 1990. This specification defines the protocol
referred to as "HTTP/1.1", and is an update to RFC 2068 [33].
Fielding, et al. Standards Track [Page 1]
RFC 2616 HTTP/1.1 June 1999
Table of Contents
1 Introduction ...................................................7
1.1 Purpose......................................................7
1.2 Requirements .................................................8
1.3 Terminology ..................................................8
1.4 Overall Operation ...........................................12
2 Notational Conventions and Generic Grammar ....................14
2.1 Augmented BNF ...............................................14
2.2 Basic Rules .................................................15
3 Protocol Parameters ...........................................17
3.1 HTTP Version ................................................17
3.2 Uniform Resource Identifiers ................................18
3.2.1 General Syntax ...........................................19
3.2.2 http URL .................................................19
3.2.3 URI Comparison ...........................................20
3.3 Date/Time Formats ...........................................20
3.3.1 Full Date ................................................20
3.3.2 Delta Seconds ............................................21
3.4 Character Sets ..............................................21
3.4.1 Missing Charset ..........................................22
3.5 Content Codings .............................................23
3.6 Transfer Codings ............................................24
3.6.1 Chunked Transfer Coding ..................................25
3.7 Media Types .................................................26
3.7.1 Canonicalization and Text Defaults .......................27
3.7.2 Multipart Types ..........................................27
3.8 Product Tokens ..............................................28
3.9 Quality Values ..............................................29
3.10 Language Tags ...............................................29
3.11 Entity Tags .................................................30
3.12 Range Units .................................................30
4 HTTP Message ..................................................31
4.1 Message Types ...............................................31
4.2 Message Headers .............................................31
4.3 Message Body ................................................32
4.4 Message Length ..............................................33
4.5 General Header Fields .......................................34
5 Request .......................................................35
5.1 Request-Line ................................................35
5.1.1 Method ...................................................36
5.1.2 Request-URI ..............................................36
5.2 The Resource Identified by a Request ........................38
5.3 Request Header Fields .......................................38
6 Response ......................................................39
6.1 Status-Line .................................................39
6.1.1 Status Code and Reason Phrase ............................39
6.2 Response Header Fields ......................................41
Fielding, et al. Standards Track [Page 2]
RFC 2616 HTTP/1.1 June 1999
7 Entity ........................................................42
7.1 Entity Header Fields ........................................42
7.2 Entity Body .................................................43
7.2.1 Type .....................................................43
7.2.2 Entity Length ............................................43
8 Connections ...................................................44
8.1 Persistent Connections ......................................44
8.1.1 Purpose ..................................................44
8.1.2 Overall Operation ........................................45
8.1.3 Proxy Servers ............................................46
8.1.4 Practical Considerations .................................46
8.2 Message Transmission Requirements ...........................47
8.2.1 Persistent Connections and Flow Control ..................47
8.2.2 Monitoring Connections for Error Status Messages .........48
8.2.3 Use of the 100 (Continue) Status .........................48
8.2.4 Client Behavior if Server Prematurely Closes Connection ..50
9 Method Definitions ............................................51
9.1 Safe and Idempotent Methods .................................51
9.1.1 Safe Methods .............................................51
9.1.2 Idempotent Methods .......................................51
9.2 OPTIONS .....................................................52
9.3 GET .........................................................53
9.4 HEAD ........................................................54
9.5 POST ........................................................54
9.6 PUT .........................................................55
9.7 DELETE ......................................................56
9.8 TRACE .......................................................56
9.9 CONNECT .....................................................57
10 Status Code Definitions ......................................57
10.1 Informational 1xx ...........................................57
10.1.1 100 Continue .............................................58
10.1.2 101 Switching Protocols ..................................58
10.2 Successful 2xx ..............................................58
10.2.1 200 OK ...................................................58
10.2.2 201 Created ..............................................59
10.2.3 202 Accepted .............................................59
10.2.4 203 Non-Authoritative Information ........................59
10.2.5 204 No Content ...........................................60
10.2.6 205 Reset Content ........................................60
10.2.7 206 Partial Content ......................................60
10.3 Redirection 3xx .............................................61
10.3.1 300 Multiple Choices .....................................61
10.3.2 301 Moved Permanently ....................................62
10.3.3 302 Found ................................................62
10.3.4 303 See Other ............................................63
10.3.5 304 Not Modified .........................................63
10.3.6 305 Use Proxy ............................................64
10.3.7 306 (Unused) .............................................64
Fielding, et al. Standards Track [Page 3]
RFC 2616 HTTP/1.1 June 1999
10.3.8 307 Temporary Redirect ...................................65
10.4 Client Error 4xx ............................................65
10.4.1 400 Bad Request .........................................65
10.4.2 401 Unauthorized ........................................66
10.4.3 402 Payment Required ....................................66
10.4.4 403 Forbidden ...........................................66
10.4.5 404 Not Found ...........................................66
10.4.6 405 Method Not Allowed ..................................66
10.4.7 406 Not Acceptable ......................................67
10.4.8 407 Proxy Authentication Required .......................67
10.4.9 408 Request Timeout .....................................67
10.4.10 409 Conflict ............................................67
10.4.11 410 Gone ................................................68
10.4.12 411 Length Required .....................................68
10.4.13 412 Precondition Failed .................................68
10.4.14 413 Request Entity Too Large ............................69
10.4.15 414 Request-URI Too Long ................................69
10.4.16 415 Unsupported Media Type ..............................69
10.4.17 416 Requested Range Not Satisfiable .....................69
10.4.18 417 Expectation Failed ..................................70
10.5 Server Error 5xx ............................................70
10.5.1 500 Internal Server Error ................................70
10.5.2 501 Not Implemented ......................................70
10.5.3 502 Bad Gateway ..........................................70
10.5.4 503 Service Unavailable ..................................70
10.5.5 504 Gateway Timeout ......................................71
10.5.6 505 HTTP Version Not Supported ...........................71
11 Access Authentication ........................................71
12 Content Negotiation ..........................................71
12.1 Server-driven Negotiation ...................................72
12.2 Agent-driven Negotiation ....................................73
12.3 Transparent Negotiation .....................................74
13 Caching in HTTP ..............................................74
13.1.1 Cache Correctness ........................................75
13.1.2 Warnings .................................................76
13.1.3 Cache-control Mechanisms .................................77
13.1.4 Explicit User Agent Warnings .............................78
13.1.5 Exceptions to the Rules and Warnings .....................78
13.1.6 Client-controlled Behavior ...............................79
13.2 Expiration Model ............................................79
13.2.1 Server-Specified Expiration ..............................79
13.2.2 Heuristic Expiration .....................................80
13.2.3 Age Calculations .........................................80
13.2.4 Expiration Calculations ..................................83
13.2.5 Disambiguating Expiration Values .........................84
13.2.6 Disambiguating Multiple Responses ........................84
13.3 Validation Model ............................................85
13.3.1 Last-Modified Dates ......................................86
Fielding, et al. Standards Track [Page 4]
RFC 2616 HTTP/1.1 June 1999
13.3.2 Entity Tag Cache Validators ..............................86
13.3.3 Weak and Strong Validators ...............................86
13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates.89
13.3.5 Non-validating Conditionals ..............................90
13.4 Response Cacheability .......................................91
13.5 Constructing Responses From Caches ..........................92
13.5.1 End-to-end and Hop-by-hop Headers ........................92
13.5.2 Non-modifiable Headers ...................................92
13.5.3 Combining Headers ........................................94
13.5.4 Combining Byte Ranges ....................................95
13.6 Caching Negotiated Responses ................................95
13.7 Shared and Non-Shared Caches ................................96
13.8 Errors or Incomplete Response Cache Behavior ................97
13.9 Side Effects of GET and HEAD ................................97
13.10 Invalidation After Updates or Deletions ...................97
13.11 Write-Through Mandatory ...................................98
13.12 Cache Replacement .........................................99
13.13 History Lists .............................................99
14 Header Field Definitions ....................................100
14.1 Accept .....................................................100
14.2 Accept-Charset .............................................102
14.3 Accept-Encoding ............................................102
14.4 Accept-Language ............................................104
14.5 Accept-Ranges ..............................................105
14.6 Age ........................................................106
14.7 Allow ......................................................106
14.8 Authorization ..............................................107
14.9 Cache-Control ..............................................108
14.9.1 What is Cacheable .......................................109
14.9.2 What May be Stored by Caches ............................110
14.9.3 Modifications of the Basic Expiration Mechanism .........111
14.9.4 Cache Revalidation and Reload Controls ..................113
14.9.5 No-Transform Directive ..................................115
14.9.6 Cache Control Extensions ................................116
14.10 Connection ...............................................117
14.11 Content-Encoding .........................................118
14.12 Content-Language .........................................118
14.13 Content-Length ...........................................119
14.14 Content-Location .........................................120
14.15 Content-MD5 ..............................................121
14.16 Content-Range ............................................122
14.17 Content-Type .............................................124
14.18 Date .....................................................124
14.18.1 Clockless Origin Server Operation ......................125
14.19 ETag .....................................................126
14.20 Expect ...................................................126
14.21 Expires ..................................................127
14.22 From .....................................................128
Fielding, et al. Standards Track [Page 5]
RFC 2616 HTTP/1.1 June 1999
14.23 Host .....................................................128
14.24 If-Match .................................................129
14.25 If-Modified-Since ........................................130
14.26 If-None-Match ............................................132
14.27 If-Range .................................................133
14.28 If-Unmodified-Since ......................................134
14.29 Last-Modified ............................................134
14.30 Location .................................................135
14.31 Max-Forwards .............................................136
14.32 Pragma ...................................................136
14.33 Proxy-Authenticate .......................................137
14.34 Proxy-Authorization ......................................137
14.35 Range ....................................................138
14.35.1 Byte Ranges ...........................................138
14.35.2 Range Retrieval Requests ..............................139
14.36 Referer ..................................................140
14.37 Retry-After ..............................................141
14.38 Server ...................................................141
14.39 TE .......................................................142
14.40 Trailer ..................................................143
14.41 Transfer-Encoding..........................................143
14.42 Upgrade ..................................................144
14.43 User-Agent ...............................................145
14.44 Vary .....................................................145
14.45 Via ......................................................146
14.46 Warning ..................................................148
14.47 WWW-Authenticate .........................................150
15 Security Considerations .......................................150
15.1 Personal Information....................................151
15.1.1 Abuse of Server Log Information .........................151
15.1.2 Transfer of Sensitive Information .......................151
15.1.3 Encoding Sensitive Information in URI's .................152
15.1.4 Privacy Issues Connected to Accept Headers ..............152
15.2 Attacks Based On File and Path Names .......................153
15.3 DNS Spoofing ...............................................154
15.4 Location Headers and Spoofing ..............................154
15.5 Content-Disposition Issues .................................154
15.6 Authentication Credentials and Idle Clients ................155
15.7 Proxies and Caching ........................................155
15.7.1 Denial of Service Attacks on Proxies....................156
16 Acknowledgments .............................................156
17 References ..................................................158
18 Authors' Addresses ..........................................162
19 Appendices ..................................................164
19.1 Internet Media Type message/http and application/http ......164
19.2 Internet Media Type multipart/byteranges ...................165
19.3 Tolerant Applications ......................................166
19.4 Differences Between HTTP Entities and RFC 2045 Entities ....167
Fielding, et al. Standards Track [Page 6]
RFC 2616 HTTP/1.1 June 1999
19.4.1 MIME-Version ............................................167
19.4.2 Conversion to Canonical Form ............................167
19.4.3 Conversion of Date Formats ..............................168
19.4.4 Introduction of Content-Encoding ........................168
19.4.5 No Content-Transfer-Encoding ............................168
19.4.6 Introduction of Transfer-Encoding .......................169
19.4.7 MHTML and Line Length Limitations .......................169
19.5 Additional Features ........................................169
19.5.1 Content-Disposition .....................................170
19.6 Compatibility with Previous Versions .......................170
19.6.1 Changes from HTTP/1.0 ...................................171
19.6.2 Compatibility with HTTP/1.0 Persistent Connections ......172
19.6.3 Changes from RFC 2068 ...................................172
20 Index .......................................................175
21 Full Copyright Statement ....................................176
1 Introduction
1.1 Purpose
The Hypertext Transfer Protocol (HTTP) is an application-level
protocol for distributed, collaborative, hypermedia information
systems. HTTP has been in use by the World-Wide Web global
information initiative since 1990. The first version of HTTP,
referred to as HTTP/0.9, was a simple protocol for raw data transfer
across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved
the protocol by allowing messages to be in the format of MIME-like
messages, containing metainformation about the data transferred and
modifiers on the request/response semantics. However, HTTP/1.0 does
not sufficiently take into consideration the effects of hierarchical
proxies, caching, the need for persistent connections, or virtual
hosts. In addition, the proliferation of incompletely-implemented
applications calling themselves "HTTP/1.0" has necessitated a
protocol version change in order for two communicating applications
to determine each other's true capabilities.
This specification defines the protocol referred to as "HTTP/1.1".
This protocol includes more stringent requirements than HTTP/1.0 in
order to ensure reliable implementation of its features.
Practical information systems require more functionality than simple
retrieval, including search, front-end update, and annotation. HTTP
allows an open-ended set of methods and headers that indicate the
purpose of a request [47]. It builds on the discipline of reference
provided by the Uniform Resource Identifier (URI) [3], as a location
(URL) [4] or name (URN) [20], for indicating the resource to which a
Fielding, et al. Standards Track [Page 7]
RFC 2616 HTTP/1.1 June 1999
method is to be applied. Messages are passed in a format similar to
that used by Internet mail [9] as defined by the Multipurpose
Internet Mail Extensions (MIME) [7].
HTTP is also used as a generic protocol for communication between
user agents and proxies/gateways to other Internet systems, including
those supported by the SMTP [16], NNTP [13], FTP [18], Gopher [2],
and WAIS [10] protocols. In this way, HTTP allows basic hypermedia
access to resources available from diverse applications.
1.2 Requirements
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [34].
An implementation is not compliant if it fails to satisfy one or more
of the MUST or REQUIRED level requirements for the protocols it
implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocols is said
to be "unconditionally compliant"; one that satisfies all the MUST
level requirements but not all the SHOULD level requirements for its
protocols is said to be "conditionally compliant."
1.3 Terminology
This specification uses a number of terms to refer to the roles
played by participants in, and objects of, the HTTP communication.
connection
A transport layer virtual circuit established between two programs
for the purpose of communication.
message
The basic unit of HTTP communication, consisting of a structured
sequence of octets matching the syntax defined in section 4 and
transmitted via the connection.
request
An HTTP request message, as defined in section 5.
response
An HTTP response message, as defined in section 6.
Fielding, et al. Standards Track [Page 8]
RFC 2616 HTTP/1.1 June 1999
resource
A network data object or service that can be identified by a URI,
as defined in section 3.2. Resources may be available in multiple
representations (e.g. multiple languages, data formats, size, and
resolutions) or vary in other ways.
entity
The information transferred as the payload of a request or
response. An entity consists of metainformation in the form of
entity-header fields and content in the form of an entity-body, as
described in section 7.
representation
An entity included with a response that is subject to content
negotiation, as described in section 12. There may exist multiple
representations associated with a particular response status.
content negotiation
The mechanism for selecting the appropriate representation when
servicing a request, as described in section 12. The
representation of entities in any response can be negotiated
(including error responses).
variant
A resource may have one, or more than one, representation(s)
associated with it at any given instant. Each of these
representations is termed a `varriant'. Use of the term `variant'
does not necessarily imply that the resource is subject to content
negotiation.
client
A program that establishes connections for the purpose of sending
requests.
user agent
The client which initiates a request. These are often browsers,
editors, spiders (web-traversing robots), or other end user tools.
server
An application program that accepts connections in order to
service requests by sending back responses. Any given program may
be capable of being both a client and a server; our use of these
terms refers only to the role being performed by the program for a
particular connection, rather than to the program's capabilities
in general. Likewise, any server may act as an origin server,
proxy, gateway, or tunnel, switching behavior based on the nature
of each request.
Fielding, et al. Standards Track [Page 9]
RFC 2616 HTTP/1.1 June 1999
origin server
The server on which a given resource resides or is to be created.
proxy
An intermediary program which acts as both a server and a client
for the purpose of making requests on behalf of other clients.
Requests are serviced internally or by passing them on, with
possible translation, to other servers. A proxy MUST implement
both the client and server requirements of this specification. A
"transparent proxy" is a proxy that does not modify the request or
response beyond what is required for proxy authentication and
identification. A "non-transparent proxy" is a proxy that modifies
the request or response in order to provide some added service to
the user agent, such as group annotation services, media type
transformation, protocol reduction, or anonymity filtering. Except
where either transparent or non-transparent behavior is explicitly
stated, the HTTP proxy requirements apply to both types of
proxies.
gateway
A server which acts as an intermediary for some other server.
Unlike a proxy, a gateway receives requests as if it were the
origin server for the requested resource; the requesting client
may not be aware that it is communicating with a gateway.
tunnel
An intermediary program which is acting as a blind relay between
two connections. Once active, a tunnel is not considered a party
to the HTTP communication, though the tunnel may have been
initiated by an HTTP request. The tunnel ceases to exist when both
ends of the relayed connections are closed.
cache
A program's local store of response messages and the subsystem
that controls its message storage, retrieval, and deletion. A
cache stores cacheable responses in order to reduce the response
time and network bandwidth consumption on future, equivalent
requests. Any client or server may include a cache, though a cache
cannot be used by a server that is acting as a tunnel.
cacheable
A response is cacheable if a cache is allowed to store a copy of
the response message for use in answering subsequent requests. The
rules for determining the cacheability of HTTP responses are
defined in section 13. Even if a resource is cacheable, there may
be additional constraints on whether a cache can use the cached
copy for a particular request.
Fielding, et al. Standards Track [Page 10]
RFC 2616 HTTP/1.1 June 1999
first-hand
A response is first-hand if it comes directly and without
unnecessary delay from the origin server, perhaps via one or more
proxies. A response is also first-hand if its validity has just
been checked directly with the origin server.
explicit expiration time
The time at which the origin server intends that an entity should
no longer be returned by a cache without further validation.
heuristic expiration time
An expiration time assigned by a cache when no explicit expiration
time is available.
age
The age of a response is the time since it was sent by, or
successfully validated with, the origin server.
freshness lifetime
The length of time between the generation of a response and its
expiration time.
fresh
A response is fresh if its age has not yet exceeded its freshness
lifetime.
stale
A response is stale if its age has passed its freshness lifetime.
semantically transparent
A cache behaves in a "semantically transparent" manner, with
respect to a particular response, when its use affects neither the
requesting client nor the origin server, except to improve
performance. When a cache is semantically transparent, the client
receives exactly the same response (except for hop-by-hop headers)
that it would have received had its request been handled directly
by the origin server.
validator
A protocol element (e.g., an entity tag or a Last-Modified time)
that is used to find out whether a cache entry is an equivalent
copy of an entity.
upstream/downstream
Upstream and downstream describe the flow of a message: all
messages flow from upstream to downstream.
Fielding, et al. Standards Track [Page 11]
RFC 2616 HTTP/1.1 June 1999
inbound/outbound
Inbound and outbound refer to the request and response paths for
messages: "inbound" means "traveling toward the origin server",
and "outbound" means "traveling toward the user agent"
1.4 Overall Operation
The HTTP protocol is a request/response protocol. A client sends a
request to the server in the form of a request method, URI, and
protocol version, followed by a MIME-like message containing request
modifiers, client information, and possible body content over a
connection with a server. The server responds with a status line,
including the message's protocol version and a success or error code,
followed by a MIME-like message containing server information, entity
metainformation, and possible entity-body content. The relationship
between HTTP and MIME is described in appendix 19.4.
Most HTTP communication is initiated by a user agent and consists of
a request to be applied to a resource on some origin server. In the
simplest case, this may be accomplished via a single connection (v)
between the user agent (UA) and the origin server (O).
request chain ------------------------>
UA -------------------v------------------- O
<----------------------- response chain
A more complicated situation occurs when one or more intermediaries
are present in the request/response chain. There are three common
forms of intermediary: proxy, gateway, and tunnel. A proxy is a
forwarding agent, receiving requests for a URI in its absolute form,
rewriting all or part of the message, and forwarding the reformatted
request toward the server identified by the URI. A gateway is a
receiving agent, acting as a layer above some other server(s) and, if
necessary, translating the requests to the underlying server's
protocol. A tunnel acts as a relay point between two connections
without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as a
firewall) even when the intermediary cannot understand the contents
of the messages.
request chain -------------------------------------->
UA -----v----- A -----v----- B -----v----- C -----v----- O
<------------------------------------- response chain
The figure above shows three intermediaries (A, B, and C) between the
user agent and origin server. A request or response message that
travels the whole chain will pass through four separate connections.
This distinction is important because some HTTP communication options
Fielding, et al. Standards Track [Page 12]
RFC 2616 HTTP/1.1 June 1999
may apply only to the connection with the nearest, non-tunnel
neighbor, only to the end-points of the chain, or to all connections
along the chain. Although the diagram is linear, each participant may
be engaged in multiple, simultaneous communications. For example, B
may be receiving requests from many clients other than A, and/or
forwarding requests to servers other than C, at the same time that it
is handling A's request.
Any party to the communication which is not acting as a tunnel may
employ an internal cache for handling requests. The effect of a cache
is that the request/response chain is shortened if one of the
participants along the chain has a cached response applicable to that
request. The following illustrates the resulting chain if B has a
cached copy of an earlier response from O (via C) for a request which
has not been cached by UA or A.
request chain ---------->
UA -----v----- A -----v----- B - - - - - - C - - - - - - O
<--------- response chain
Not all responses are usefully cacheable, and some requests may
contain modifiers which place special requirements on cache behavior.
HTTP requirements for cache behavior and cacheable responses are
defined in section 13.
In fact, there are a wide variety of architectures and configurations
of caches and proxies currently being experimented with or deployed
across the World Wide Web. These systems include national hierarchies
of proxy caches to save transoceanic bandwidth, systems that
broadcast or multicast cache entries, organizations that distribute
subsets of cached data via CD-ROM, and so on. HTTP systems are used
in corporate intranets over high-bandwidth links, and for access via
PDAs with low-power radio links and intermittent connectivity. The
goal of HTTP/1.1 is to support the wide diversity of configurations
already deployed while introducing protocol constructs that meet the
needs of those who build web applications that require high
reliability and, failing that, at least reliable indications of
failure.
HTTP communication usually takes place over TCP/IP connections. The
default port is TCP 80 [19], but other ports can be used. This does
not preclude HTTP from being implemented on top of any other protocol
on the Internet, or on other networks. HTTP only presumes a reliable
transport; any protocol that provides such guarantees can be used;
the mapping of the HTTP/1.1 request and response structures onto the
transport data units of the protocol in question is outside the scope
of this specification.
Fielding, et al. Standards Track [Page 13]
RFC 2616 HTTP/1.1 June 1999
In HTTP/1.0, most implementations used a new connection for each
request/response exchange. In HTTP/1.1, a connection may be used for
one or more request/response exchanges, although connections may be
closed for a variety of reasons (see section 8.1).
2 Notational Conventions and Generic Grammar
2.1 Augmented BNF
All of the mechanisms specified in this document are described in
both prose and an augmented Backus-Naur Form (BNF) similar to that
used by RFC 822 [9]. Implementors will need to be familiar with the
notation in order to understand this specification. The augmented BNF
includes the following constructs:
name = definition
The name of a rule is simply the name itself (without any
enclosing "<" and ">") and is separated from its definition by the
equal "=" character. White space is only significant in that
indentation of continuation lines is used to indicate a rule
definition that spans more than one line. Certain basic rules are
in uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle
brackets are used within definitions whenever their presence will
facilitate discerning the use of rule names.
"literal"
Quotation marks surround literal text. Unless stated otherwise,
the text is case-insensitive.
rule1 | rule2
Elements separated by a bar ("|") are alternatives, e.g., "yes |
no" will accept yes or no.
(rule1 rule2)
Elements enclosed in parentheses are treated as a single element.
Thus, "(elem (foo | bar) elem)" allows the token sequences "elem
foo elem" and "elem bar elem".
*rule
The character "*" preceding an element indicates repetition. The
full form is "<n>*<m>element" indicating at least <n> and at most
<m> occurrences of element. Default values are 0 and infinity so
that "*(element)" allows any number, including zero; "1*element"
requires at least one; and "1*2element" allows one or two.
[rule]
Square brackets enclose optional elements; "[foo bar]" is
equivalent to "*1(foo bar)".
Fielding, et al. Standards Track [Page 14]
RFC 2616 HTTP/1.1 June 1999
N rule
Specific repetition: "<n>(element)" is equivalent to
"<n>*<n>(element)"; that is, exactly <n> occurrences of (element).
Thus 2DIGIT is a 2-digit number, and 3ALPHA is a string of three
alphabetic characters.
#rule
A construct "#" is defined, similar to "*", for defining lists of
elements. The full form is "<n>#<m>element" indicating at least
<n> and at most <m> elements, each separated by one or more commas
(",") and OPTIONAL linear white space (LWS). This makes the usual
form of lists very easy; a rule such as
( *LWS element *( *LWS "," *LWS element ))
can be shown as
1#element
Wherever this construct is used, null elements are allowed, but do
not contribute to the count of elements present. That is,
"(element), , (element) " is permitted, but counts as only two
elements. Therefore, where at least one element is required, at
least one non-null element MUST be present. Default values are 0
and infinity so that "#element" allows any number, including zero;
"1#element" requires at least one; and "1#2element" allows one or
two.
; comment
A semi-colon, set off some distance to the right of rule text,
starts a comment that continues to the end of line. This is a
simple way of including useful notes in parallel with the
specifications.
implied *LWS
The grammar described by this specification is word-based. Except
where noted otherwise, linear white space (LWS) can be included
between any two adjacent words (token or quoted-string), and
between adjacent words and separators, without changing the
interpretation of a field. At least one delimiter (LWS and/or
separators) MUST exist between any two tokens (for the definition
of "token" below), since they would otherwise be interpreted as a
single token.
2.2 Basic Rules
The following rules are used throughout this specification to
describe basic parsing constructs. The US-ASCII coded character set
is defined by ANSI X3.4-1986 [21].
Fielding, et al. Standards Track [Page 15]
RFC 2616 HTTP/1.1 June 1999
OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCII character (octets 0 - 127)>
UPALPHA = <any US-ASCII uppercase letter "A".."Z">
LOALPHA = <any US-ASCII lowercase letter "a".."z">
ALPHA = UPALPHA | LOALPHA
DIGIT = <any US-ASCII digit "0".."9">
CTL = <any US-ASCII control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCII CR, carriage return (13)>
LF = <US-ASCII LF, linefeed (10)>
SP = <US-ASCII SP, space (32)>
HT = <US-ASCII HT, horizontal-tab (9)>
<"> = <US-ASCII double-quote mark (34)>
HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all
protocol elements except the entity-body (see appendix 19.3 for
tolerant applications). The end-of-line marker within an entity-body
is defined by its associated media type, as described in section 3.7.
CRLF = CR LF
HTTP/1.1 header field values can be folded onto multiple lines if the
continuation line begins with a space or horizontal tab. All linear
white space, including folding, has the same semantics as SP. A
recipient MAY replace any linear white space with a single SP before
interpreting the field value or forwarding the message downstream.
LWS = [CRLF] 1*( SP | HT )
The TEXT rule is only used for descriptive field contents and values
that are not intended to be interpreted by the message parser. Words
of *TEXT MAY contain characters from character sets other than ISO-
8859-1 [22] only when encoded according to the rules of RFC 2047
[14].
TEXT = <any OCTET except CTLs,
but including LWS>
A CRLF is allowed in the definition of TEXT only as part of a header
field continuation. It is expected that the folding LWS will be
replaced with a single SP before interpretation of the TEXT value.
Hexadecimal numeric characters are used in several protocol elements.
HEX = "A" | "B" | "C" | "D" | "E" | "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DIGIT
Fielding, et al. Standards Track [Page 16]
RFC 2616 HTTP/1.1 June 1999
Many HTTP/1.1 header field values consist of words separated by LWS
or special characters. These special characters MUST be in a quoted
string to be used within a parameter value (as defined in section
3.6).
token = 1*<any CHAR except CTLs or separators>
separators = "(" | ")" | "<" | ">" | "@"
| "," | ";" | ":" | "\" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT
Comments can be included in some HTTP header fields by surrounding
the comment text with parentheses. Comments are only allowed in
fields containing "comment" as part of their field value definition.
In all other fields, parentheses are considered part of the field
value.
comment = "(" *( ctext | quoted-pair | comment ) ")"
ctext = <any TEXT excluding "(" and ")">
A string of text is parsed as a single word if it is quoted using
double-quote marks.
quoted-string = ( <"> *(qdtext | quoted-pair ) <"> )
qdtext = <any TEXT except <">>
The backslash character ("\") MAY be used as a single-character
quoting mechanism only within quoted-string and comment constructs.
quoted-pair = "\" CHAR
3 Protocol Parameters
3.1 HTTP Version
HTTP uses a "<major>.<minor>" numbering scheme to indicate versions
of the protocol. The protocol versioning policy is intended to allow
the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features
obtained via that communication. No change is made to the version
number for the addition of message components which do not affect
communication behavior or which only add to extensible field values.
The <minor> number is incremented when the changes made to the
protocol add features which do not change the general message parsing
algorithm, but which may add to the message semantics and imply
additional capabilities of the sender. The <major> number is
incremented when the format of a message within the protocol is
changed. See RFC 2145 [36] for a fuller explanation.
Fielding, et al. Standards Track [Page 17]
RFC 2616 HTTP/1.1 June 1999
The version of an HTTP message is indicated by an HTTP-Version field
in the first line of the message.
HTTP-Version = "HTTP" "/" 1*DIGIT "." 1*DIGIT
Note that the major and minor numbers MUST be treated as separate
integers and that each MAY be incremented higher than a single digit.
Thus, HTTP/2.4 is a lower version than HTTP/2.13, which in turn is
lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and
MUST NOT be sent.
An application that sends a request or response message that includes
HTTP-Version of "HTTP/1.1" MUST be at least conditionally compliant
with this specification. Applications that are at least conditionally
compliant with this specification SHOULD use an HTTP-Version of
"HTTP/1.1" in their messages, and MUST do so for any message that is
not compatible with HTTP/1.0. For more details on when to send
specific HTTP-Version values, see RFC 2145 [36].
The HTTP version of an application is the highest HTTP version for
which the application is at least conditionally compliant.
Proxy and gateway applications need to be careful when forwarding
messages in protocol versions different from that of the application.
Since the protocol version indicates the protocol capability of the
sender, a proxy/gateway MUST NOT send a message with a version
indicator which is greater than its actual version. If a higher
version request is received, the proxy/gateway MUST either downgrade
the request version, or respond with an error, or switch to tunnel
behavior.
Due to interoperability problems with HTTP/1.0 proxies discovered
since the publication of RFC 2068[33], caching proxies MUST, gateways
MAY, and tunnels MUST NOT upgrade the request to the highest version
they support. The proxy/gateway's response to that request MUST be in
the same major version as the request.
Note: Converting between versions of HTTP may involve modification
of header fields required or forbidden by the versions involved.
3.2 Uniform Resource Identifiers
URIs have been known by many names: WWW addresses, Universal Document
Identifiers, Universal Resource Identifiers [3], and finally the
combination of Uniform Resource Locators (URL) [4] and Names (URN)
[20]. As far as HTTP is concerned, Uniform Resource Identifiers are
simply formatted strings which identify--via name, location, or any
other characteristic--a resource.
Fielding, et al. Standards Track [Page 18]
RFC 2616 HTTP/1.1 June 1999
3.2.1 General Syntax
URIs in HTTP can be represented in absolute form or relative to some
known base URI [11], depending upon the context of their use. The two
forms are differentiated by the fact that absolute URIs always begin
with a scheme name followed by a colon. For definitive information on
URL syntax and semantics, see "Uniform Resource Identifiers (URI):
Generic Syntax and Semantics," RFC 2396 [42] (which replaces RFCs
1738 [4] and RFC 1808 [11]). This specification adopts the
definitions of "URI-reference", "absoluteURI", "relativeURI", "port",
"host","abs_path", "rel_path", and "authority" from that
specification.
The HTTP protocol does not place any a priori limit on the length of
a URI. Servers MUST be able to handle the URI of any resource they
serve, and SHOULD be able to handle URIs of unbounded length if they
provide GET-based forms that could generate such URIs. A server
SHOULD return 414 (Request-URI Too Long) status if a URI is longer
than the server can handle (see section 10.4.15).
Note: Servers ought to be cautious about depending on URI lengths
above 255 bytes, because some older client or proxy
implementations might not properly support these lengths.
3.2.2 http URL
The "http" scheme is used to locate network resources via the HTTP
protocol. This section defines the scheme-specific syntax and
semantics for http URLs.
http_URL = "http:" "//" host [ ":" port ] [ abs_path [ "?" query ]]
If the port is empty or not given, port 80 is assumed. The semantics
are that the identified resource is located at the server listening
for TCP connections on that port of that host, and the Request-URI
for the resource is abs_path (section 5.1.2). The use of IP addresses
in URLs SHOULD be avoided whenever possible (see RFC 1900 [24]). If
the abs_path is not present in the URL, it MUST be given as "/" when
used as a Request-URI for a resource (section 5.1.2). If a proxy
receives a host name which is not a fully qualified domain name, it
MAY add its domain to the host name it received. If a proxy receives
a fully qualified domain name, the proxy MUST NOT change the host
name.
Fielding, et al. Standards Track [Page 19]
RFC 2616 HTTP/1.1 June 1999
3.2.3 URI Comparison
When comparing two URIs to decide if they match or not, a client
SHOULD use a case-sensitive octet-by-octet comparison of the entire
URIs, with these exceptions:
- A port that is empty or not given is equivalent to the default
port for that URI-reference;
- Comparisons of host names MUST be case-insensitive;
- Comparisons of scheme names MUST be case-insensitive;
- An empty abs_path is equivalent to an abs_path of "/".
Characters other than those in the "reserved" and "unsafe" sets (see
RFC 2396 [42]) are equivalent to their ""%" HEX HEX" encoding.
For example, the following three URIs are equivalent:
http://abc.com:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7esmith/home.html
3.3 Date/Time Formats
3.3.1 Full Date
HTTP applications have historically allowed three different formats
for the representation of date/time stamps:
Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format
The first format is preferred as an Internet standard and represents
a fixed-length subset of that defined by RFC 1123 [8] (an update to
RFC 822 [9]). The second format is in common use, but is based on the
obsolete RFC 850 [12] date format and lacks a four-digit year.
HTTP/1.1 clients and servers that parse the date value MUST accept
all three formats (for compatibility with HTTP/1.0), though they MUST
only generate the RFC 1123 format for representing HTTP-date values
in header fields. See section 19.3 for further information.
Note: Recipients of date values are encouraged to be robust in
accepting date values that may have been sent by non-HTTP
applications, as is sometimes the case when retrieving or posting
messages via proxies/gateways to SMTP or NNTP.
Fielding, et al. Standards Track [Page 20]
RFC 2616 HTTP/1.1 June 1999
All HTTP date/time stamps MUST be represented in Greenwich Mean Time
(GMT), without exception. For the purposes of HTTP, GMT is exactly
equal to UTC (Coordinated Universal Time). This is indicated in the
first two formats by the inclusion of "GMT" as the three-letter
abbreviation for time zone, and MUST be assumed when reading the
asctime format. HTTP-date is case sensitive and MUST NOT include
additional LWS beyond that specifically included as SP in the
grammar.
HTTP-date = rfc1123-date | rfc850-date | asctime-date
rfc1123-date = wkday "," SP date1 SP time SP "GMT"
rfc850-date = weekday "," SP date2 SP time SP "GMT"
asctime-date = wkday SP date3 SP time SP 4DIGIT
date1 = 2DIGIT SP month SP 4DIGIT
; day month year (e.g., 02 Jun 1982)
date2 = 2DIGIT "-" month "-" 2DIGIT
; day-month-year (e.g., 02-Jun-82)
date3 = month SP ( 2DIGIT | ( SP 1DIGIT ))
; month day (e.g., Jun 2)
time = 2DIGIT ":" 2DIGIT ":" 2DIGIT
; 00:00:00 - 23:59:59
wkday = "Mon" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"
weekday = "Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
month = "Jan" | "Feb" | "Mar" | "Apr"
| "May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Oct" | "Nov" | "Dec"
Note: HTTP requirements for the date/time stamp format apply only
to their usage within the protocol stream. Clients and servers are
not required to use these formats for user presentation, request
logging, etc.
3.3.2 Delta Seconds
Some HTTP header fields allow a time value to be specified as an
integer number of seconds, represented in decimal, after the time
that the message was received.
delta-seconds = 1*DIGIT
3.4 Character Sets
HTTP uses the same definition of the term "character set" as that
described for MIME:
Fielding, et al. Standards Track [Page 21]
RFC 2616 HTTP/1.1 June 1999
The term "character set" is used in this document to refer to a
method used with one or more tables to convert a sequence of octets
into a sequence of characters. Note that unconditional conversion in
the other direction is not required, in that not all characters may
be available in a given character set and a character set may provide
more than one sequence of octets to represent a particular character.
This definition is intended to allow various kinds of character
encoding, from simple single-table mappings such as US-ASCII to
complex table switching methods such as those that use ISO-2022's
techniques. However, the definition associated with a MIME character
set name MUST fully specify the mapping to be performed from octets
to characters. In particular, use of external profiling information
to determine the exact mapping is not permitted.
Note: This use of the term "character set" is more commonly
referred to as a "character encoding." However, since HTTP and
MIME share the same registry, it is important that the terminology
also be shared.
HTTP character sets are identified by case-insensitive tokens. The
complete set of tokens is defined by the IANA Character Set registry
[19].
charset = token
Although HTTP allows an arbitrary token to be used as a charset
value, any token that has a predefined value within the IANA
Character Set registry [19] MUST represent the character set defined
by that registry. Applications SHOULD limit their use of character
sets to those defined by the IANA registry.
Implementors should be aware of IETF character set requirements [38]
[41].
3.4.1 Missing Charset
Some HTTP/1.0 software has interpreted a Content-Type header without
charset parameter incorrectly to mean "recipient should guess."
Senders wishing to defeat this behavior MAY include a charset
parameter even when the charset is ISO-8859-1 and SHOULD do so when
it is known that it will not confuse the recipient.
Unfortunately, some older HTTP/1.0 clients did not deal properly with
an explicit charset parameter. HTTP/1.1 recipients MUST respect the
charset label provided by the sender; and those user agents that have
a provision to "guess" a charset MUST use the charset from the
Fielding, et al. Standards Track [Page 22]
RFC 2616 HTTP/1.1 June 1999
content-type field if they support that charset, rather than the
recipient's preference, when initially displaying a document. See
section 3.7.1.
3.5 Content Codings
Content coding values indicate an encoding transformation that has
been or can be applied to an entity. Content codings are primarily
used to allow a document to be compressed or otherwise usefully
transformed without losing the identity of its underlying media type
and without loss of information. Frequently, the entity is stored in
coded form, transmitted directly, and only decoded by the recipient.
content-coding = token
All content-coding values are case-insensitive. HTTP/1.1 uses
content-coding values in the Accept-Encoding (section 14.3) and
Content-Encoding (section 14.11) header fields. Although the value
describes the content-coding, what is more important is that it
indicates what decoding mechanism will be required to remove the
encoding.
The Internet Assigned Numbers Authority (IANA) acts as a registry for
content-coding value tokens. Initially, the registry contains the
following tokens:
gzip An encoding format produced by the file compression program
"gzip" (GNU zip) as described in RFC 1952 [25]. This format is a
Lempel-Ziv coding (LZ77) with a 32 bit CRC.
compress
The encoding format produced by the common UNIX file compression
program "compress". This format is an adaptive Lempel-Ziv-Welch
coding (LZW).
Use of program names for the identification of encoding formats
is not desirable and is discouraged for future encodings. Their
use here is representative of historical practice, not good
design. For compatibility with previous implementations of HTTP,
applications SHOULD consider "x-gzip" and "x-compress" to be
equivalent to "gzip" and "compress" respectively.
deflate
The "zlib" format defined in RFC 1950 [31] in combination with
the "deflate" compression mechanism described in RFC 1951 [29].
Fielding, et al. Standards Track [Page 23]
RFC 2616 HTTP/1.1 June 1999
identity
The default (identity) encoding; the use of no transformation
whatsoever. This content-coding is used only in the Accept-
Encoding header, and SHOULD NOT be used in the Content-Encoding
header.
New content-coding value tokens SHOULD be registered; to allow
interoperability between clients and servers, specifications of the
content coding algorithms needed to implement a new value SHOULD be
publicly available and adequate for independent implementation, and
conform to the purpose of content coding defined in this section.
3.6 Transfer Codings
Transfer-coding values are used to indicate an encoding
transformation that has been, can be, or may need to be applied to an
entity-body in order to ensure "safe transport" through the network.
This differs from a content coding in that the transfer-coding is a
property of the message, not of the original entity.
transfer-coding = "chunked" | transfer-extension
transfer-extension = token *( ";" parameter )
Parameters are in the form of attribute/value pairs.
parameter = attribute "=" value
attribute = token
value = token | quoted-string
All transfer-coding values are case-insensitive. HTTP/1.1 uses
transfer-coding values in the TE header field (section 14.39) and in
the Transfer-Encoding header field (section 14.41).
Whenever a transfer-coding is applied to a message-body, the set of
transfer-codings MUST include "chunked", unless the message is
terminated by closing the connection. When the "chunked" transfer-
coding is used, it MUST be the last transfer-coding applied to the
message-body. The "chunked" transfer-coding MUST NOT be applied more
than once to a message-body. These rules allow the recipient to
determine the transfer-length of the message (section 4.4).
Transfer-codings are analogous to the Content-Transfer-Encoding
values of MIME [7], which were designed to enable safe transport of
binary data over a 7-bit transport service. However, safe transport
has a different focus for an 8bit-clean transfer protocol. In HTTP,
the only unsafe characteristic of message-bodies is the difficulty in
determining the exact body length (section 7.2.2), or the desire to
encrypt data over a shared transport.
Fielding, et al. Standards Track [Page 24]
RFC 2616 HTTP/1.1 June 1999
The Internet Assigned Numbers Authority (IANA) acts as a registry for
transfer-coding value tokens. Initially, the registry contains the
following tokens: "chunked" (section 3.6.1), "identity" (section
3.6.2), "gzip" (section 3.5), "compress" (section 3.5), and "deflate"
(section 3.5).
New transfer-coding value tokens SHOULD be registered in the same way
as new content-coding value tokens (section 3.5).
A server which receives an entity-body with a transfer-coding it does
not understand SHOULD return 501 (Unimplemented), and close the
connection. A server MUST NOT send transfer-codings to an HTTP/1.0
client.
3.6.1 Chunked Transfer Coding
The chunked encoding modifies the body of a message in order to
transfer it as a series of chunks, each with its own size indicator,
followed by an OPTIONAL trailer containing entity-header fields. This
allows dynamically produced content to be transferred along with the
information necessary for the recipient to verify that it has
received the full message.
Chunked-Body = *chunk
last-chunk
trailer
CRLF
chunk = chunk-size [ chunk-extension ] CRLF
chunk-data CRLF
chunk-size = 1*HEX
last-chunk = 1*("0") [ chunk-extension ] CRLF
chunk-extension= *( ";" chunk-ext-name [ "=" chunk-ext-val ] )
chunk-ext-name = token
chunk-ext-val = token | quoted-string
chunk-data = chunk-size(OCTET)
trailer = *(entity-header CRLF)
The chunk-size field is a string of hex digits indicating the size of
the chunk. The chunked encoding is ended by any chunk whose size is
zero, followed by the trailer, which is terminated by an empty line.
The trailer allows the sender to include additional HTTP header
fields at the end of the message. The Trailer header field can be
used to indicate which header fields are included in a trailer (see
section 14.40).
Fielding, et al. Standards Track [Page 25]
RFC 2616 HTTP/1.1 June 1999
A server using chunked transfer-coding in a response MUST NOT use the
trailer for any header fields unless at least one of the following is
true:
a)the request included a TE header field that indicates "trailers" is
acceptable in the transfer-coding of the response, as described in
section 14.39; or,
b)the server is the origin server for the response, the trailer
fields consist entirely of optional metadata, and the recipient
could use the message (in a manner acceptable to the origin server)
without receiving this metadata. In other words, the origin server
is willing to accept the possibility that the trailer fields might
be silently discarded along the path to the client.
This requirement prevents an interoperability failure when the
message is being received by an HTTP/1.1 (or later) proxy and
forwarded to an HTTP/1.0 recipient. It avoids a situation where
compliance with the protocol would have necessitated a possibly
infinite buffer on the proxy.
An example process for decoding a Chunked-Body is presented in
appendix 19.4.6.
All HTTP/1.1 applications MUST be able to receive and decode the
"chunked" transfer-coding, and MUST ignore chunk-extension extensions
they do not understand.
3.7 Media Types
HTTP uses Internet Media Types [17] in the Content-Type (section
14.17) and Accept (section 14.1) header fields in order to provide
open and extensible data typing and type negotiation.
media-type = type "/" subtype *( ";" parameter )
type = token
subtype = token
Parameters MAY follow the type/subtype in the form of attribute/value
pairs (as defined in section 3.6).
The type, subtype, and parameter attribute names are case-
insensitive. Parameter values might or might not be case-sensitive,
depending on the semantics of the parameter name. Linear white space
(LWS) MUST NOT be used between the type and subtype, nor between an
attribute and its value. The presence or absence of a parameter might
be significant to the processing of a media-type, depending on its
definition within the media type registry.
Fielding, et al. Standards Track [Page 26]
RFC 2616 HTTP/1.1 June 1999
Note that some older HTTP applications do not recognize media type
parameters. When sending data to older HTTP applications,
implementations SHOULD only use media type parameters when they are
required by that type/subtype definition.
Media-type values are registered with the Internet Assigned Number
Authority (IANA [19]). The media type registration process is
outlined in RFC 1590 [17]. Use of non-registered media types is
discouraged.
3.7.1 Canonicalization and Text Defaults
Internet media types are registered with a canonical form. An
entity-body transferred via HTTP messages MUST be represented in the
appropriate canonical form prior to its transmission except for
"text" types, as defined in the next paragraph.
When in canonical form, media subtypes of the "text" type use CRLF as
the text line break. HTTP relaxes this requirement and allows the
transport of text media with plain CR or LF alone representing a line
break when it is done consistently for an entire entity-body. HTTP
applications MUST accept CRLF, bare CR, and bare LF as being
representative of a line break in text media received via HTTP. In
addition, if the text is represented in a character set that does not
use octets 13 and 10 for CR and LF respectively, as is the case for
some multi-byte character sets, HTTP allows the use of whatever octet
sequences are defined by that character set to represent the
equivalent of CR and LF for line breaks. This flexibility regarding
line breaks applies only to text media in the entity-body; a bare CR
or LF MUST NOT be substituted for CRLF within any of the HTTP control
structures (such as header fields and multipart boundaries).
If an entity-body is encoded with a content-coding, the underlying
data MUST be in a form defined above prior to being encoded.
The "charset" parameter is used with some media types to define the
character set (section 3.4) of the data. When no explicit charset
parameter is provided by the sender, media subtypes of the "text"
type are defined to have a default charset value of "ISO-8859-1" when
received via HTTP. Data in character sets other than "ISO-8859-1" or
its subsets MUST be labeled with an appropriate charset value. See
section 3.4.1 for compatibility problems.
3.7.2 Multipart Types
MIME provides for a number of "multipart" types -- encapsulations of
one or more entities within a single message-body. All multipart
types share a common syntax, as defined in section 5.1.1 of RFC 2046
Fielding, et al. Standards Track [Page 27]
RFC 2616 HTTP/1.1 June 1999
[40], and MUST include a boundary parameter as part of the media type
value. The message body is itself a protocol element and MUST
therefore use only CRLF to represent line breaks between body-parts.
Unlike in RFC 2046, the epilogue of any multipart message MUST be
empty; HTTP applications MUST NOT transmit the epilogue (even if the
original multipart contains an epilogue). These restrictions exist in
order to preserve the self-delimiting nature of a multipart message-
body, wherein the "end" of the message-body is indicated by the
ending multipart boundary.
In general, HTTP treats a multipart message-body no differently than
any other media type: strictly as payload. The one exception is the
"multipart/byteranges" type (appendix 19.2) when it appears in a 206
(Partial Content) response, which will be interpreted by some HTTP
caching mechanisms as described in sections 13.5.4 and 14.16. In all
other cases, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type.
The MIME header fields within each body-part of a multipart message-
body do not have any significance to HTTP beyond that defined by
their MIME semantics.
In general, an HTTP user agent SHOULD follow the same or similar
behavior as a MIME user agent would upon receipt of a multipart type.
If an application receives an unrecognized multipart subtype, the
application MUST treat it as being equivalent to "multipart/mixed".
Note: The "multipart/form-data" type has been specifically defined
for carrying form data suitable for processing via the POST
request method, as described in RFC 1867 [15].
3.8 Product Tokens
Product tokens are used to allow communicating applications to
identify themselves by software name and version. Most fields using
product tokens also allow sub-products which form a significant part
of the application to be listed, separated by white space. By
convention, the products are listed in order of their significance
for identifying the application.
product = token ["/" product-version]
product-version = token
Examples:
User-Agent: CERN-LineMode/2.15 libwww/2.17b3
Server: Apache/0.8.4
Fielding, et al. Standards Track [Page 28]
RFC 2616 HTTP/1.1 June 1999
Product tokens SHOULD be short and to the point. They MUST NOT be
used for advertising or other non-essential information. Although any
token character MAY appear in a product-version, this token SHOULD
only be used for a version identifier (i.e., successive versions of
the same product SHOULD only differ in the product-version portion of
the product value).
3.9 Quality Values
HTTP content negotiation (section 12) uses short "floating point"
numbers to indicate the relative importance ("weight") of various
negotiable parameters. A weight is normalized to a real number in
the range 0 through 1, where 0 is the minimum and 1 the maximum
value. If a parameter has a quality value of 0, then content with
this parameter is `not acceptable' for the client. HTTP/1.1
applications MUST NOT generate more than three digits after the
decimal point. User configuration of these values SHOULD also be
limited in this fashion.
qvalue = ( "0" [ "." 0*3DIGIT ] )
| ( "1" [ "." 0*3("0") ] )
"Quality values" is a misnomer, since these values merely represent
relative degradation in desired quality.
3.10 Language Tags
A language tag identifies a natural language spoken, written, or
otherwise conveyed by human beings for communication of information
to other human beings. Computer languages are explicitly excluded.
HTTP uses language tags within the Accept-Language and Content-
Language fields.
The syntax and registry of HTTP language tags is the same as that
defined by RFC 1766 [1]. In summary, a language tag is composed of 1
or more parts: A primary language tag and a possibly empty series of
subtags:
language-tag = primary-tag *( "-" subtag )
primary-tag = 1*8ALPHA
subtag = 1*8ALPHA
White space is not allowed within the tag and all tags are case-
insensitive. The name space of language tags is administered by the
IANA. Example tags include:
en, en-US, en-cockney, i-cherokee, x-pig-latin
Fielding, et al. Standards Track [Page 29]
RFC 2616 HTTP/1.1 June 1999
where any two-letter primary-tag is an ISO-639 language abbreviation
and any two-letter initial subtag is an ISO-3166 country code. (The
last three tags above are not registered tags; all but the last are
examples of tags which could be registered in future.)
3.11 Entity Tags
Entity tags are used for comparing two or more entities from the same
requested resource. HTTP/1.1 uses entity tags in the ETag (section
14.19), If-Match (section 14.24), If-None-Match (section 14.26), and
If-Range (section 14.27) header fields. The definition of how they
are used and compared as cache validators is in section 13.3.3. An
entity tag consists of an opaque quoted string, possibly prefixed by
a weakness indicator.
entity-tag = [ weak ] opaque-tag
weak = "W/"
opaque-tag = quoted-string
A "strong entity tag" MAY be shared by two entities of a resource
only if they are equivalent by octet equality.
A "weak entity tag," indicated by the "W/" prefix, MAY be shared by
two entities of a resource only if the entities are equivalent and
could be substituted for each other with no significant change in
semantics. A weak entity tag can only be used for weak comparison.
An entity tag MUST be unique across all versions of all entities
associated with a particular resource. A given entity tag value MAY
be used for entities obtained by requests on different URIs. The use
of the same entity tag value in conjunction with entities obtained by
requests on different URIs does not imply the equivalence of those
entities.
3.12 Range Units
HTTP/1.1 allows a client to request that only part (a range of) the
response entity be included within the response. HTTP/1.1 uses range
units in the Range (section 14.35) and Content-Range (section 14.16)
header fields. An entity can be broken down into subranges according
to various structural units.
range-unit = bytes-unit | other-range-unit
bytes-unit = "bytes"
other-range-unit = token
The only range unit defined by HTTP/1.1 is "bytes". HTTP/1.1
implementations MAY ignore ranges specified using other units.
Fielding, et al. Standards Track [Page 30]
RFC 2616 HTTP/1.1 June 1999
HTTP/1.1 has been designed to allow implementations of applications
that do not depend on knowledge of ranges.
4 HTTP Message
4.1 Message Types
HTTP messages consist of requests from client to server and responses
from server to client.
HTTP-message = Request | Response ; HTTP/1.1 messages
Request (section 5) and Response (section 6) messages use the generic
message format of RFC 822 [9] for transferring entities (the payload
of the message). Both types of message consist of a start-line, zero
or more header fields (also known as "headers"), an empty line (i.e.,
a line with nothing preceding the CRLF) indicating the end of the
header fields, and possibly a message-body.
generic-message = start-line
*(message-header CRLF)
CRLF
[ message-body ]
start-line = Request-Line | Status-Line
In the interest of robustness, servers SHOULD ignore any empty
line(s) received where a Request-Line is expected. In other words, if
the server is reading the protocol stream at the beginning of a
message and receives a CRLF first, it should ignore the CRLF.
Certain buggy HTTP/1.0 client implementations generate extra CRLF's
after a POST request. To restate what is explicitly forbidden by the
BNF, an HTTP/1.1 client MUST NOT preface or follow a request with an
extra CRLF.
4.2 Message Headers
HTTP header fields, which include general-header (section 4.5),
request-header (section 5.3), response-header (section 6.2), and
entity-header (section 7.1) fields, follow the same generic format as
that given in Section 3.1 of RFC 822 [9]. Each header field consists
of a name followed by a colon (":") and the field value. Field names
are case-insensitive. The field value MAY be preceded by any amount
of LWS, though a single SP is preferred. Header fields can be
extended over multiple lines by preceding each extra line with at
least one SP or HT. Applications ought to follow "common form", where
one is known or indicated, when generating HTTP constructs, since
there might exist some implementations that fail to accept anything
Fielding, et al. Standards Track [Page 31]
RFC 2616 HTTP/1.1 June 1999
beyond the common forms.
message-header = field-name ":" [ field-value ]
field-name = token
field-value = *( field-content | LWS )
field-content = <the OCTETs making up the field-value
and consisting of either *TEXT or combinations
of token, separators, and quoted-string>
The field-content does not include any leading or trailing LWS:
linear white space occurring before the first non-whitespace
character of the field-value or after the last non-whitespace
character of the field-value. Such leading or trailing LWS MAY be
removed without changing the semantics of the field value. Any LWS
that occurs between field-content MAY be replaced with a single SP
before interpreting the field value or forwarding the message
downstream.
The order in which header fields with differing field names are
received is not significant. However, it is "good practice" to send
general-header fields first, followed by request-header or response-
header fields, and ending with the entity-header fields.
Multiple message-header fields with the same field-name MAY be
present in a message if and only if the entire field-value for that
header field is defined as a comma-separated list [i.e., #(values)].
It MUST be possible to combine the multiple header fields into one
"field-name: field-value" pair, without changing the semantics of the
message, by appending each subsequent field-value to the first, each
separated by a comma. The order in which header fields with the same
field-name are received is therefore significant to the
interpretation of the combined field value, and thus a proxy MUST NOT
change the order of these field values when a message is forwarded.
4.3 Message Body
The message-body (if any) of an HTTP message is used to carry the
entity-body associated with the request or response. The message-body
differs from the entity-body only when a transfer-coding has been
applied, as indicated by the Transfer-Encoding header field (section
14.41).
message-body = entity-body
| <entity-body encoded as per Transfer-Encoding>
Transfer-Encoding MUST be used to indicate any transfer-codings
applied by an application to ensure safe and proper transfer of the
message. Transfer-Encoding is a property of the message, not of the
Fielding, et al. Standards Track [Page 32]
RFC 2616 HTTP/1.1 June 1999
entity, and thus MAY be added or removed by any application along the
request/response chain. (However, section 3.6 places restrictions on
when certain transfer-codings may be used.)
The rules for when a message-body is allowed in a message differ for
requests and responses.
The presence of a message-body in a request is signaled by the
inclusion of a Content-Length or Transfer-Encoding header field in
the request's message-headers. A message-body MUST NOT be included in
a request if the specification of the request method (section 5.1.1)
does not allow sending an entity-body in requests. A server SHOULD
read and forward a message-body on any request; if the request method
does not include defined semantics for an entity-body, then the
message-body SHOULD be ignored when handling the request.
For response messages, whether or not a message-body is included with
a message is dependent on both the request method and the response
status code (section 6.1.1). All responses to the HEAD request method
MUST NOT include a message-body, even though the presence of entity-
header fields might lead one to believe they do. All 1xx
(informational), 204 (no content), and 304 (not modified) responses
MUST NOT include a message-body. All other responses do include a
message-body, although it MAY be of zero length.
4.4 Message Length
The transfer-length of a message is the length of the message-body as
it appears in the message; that is, after any transfer-codings have
been applied. When a message-body is included with a message, the
transfer-length of that body is determined by one of the following
(in order of precedence):
1.Any response message which "MUST NOT" include a message-body (such
as the 1xx, 204, and 304 responses and any response to a HEAD
request) is always terminated by the first empty line after the
header fields, regardless of the entity-header fields present in
the message.
2.If a Transfer-Encoding header field (section 14.41) is present and
has any value other than "identity", then the transfer-length is
defined by use of the "chunked" transfer-coding (section 3.6),
unless the message is terminated by closing the connection.
3.If a Content-Length header field (section 14.13) is present, its
decimal value in OCTETs represents both the entity-length and the
transfer-length. The Content-Length header field MUST NOT be sent
if these two lengths are different (i.e., if a Transfer-Encoding
Fielding, et al. Standards Track [Page 33]
RFC 2616 HTTP/1.1 June 1999
header field is present). If a message is received with both a
Transfer-Encoding header field and a Content-Length header field,
the latter MUST be ignored.
4.If the message uses the media type "multipart/byteranges", and the
transfer-length is not otherwise specified, then this self-
delimiting media type defines the transfer-length. This media type
MUST NOT be used unless the sender knows that the recipient can parse
it; the presence in a request of a Range header with multiple byte-
range specifiers from a 1.1 client implies that the client can parse
multipart/byteranges responses.
A range header might be forwarded by a 1.0 proxy that does not
understand multipart/byteranges; in this case the server MUST
delimit the message using methods defined in items 1,3 or 5 of
this section.
5.By the server closing the connection. (Closing the connection
cannot be used to indicate the end of a request body, since that
would leave no possibility for the server to send back a response.)
For compatibility with HTTP/1.0 applications, HTTP/1.1 requests
containing a message-body MUST include a valid Content-Length header
field unless the server is known to be HTTP/1.1 compliant. If a
request contains a message-body and a Content-Length is not given,
the server SHOULD respond with 400 (bad request) if it cannot
determine the length of the message, or with 411 (length required) if
it wishes to insist on receiving a valid Content-Length.
All HTTP/1.1 applications that receive entities MUST accept the
"chunked" transfer-coding (section 3.6), thus allowing this mechanism
to be used for messages when the message length cannot be determined
in advance.
Messages MUST NOT include both a Content-Length header field and a
non-identity transfer-coding. If the message does include a non-
identity transfer-coding, the Content-Length MUST be ignored.
When a Content-Length is given in a message where a message-body is
allowed, its field value MUST exactly match the number of OCTETs in
the message-body. HTTP/1.1 user agents MUST notify the user when an
invalid length is received and detected.
4.5 General Header Fields
There are a few header fields which have general applicability for
both request and response messages, but which do not apply to the
entity being transferred. These header fields apply only to the
Fielding, et al. Standards Track [Page 34]
RFC 2616 HTTP/1.1 June 1999
message being transmitted.
general-header = Cache-Control ; Section 14.9
| Connection ; Section 14.10
| Date ; Section 14.18
| Pragma ; Section 14.32
| Trailer ; Section 14.40
| Transfer-Encoding ; Section 14.41
| Upgrade ; Section 14.42
| Via ; Section 14.45
| Warning ; Section 14.46
General-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields may be given the semantics of general
header fields if all parties in the communication recognize them to
be general-header fields. Unrecognized header fields are treated as
entity-header fields.
5 Request
A request message from a client to a server includes, within the
first line of that message, the method to be applied to the resource,
the identifier of the resource, and the protocol version in use.
Request = Request-Line ; Section 5.1
*(( general-header ; Section 4.5
| request-header ; Section 5.3
| entity-header ) CRLF) ; Section 7.1
CRLF
[ message-body ] ; Section 4.3
5.1 Request-Line
The Request-Line begins with a method token, followed by the
Request-URI and the protocol version, and ending with CRLF. The
elements are separated by SP characters. No CR or LF is allowed
except in the final CRLF sequence.
Request-Line = Method SP Request-URI SP HTTP-Version CRLF
Fielding, et al. Standards Track [Page 35]
RFC 2616 HTTP/1.1 June 1999
5.1.1 Method
The Method token indicates the method to be performed on the
resource identified by the Request-URI. The method is case-sensitive.
Method = "OPTIONS" ; Section 9.2
| "GET" ; Section 9.3
| "HEAD" ; Section 9.4
| "POST" ; Section 9.5
| "PUT" ; Section 9.6
| "DELETE" ; Section 9.7
| "TRACE" ; Section 9.8
| "CONNECT" ; Section 9.9
| extension-method
extension-method = token
The list of methods allowed by a resource can be specified in an
Allow header field (section 14.7). The return code of the response
always notifies the client whether a method is currently allowed on a
resource, since the set of allowed methods can change dynamically. An
origin server SHOULD return the status code 405 (Method Not Allowed)
if the method is known by the origin server but not allowed for the
requested resource, and 501 (Not Implemented) if the method is
unrecognized or not implemented by the origin server. The methods GET
and HEAD MUST be supported by all general-purpose servers. All other
methods are OPTIONAL; however, if the above methods are implemented,
they MUST be implemented with the same semantics as those specified
in section 9.
5.1.2 Request-URI
The Request-URI is a Uniform Resource Identifier (section 3.2) and
identifies the resource upon which to apply the request.
Request-URI = "*" | absoluteURI | abs_path | authority
The four options for Request-URI are dependent on the nature of the
request. The asterisk "*" means that the request does not apply to a
particular resource, but to the server itself, and is only allowed
when the method used does not necessarily apply to a resource. One
example would be
OPTIONS * HTTP/1.1
The absoluteURI form is REQUIRED when the request is being made to a
proxy. The proxy is requested to forward the request or service it
from a valid cache, and return the response. Note that the proxy MAY
forward the request on to another proxy or directly to the server
Fielding, et al. Standards Track [Page 36]
RFC 2616 HTTP/1.1 June 1999
specified by the absoluteURI. In order to avoid request loops, a
proxy MUST be able to recognize all of its server names, including
any aliases, local variations, and the numeric IP address. An example
Request-Line would be:
GET http://www.w3.org/pub/WWW/TheProject.html HTTP/1.1
To allow for transition to absoluteURIs in all requests in future
versions of HTTP, all HTTP/1.1 servers MUST accept the absoluteURI
form in requests, even though HTTP/1.1 clients will only generate
them in requests to proxies.
The authority form is only used by the CONNECT method (section 9.9).
The most common form of Request-URI is that used to identify a
resource on an origin server or gateway. In this case the absolute
path of the URI MUST be transmitted (see section 3.2.1, abs_path) as
the Request-URI, and the network location of the URI (authority) MUST
be transmitted in a Host header field. For example, a client wishing
to retrieve the resource above directly from the origin server would
create a TCP connection to port 80 of the host "www.w3.org" and send
the lines:
GET /pub/WWW/TheProject.html HTTP/1.1
Host: www.w3.org
followed by the remainder of the Request. Note that the absolute path
cannot be empty; if none is present in the original URI, it MUST be
given as "/" (the server root).
The Request-URI is transmitted in the format specified in section
3.2.1. If the Request-URI is encoded using the "% HEX HEX" encoding
[42], the origin server MUST decode the Request-URI in order to
properly interpret the request. Servers SHOULD respond to invalid
Request-URIs with an appropriate status code.
A transparent proxy MUST NOT rewrite the "abs_path" part of the
received Request-URI when forwarding it to the next inbound server,
except as noted above to replace a null abs_path with "/".
Note: The "no rewrite" rule prevents the proxy from changing the
meaning of the request when the origin server is improperly using
a non-reserved URI character for a reserved purpose. Implementors
should be aware that some pre-HTTP/1.1 proxies have been known to
rewrite the Request-URI.
Fielding, et al. Standards Track [Page 37]
RFC 2616 HTTP/1.1 June 1999
5.2 The Resource Identified by a Request
The exact resource identified by an Internet request is determined by
examining both the Request-URI and the Host header field.
An origin server that does not allow resources to differ by the
requested host MAY ignore the Host header field value when
determining the resource identified by an HTTP/1.1 request. (But see
section 19.6.1.1 for other requirements on Host support in HTTP/1.1.)
An origin server that does differentiate resources based on the host
requested (sometimes referred to as virtual hosts or vanity host
names) MUST use the following rules for determining the requested
resource on an HTTP/1.1 request:
1. If Request-URI is an absoluteURI, the host is part of the
Request-URI. Any Host header field value in the request MUST be
ignored.
2. If the Request-URI is not an absoluteURI, and the request includes
a Host header field, the host is determined by the Host header
field value.
3. If the host as determined by rule 1 or 2 is not a valid host on
the server, the response MUST be a 400 (Bad Request) error message.
Recipients of an HTTP/1.0 request that lacks a Host header field MAY
attempt to use heuristics (e.g., examination of the URI path for
something unique to a particular host) in order to determine what
exact resource is being requested.
5.3 Request Header Fields
The request-header fields allow the client to pass additional
information about the request, and about the client itself, to the
server. These fields act as request modifiers, with semantics
equivalent to the parameters on a programming language method
invocation.
request-header = Accept ; Section 14.1
| Accept-Charset ; Section 14.2
| Accept-Encoding ; Section 14.3
| Accept-Language ; Section 14.4
| Authorization ; Section 14.8
| Expect ; Section 14.20
| From ; Section 14.22
| Host ; Section 14.23
| If-Match ; Section 14.24
Fielding, et al. Standards Track [Page 38]
RFC 2616 HTTP/1.1 June 1999
| If-Modified-Since ; Section 14.25
| If-None-Match ; Section 14.26
| If-Range ; Section 14.27
| If-Unmodified-Since ; Section 14.28
| Max-Forwards ; Section 14.31
| Proxy-Authorization ; Section 14.34
| Range ; Section 14.35
| Referer ; Section 14.36
| TE ; Section 14.39
| User-Agent ; Section 14.43
Request-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields MAY be given the semantics of request-
header fields if all parties in the communication recognize them to
be request-header fields. Unrecognized header fields are treated as
entity-header fields.
6 Response
After receiving and interpreting a request message, a server responds
with an HTTP response message.
Response = Status-Line ; Section 6.1
*(( general-header ; Section 4.5
| response-header ; Section 6.2
| entity-header ) CRLF) ; Section 7.1
CRLF
[ message-body ] ; Section 7.2
6.1 Status-Line
The first line of a Response message is the Status-Line, consisting
of the protocol version followed by a numeric status code and its
associated textual phrase, with each element separated by SP
characters. No CR or LF is allowed except in the final CRLF sequence.
Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF
6.1.1 Status Code and Reason Phrase
The Status-Code element is a 3-digit integer result code of the
attempt to understand and satisfy the request. These codes are fully
defined in section 10. The Reason-Phrase is intended to give a short
textual description of the Status-Code. The Status-Code is intended
for use by automata and the Reason-Phrase is intended for the human
user. The client is not required to examine or display the Reason-
Phrase.
Fielding, et al. Standards Track [Page 39]
RFC 2616 HTTP/1.1 June 1999
The first digit of the Status-Code defines the class of response. The
last two digits do not have any categorization role. There are 5
values for the first digit:
- 1xx: Informational - Request received, continuing process
- 2xx: Success - The action was successfully received,
understood, and accepted
- 3xx: Redirection - Further action must be taken in order to
complete the request
- 4xx: Client Error - The request contains bad syntax or cannot
be fulfilled
- 5xx: Server Error - The server failed to fulfill an apparently
valid request
The individual values of the numeric status codes defined for
HTTP/1.1, and an example set of corresponding Reason-Phrase's, are
presented below. The reason phrases listed here are only
recommendations -- they MAY be replaced by local equivalents without
affecting the protocol.
Status-Code =
"100" ; Section 10.1.1: Continue
| "101" ; Section 10.1.2: Switching Protocols
| "200" ; Section 10.2.1: OK
| "201" ; Section 10.2.2: Created
| "202" ; Section 10.2.3: Accepted
| "203" ; Section 10.2.4: Non-Authoritative Information
| "204" ; Section 10.2.5: No Content
| "205" ; Section 10.2.6: Reset Content
| "206" ; Section 10.2.7: Partial Content
| "300" ; Section 10.3.1: Multiple Choices
| "301" ; Section 10.3.2: Moved Permanently
| "302" ; Section 10.3.3: Found
| "303" ; Section 10.3.4: See Other
| "304" ; Section 10.3.5: Not Modified
| "305" ; Section 10.3.6: Use Proxy
| "307" ; Section 10.3.8: Temporary Redirect
| "400" ; Section 10.4.1: Bad Request
| "401" ; Section 10.4.2: Unauthorized
| "402" ; Section 10.4.3: Payment Required
| "403" ; Section 10.4.4: Forbidden
| "404" ; Section 10.4.5: Not Found
| "405" ; Section 10.4.6: Method Not Allowed
| "406" ; Section 10.4.7: Not Acceptable
Fielding, et al. Standards Track [Page 40]
RFC 2616 HTTP/1.1 June 1999
| "407" ; Section 10.4.8: Proxy Authentication Required
| "408" ; Section 10.4.9: Request Time-out
| "409" ; Section 10.4.10: Conflict
| "410" ; Section 10.4.11: Gone
| "411" ; Section 10.4.12: Length Required
| "412" ; Section 10.4.13: Precondition Failed
| "413" ; Section 10.4.14: Request Entity Too Large
| "414" ; Section 10.4.15: Request-URI Too Large
| "415" ; Section 10.4.16: Unsupported Media Type
| "416" ; Section 10.4.17: Requested range not satisfiable
| "417" ; Section 10.4.18: Expectation Failed
| "500" ; Section 10.5.1: Internal Server Error
| "501" ; Section 10.5.2: Not Implemented
| "502" ; Section 10.5.3: Bad Gateway
| "503" ; Section 10.5.4: Service Unavailable
| "504" ; Section 10.5.5: Gateway Time-out
| "505" ; Section 10.5.6: HTTP Version not supported
| extension-code
extension-code = 3DIGIT
Reason-Phrase = *<TEXT, excluding CR, LF>
HTTP status codes are extensible. HTTP applications are not required
to understand the meaning of all registered status codes, though such
understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first
digit, and treat any unrecognized response as being equivalent to the
x00 status code of that class, with the exception that an
unrecognized response MUST NOT be cached. For example, if an
unrecognized status code of 431 is received by the client, it can
safely assume that there was something wrong with its request and
treat the response as if it had received a 400 status code. In such
cases, user agents SHOULD present to the user the entity returned
with the response, since that entity is likely to include human-
readable information which will explain the unusual status.
6.2 Response Header Fields
The response-header fields allow the server to pass additional
information about the response which cannot be placed in the Status-
Line. These header fields give information about the server and about
further access to the resource identified by the Request-URI.
response-header = Accept-Ranges ; Section 14.5
| Age ; Section 14.6
| ETag ; Section 14.19
| Location ; Section 14.30
| Proxy-Authenticate ; Section 14.33
Fielding, et al. Standards Track [Page 41]
RFC 2616 HTTP/1.1 June 1999
| Retry-After ; Section 14.37
| Server ; Section 14.38
| Vary ; Section 14.44
| WWW-Authenticate ; Section 14.47
Response-header field names can be extended reliably only in
combination with a change in the protocol version. However, new or
experimental header fields MAY be given the semantics of response-
header fields if all parties in the communication recognize them to
be response-header fields. Unrecognized header fields are treated as
entity-header fields.
7 Entity
Request and Response messages MAY transfer an entity if not otherwise
restricted by the request method or response status code. An entity
consists of entity-header fields and an entity-body, although some
responses will only include the entity-headers.
In this section, both sender and recipient refer to either the client
or the server, depending on who sends and who receives the entity.
7.1 Entity Header Fields
Entity-header fields define metainformation about the entity-body or,
if no body is present, about the resource identified by the request.
Some of this metainformation is OPTIONAL; some might be REQUIRED by
portions of this specification.
entity-header = Allow ; Section 14.7
| Content-Encoding ; Section 14.11
| Content-Language ; Section 14.12
| Content-Length ; Section 14.13
| Content-Location ; Section 14.14
| Content-MD5 ; Section 14.15
| Content-Range ; Section 14.16
| Content-Type ; Section 14.17
| Expires ; Section 14.21
| Last-Modified ; Section 14.29
| extension-header
extension-header = message-header
The extension-header mechanism allows additional entity-header fields
to be defined without changing the protocol, but these fields cannot
be assumed to be recognizable by the recipient. Unrecognized header
fields SHOULD be ignored by the recipient and MUST be forwarded by
transparent proxies.
Fielding, et al. Standards Track [Page 42]
RFC 2616 HTTP/1.1 June 1999
7.2 Entity Body
The entity-body (if any) sent with an HTTP request or response is in
a format and encoding defined by the entity-header fields.
entity-body = *OCTET
An entity-body is only present in a message when a message-body is
present, as described in section 4.3. The entity-body is obtained
from the message-body by decoding any Transfer-Encoding that might
have been applied to ensure safe and proper transfer of the message.
7.2.1 Type
When an entity-body is included with a message, the data type of that
body is determined via the header fields Content-Type and Content-
Encoding. These define a two-layer, ordered encoding model:
entity-body := Content-Encoding( Content-Type( data ) )
Content-Type specifies the media type of the underlying data.
Content-Encoding may be used to indicate any additional content
codings applied to the data, usually for the purpose of data
compression, that are a property of the requested resource. There is
no default encoding.
Any HTTP/1.1 message containing an entity-body SHOULD include a
Content-Type header field defining the media type of that body. If
and only if the media type is not given by a Content-Type field, the
recipient MAY attempt to guess the media type via inspection of its
content and/or the name extension(s) of the URI used to identify the
resource. If the media type remains unknown, the recipient SHOULD
treat it as type "application/octet-stream".
7.2.2 Entity Length
The entity-length of a message is the length of the message-body
before any transfer-codings have been applied. Section 4.4 defines
how the transfer-length of a message-body is determined.
Fielding, et al. Standards Track [Page 43]
RFC 2616 HTTP/1.1 June 1999
8 Connections
8.1 Persistent Connections
8.1.1 Purpose
Prior to persistent connections, a separate TCP connection was
established to fetch each URL, increasing the load on HTTP servers
and causing congestion on the Internet. The use of inline images and
other associated data often require a client to make multiple
requests of the same server in a short amount of time. Analysis of
these performance problems and results from a prototype
implementation are available [26] [30]. Implementation experience and
measurements of actual HTTP/1.1 (RFC 2068) implementations show good
results [39]. Alternatives have also been explored, for example,
T/TCP [27].
Persistent HTTP connections have a number of advantages:
- By opening and closing fewer TCP connections, CPU time is saved
in routers and hosts (clients, servers, proxies, gateways,
tunnels, or caches), and memory used for TCP protocol control
blocks can be saved in hosts.
- HTTP requests and responses can be pipelined on a connection.
Pipelining allows a client to make multiple requests without
waiting for each response, allowing a single TCP connection to
be used much more efficiently, with much lower elapsed time.
- Network congestion is reduced by reducing the number of packets
caused by TCP opens, and by allowing TCP sufficient time to
determine the congestion state of the network.
- Latency on subsequent requests is reduced since there is no time
spent in TCP's connection opening handshake.
- HTTP can evolve more gracefully, since errors can be reported
without the penalty of closing the TCP connection. Clients using
future versions of HTTP might optimistically try a new feature,
but if communicating with an older server, retry with old
semantics after an error is reported.
HTTP implementations SHOULD implement persistent connections.
Fielding, et al. Standards Track [Page 44]
RFC 2616 HTTP/1.1 June 1999
8.1.2 Overall Operation
A significant difference between HTTP/1.1 and earlier versions of
HTTP is that persistent connections are the default behavior of any
HTTP connection. That is, unless otherwise indicated, the client
SHOULD assume that the server will maintain a persistent connection,
even after error responses from the server.
Persistent connections provide a mechanism by which a client and a
server can signal the close of a TCP connection. This signaling takes
place using the Connection header field (section 14.10). Once a close
has been signaled, the client MUST NOT send any more requests on that
connection.
8.1.2.1 Negotiation
An HTTP/1.1 server MAY assume that a HTTP/1.1 client intends to
maintain a persistent connection unless a Connection header including
the connection-token "close" was sent in the request. If the server
chooses to close the connection immediately after sending the
response, it SHOULD send a Connection header including the
connection-token close.
An HTTP/1.1 client MAY expect a connection to remain open, but would
decide to keep it open based on whether the response from a server
contains a Connection header with the connection-token close. In case
the client does not want to maintain a connection for more than that
request, it SHOULD send a Connection header including the
connection-token close.
If either the client or the server sends the close token in the
Connection header, that request becomes the last one for the
connection.
Clients and servers SHOULD NOT assume that a persistent connection is
maintained for HTTP versions less than 1.1 unless it is explicitly
signaled. See section 19.6.2 for more information on backward
compatibility with HTTP/1.0 clients.
In order to remain persistent, all messages on the connection MUST
have a self-defined message length (i.e., one not defined by closure
of the connection), as described in section 4.4.
Fielding, et al. Standards Track [Page 45]
RFC 2616 HTTP/1.1 June 1999
8.1.2.2 Pipelining
A client that supports persistent connections MAY "pipeline" its
requests (i.e., send multiple requests without waiting for each
response). A server MUST send its responses to those requests in the
same order that the requests were received.
Clients which assume persistent connections and pipeline immediately
after connection establishment SHOULD be prepared to retry their
connection if the first pipelined attempt fails. If a client does
such a retry, it MUST NOT pipeline before it knows the connection is
persistent. Clients MUST also be prepared to resend their requests if
the server closes the connection before sending all of the
corresponding responses.
Clients SHOULD NOT pipeline requests using non-idempotent methods or
non-idempotent sequences of methods (see section 9.1.2). Otherwise, a
premature termination of the transport connection could lead to
indeterminate results. A client wishing to send a non-idempotent
request SHOULD wait to send that request until it has received the
response status for the previous request.
8.1.3 Proxy Servers
It is especially important that proxies correctly implement the
properties of the Connection header field as specified in section
14.10.
The proxy server MUST signal persistent connections separately with
its clients and the origin servers (or other proxy servers) that it
connects to. Each persistent connection applies to only one transport
link.
A proxy server MUST NOT establish a HTTP/1.1 persistent connection
with an HTTP/1.0 client (but see RFC 2068 [33] for information and
discussion of the problems with the Keep-Alive header implemented by
many HTTP/1.0 clients).
8.1.4 Practical Considerations
Servers will usually have some time-out value beyond which they will
no longer maintain an inactive connection. Proxy servers might make
this a higher value since it is likely that the client will be making
more connections through the same server. The use of persistent
connections places no requirements on the length (or existence) of
this time-out for either the client or the server.
Fielding, et al. Standards Track [Page 46]
RFC 2616 HTTP/1.1 June 1999
When a client or server wishes to time-out it SHOULD issue a graceful
close on the transport connection. Clients and servers SHOULD both
constantly watch for the other side of the transport close, and
respond to it as appropriate. If a client or server does not detect
the other side's close promptly it could cause unnecessary resource
drain on the network.
A client, server, or proxy MAY close the transport connection at any
time. For example, a client might have started to send a new request
at the same time that the server has decided to close the "idle"
connection. From the server's point of view, the connection is being
closed while it was idle, but from the client's point of view, a
request is in progress.
This means that clients, servers, and proxies MUST be able to recover
from asynchronous close events. Client software SHOULD reopen the
transport connection and retransmit the aborted sequence of requests
without user interaction so long as the request sequence is
idempotent (see section 9.1.2). Non-idempotent methods or sequences
MUST NOT be automatically retried, although user agents MAY offer a
human operator the choice of retrying the request(s). Confirmation by
user-agent software with semantic understanding of the application
MAY substitute for user confirmation. The automatic retry SHOULD NOT
be repeated if the second sequence of requests fails.
Servers SHOULD always respond to at least one request per connection,
if at all possible. Servers SHOULD NOT close a connection in the
middle of transmitting a response, unless a network or client failure
is suspected.
Clients that use persistent connections SHOULD limit the number of
simultaneous connections that they maintain to a given server. A
single-user client SHOULD NOT maintain more than 2 connections with
any server or proxy. A proxy SHOULD use up to 2*N connections to
another server or proxy, where N is the number of simultaneously
active users. These guidelines are intended to improve HTTP response
times and avoid congestion.
8.2 Message Transmission Requirements
8.2.1 Persistent Connections and Flow Control
HTTP/1.1 servers SHOULD maintain persistent connections and use TCP's
flow control mechanisms to resolve temporary overloads, rather than
terminating connections with the expectation that clients will retry.
The latter technique can exacerbate network congestion.
Fielding, et al. Standards Track [Page 47]
RFC 2616 HTTP/1.1 June 1999
8.2.2 Monitoring Connections for Error Status Messages
An HTTP/1.1 (or later) client sending a message-body SHOULD monitor
the network connection for an error status while it is transmitting
the request. If the client sees an error status, it SHOULD
immediately cease transmitting the body. If the body is being sent
using a "chunked" encoding (section 3.6), a zero length chunk and
empty trailer MAY be used to prematurely mark the end of the message.
If the body was preceded by a Content-Length header, the client MUST
close the connection.
8.2.3 Use of the 100 (Continue) Status
The purpose of the 100 (Continue) status (see section 10.1.1) is to
allow a client that is sending a request message with a request body
to determine if the origin server is willing to accept the request
(based on the request headers) before the client sends the request
body. In some cases, it might either be inappropriate or highly
inefficient for the client to send the body if the server will reject
the message without looking at the body.
Requirements for HTTP/1.1 clients:
- If a client will wait for a 100 (Continue) response before
sending the request body, it MUST send an Expect request-header
field (section 14.20) with the "100-continue" expectation.
- A client MUST NOT send an Expect request-header field (section
14.20) with the "100-continue" expectation if it does not intend
to send a request body.
Because of the presence of older implementations, the protocol allows
ambiguous situations in which a client may send "Expect: 100-
continue" without receiving either a 417 (Expectation Failed) status
or a 100 (Continue) status. Therefore, when a client sends this
header field to an origin server (possibly via a proxy) from which it
has never seen a 100 (Continue) status, the client SHOULD NOT wait
for an indefinite period before sending the request body.
Requirements for HTTP/1.1 origin servers:
- Upon receiving a request which includes an Expect request-header
field with the "100-continue" expectation, an origin server MUST
either respond with 100 (Continue) status and continue to read
from the input stream, or respond with a final status code. The
origin server MUST NOT wait for the request body before sending
the 100 (Continue) response. If it responds with a final status
code, it MAY close the transport connection or it MAY continue
Fielding, et al. Standards Track [Page 48]
RFC 2616 HTTP/1.1 June 1999
to read and discard the rest of the request. It MUST NOT
perform the requested method if it returns a final status code.
- An origin server SHOULD NOT send a 100 (Continue) response if
the request message does not include an Expect request-header
field with the "100-continue" expectation, and MUST NOT send a
100 (Continue) response if such a request comes from an HTTP/1.0
(or earlier) client. There is an exception to this rule: for
compatibility with RFC 2068, a server MAY send a 100 (Continue)
status in response to an HTTP/1.1 PUT or POST request that does
not include an Expect request-header field with the "100-
continue" expectation. This exception, the purpose of which is
to minimize any client processing delays associated with an
undeclared wait for 100 (Continue) status, applies only to
HTTP/1.1 requests, and not to requests with any other HTTP-
version value.
- An origin server MAY omit a 100 (Continue) response if it has
already received some or all of the request body for the
corresponding request.
- An origin server that sends a 100 (Continue) response MUST
ultimately send a final status code, once the request body is
received and processed, unless it terminates the transport
connection prematurely.
- If an origin server receives a request that does not include an
Expect request-header field with the "100-continue" expectation,
the request includes a request body, and the server responds
with a final status code before reading the entire request body
from the transport connection, then the server SHOULD NOT close
the transport connection until it has read the entire request,
or until the client closes the connection. Otherwise, the client
might not reliably receive the response message. However, this
requirement is not be construed as preventing a server from
defending itself against denial-of-service attacks, or from
badly broken client implementations.
Requirements for HTTP/1.1 proxies:
- If a proxy receives a request that includes an Expect request-
header field with the "100-continue" expectation, and the proxy
either knows that the next-hop server complies with HTTP/1.1 or
higher, or does not know the HTTP version of the next-hop
server, it MUST forward the request, including the Expect header
field.
Fielding, et al. Standards Track [Page 49]
RFC 2616 HTTP/1.1 June 1999
- If the proxy knows that the version of the next-hop server is
HTTP/1.0 or lower, it MUST NOT forward the request, and it MUST
respond with a 417 (Expectation Failed) status.
- Proxies SHOULD maintain a cache recording the HTTP version
numbers received from recently-referenced next-hop servers.
- A proxy MUST NOT forward a 100 (Continue) response if the
request message was received from an HTTP/1.0 (or earlier)
client and did not include an Expect request-header field with
the "100-continue" expectation. This requirement overrides the
general rule for forwarding of 1xx responses (see section 10.1).
8.2.4 Client Behavior if Server Prematurely Closes Connection
If an HTTP/1.1 client sends a request which includes a request body,
but which does not include an Expect request-header field with the
"100-continue" expectation, and if the client is not directly
connected to an HTTP/1.1 origin server, and if the client sees the
connection close before receiving any status from the server, the
client SHOULD retry the request. If the client does retry this
request, it MAY use the following "binary exponential backoff"
algorithm to be assured of obtaining a reliable response:
1. Initiate a new connection to the server
2. Transmit the request-headers
3. Initialize a variable R to the estimated round-trip time to the
server (e.g., based on the time it took to establish the
connection), or to a constant value of 5 seconds if the round-
trip time is not available.
4. Compute T = R * (2**N), where N is the number of previous
retries of this request.
5. Wait either for an error response from the server, or for T
seconds (whichever comes first)
6. If no error response is received, after T seconds transmit the
body of the request.
7. If client sees that the connection is closed prematurely,
repeat from step 1 until the request is accepted, an error
response is received, or the user becomes impatient and
terminates the retry process.
Fielding, et al. Standards Track [Page 50]
RFC 2616 HTTP/1.1 June 1999
If at any point an error status is received, the client
- SHOULD NOT continue and
- SHOULD close the connection if it has not completed sending the
request message.
9 Method Definitions
The set of common methods for HTTP/1.1 is defined below. Although
this set can be expanded, additional methods cannot be assumed to
share the same semantics for separately extended clients and servers.
The Host request-header field (section 14.23) MUST accompany all
HTTP/1.1 requests.
9.1 Safe and Idempotent Methods
9.1.1 Safe Methods
Implementors should be aware that the software represents the user in
their interactions over the Internet, and should be careful to allow
the user to be aware of any actions they might take which may have an
unexpected significance to themselves or others.
In particular, the convention has been established that the GET and
HEAD methods SHOULD NOT have the significance of taking an action
other than retrieval. These methods ought to be considered "safe".
This allows user agents to represent other methods, such as POST, PUT
and DELETE, in a special way, so that the user is made aware of the
fact that a possibly unsafe action is being requested.
Naturally, it is not possible to ensure that the server does not
generate side-effects as a result of performing a GET request; in
fact, some dynamic resources consider that a feature. The important
distinction here is that the user did not request the side-effects,
so therefore cannot be held accountable for them.
9.1.2 Idempotent Methods
Methods can also have the property of "idempotence" in that (aside
from error or expiration issues) the side-effects of N > 0 identical
requests is the same as for a single request. The methods GET, HEAD,
PUT and DELETE share this property. Also, the methods OPTIONS and
TRACE SHOULD NOT have side effects, and so are inherently idempotent.
Fielding, et al. Standards Track [Page 51]
RFC 2616 HTTP/1.1 June 1999
However, it is possible that a sequence of several requests is non-
idempotent, even if all of the methods executed in that sequence are
idempotent. (A sequence is idempotent if a single execution of the
entire sequence always yields a result that is not changed by a
reexecution of all, or part, of that sequence.) For example, a
sequence is non-idempotent if its result depends on a value that is
later modified in the same sequence.
A sequence that never has side effects is idempotent, by definition
(provided that no concurrent operations are being executed on the
same set of resources).
9.2 OPTIONS
The OPTIONS method represents a request for information about the
communication options available on the request/response chain
identified by the Request-URI. This method allows the client to
determine the options and/or requirements associated with a resource,
or the capabilities of a server, without implying a resource action
or initiating a resource retrieval.
Responses to this method are not cacheable.
If the OPTIONS request includes an entity-body (as indicated by the
presence of Content-Length or Transfer-Encoding), then the media type
MUST be indicated by a Content-Type field. Although this
specification does not define any use for such a body, future
extensions to HTTP might use the OPTIONS body to make more detailed
queries on the server. A server that does not support such an
extension MAY discard the request body.
If the Request-URI is an asterisk ("*"), the OPTIONS request is
intended to apply to the server in general rather than to a specific
resource. Since a server's communication options typically depend on
the resource, the "*" request is only useful as a "ping" or "no-op"
type of method; it does nothing beyond allowing the client to test
the capabilities of the server. For example, this can be used to test
a proxy for HTTP/1.1 compliance (or lack thereof).
If the Request-URI is not an asterisk, the OPTIONS request applies
only to the options that are available when communicating with that
resource.
A 200 response SHOULD include any header fields that indicate
optional features implemented by the server and applicable to that
resource (e.g., Allow), possibly including extensions not defined by
this specification. The response body, if any, SHOULD also include
information about the communication options. The format for such a
Fielding, et al. Standards Track [Page 52]
RFC 2616 HTTP/1.1 June 1999
body is not defined by this specification, but might be defined by
future extensions to HTTP. Content negotiation MAY be used to select
the appropriate response format. If no response body is included, the
response MUST include a Content-Length field with a field-value of
"0".
The Max-Forwards request-header field MAY be used to target a
specific proxy in the request chain. When a proxy receives an OPTIONS
request on an absoluteURI for which request forwarding is permitted,
the proxy MUST check for a Max-Forwards field. If the Max-Forwards
field-value is zero ("0"), the proxy MUST NOT forward the message;
instead, the proxy SHOULD respond with its own communication options.
If the Max-Forwards field-value is an integer greater than zero, the
proxy MUST decrement the field-value when it forwards the request. If
no Max-Forwards field is present in the request, then the forwarded
request MUST NOT include a Max-Forwards field.
9.3 GET
The GET method means retrieve whatever information (in the form of an
entity) is identified by the Request-URI. If the Request-URI refers
to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process.
The semantics of the GET method change to a "conditional GET" if the
request message includes an If-Modified-Since, If-Unmodified-Since,
If-Match, If-None-Match, or If-Range header field. A conditional GET
method requests that the entity be transferred only under the
circumstances described by the conditional header field(s). The
conditional GET method is intended to reduce unnecessary network
usage by allowing cached entities to be refreshed without requiring
multiple requests or transferring data already held by the client.
The semantics of the GET method change to a "partial GET" if the
request message includes a Range header field. A partial GET requests
that only part of the entity be transferred, as described in section
14.35. The partial GET method is intended to reduce unnecessary
network usage by allowing partially-retrieved entities to be
completed without transferring data already held by the client.
The response to a GET request is cacheable if and only if it meets
the requirements for HTTP caching described in section 13.
See section 15.1.3 for security considerations when used for forms.
Fielding, et al. Standards Track [Page 53]
RFC 2616 HTTP/1.1 June 1999
9.4 HEAD
The HEAD method is identical to GET except that the server MUST NOT
return a message-body in the response. The metainformation contained
in the HTTP headers in response to a HEAD request SHOULD be identical
to the information sent in response to a GET request. This method can
be used for obtaining metainformation about the entity implied by the
request without transferring the entity-body itself. This method is
often used for testing hypertext links for validity, accessibility,
and recent modification.
The response to a HEAD request MAY be cacheable in the sense that the
information contained in the response MAY be used to update a
previously cached entity from that resource. If the new field values
indicate that the cached entity differs from the current entity (as
would be indicated by a change in Content-Length, Content-MD5, ETag
or Last-Modified), then the cache MUST treat the cache entry as
stale.
9.5 POST
The POST method is used to request that the origin server accept the
entity enclosed in the request as a new subordinate of the resource
identified by the Request-URI in the Request-Line. POST is designed
to allow a uniform method to cover the following functions:
- Annotation of existing resources;
- Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;
- Providing a block of data, such as the result of submitting a
form, to a data-handling process;
- Extending a database through an append operation.
The actual function performed by the POST method is determined by the
server and is usually dependent on the Request-URI. The posted entity
is subordinate to that URI in the same way that a file is subordinate
to a directory containing it, a news article is subordinate to a
newsgroup to which it is posted, or a record is subordinate to a
database.
The action performed by the POST method might not result in a
resource that can be identified by a URI. In this case, either 200
(OK) or 204 (No Content) is the appropriate response status,
depending on whether or not the response includes an entity that
describes the result.
Fielding, et al. Standards Track [Page 54]
RFC 2616 HTTP/1.1 June 1999
If a resource has been created on the origin server, the response
SHOULD be 201 (Created) and contain an entity which describes the
status of the request and refers to the new resource, and a Location
header (see section 14.30).
Responses to this method are not cacheable, unless the response
includes appropriate Cache-Control or Expires header fields. However,
the 303 (See Other) response can be used to direct the user agent to
retrieve a cacheable resource.
POST requests MUST obey the message transmission requirements set out
in section 8.2.
See section 15.1.3 for security considerations.
9.6 PUT
The PUT method requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URI refers to an already
existing resource, the enclosed entity SHOULD be considered as a
modified version of the one residing on the origin server. If the
Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI. If a
new resource is created, the origin server MUST inform the user agent
via the 201 (Created) response. If an existing resource is modified,
either the 200 (OK) or 204 (No Content) response codes SHOULD be sent
to indicate successful completion of the request. If the resource
could not be created or modified with the Request-URI, an appropriate
error response SHOULD be given that reflects the nature of the
problem. The recipient of the entity MUST NOT ignore any Content-*
(e.g. Content-Range) headers that it does not understand or implement
and MUST return a 501 (Not Implemented) response in such cases.
If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries SHOULD be
treated as stale. Responses to this method are not cacheable.
The fundamental difference between the POST and PUT requests is
reflected in the different meaning of the Request-URI. The URI in a
POST request identifies the resource that will handle the enclosed
entity. That resource might be a data-accepting process, a gateway to
some other protocol, or a separate entity that accepts annotations.
In contrast, the URI in a PUT request identifies the entity enclosed
with the request -- the user agent knows what URI is intended and the
server MUST NOT attempt to apply the request to some other resource.
If the server desires that the request be applied to a different URI,
Fielding, et al. Standards Track [Page 55]
RFC 2616 HTTP/1.1 June 1999
it MUST send a 301 (Moved Permanently) response; the user agent MAY
then make its own decision regarding whether or not to redirect the
request.
A single resource MAY be identified by many different URIs. For
example, an article might have a URI for identifying "the current
version" which is separate from the URI identifying each particular
version. In this case, a PUT request on a general URI might result in
several other URIs being defined by the origin server.
HTTP/1.1 does not define how a PUT method affects the state of an
origin server.
PUT requests MUST obey the message transmission requirements set out
in section 8.2.
Unless otherwise specified for a particular entity-header, the
entity-headers in the PUT request SHOULD be applied to the resource
created or modified by the PUT.
9.7 DELETE
The DELETE method requests that the origin server delete the resource
identified by the Request-URI. This method MAY be overridden by human
intervention (or other means) on the origin server. The client cannot
be guaranteed that the operation has been carried out, even if the
status code returned from the origin server indicates that the action
has been completed successfully. However, the server SHOULD NOT
indicate success unless, at the time the response is given, it
intends to delete the resource or move it to an inaccessible
location.
A successful response SHOULD be 200 (OK) if the response includes an
entity describing the status, 202 (Accepted) if the action has not
yet been enacted, or 204 (No Content) if the action has been enacted
but the response does not include an entity.
If the request passes through a cache and the Request-URI identifies
one or more currently cached entities, those entries SHOULD be
treated as stale. Responses to this method are not cacheable.
9.8 TRACE
The TRACE method is used to invoke a remote, application-layer loop-
back of the request message. The final recipient of the request
SHOULD reflect the message received back to the client as the
entity-body of a 200 (OK) response. The final recipient is either the
Fielding, et al. Standards Track [Page 56]
RFC 2616 HTTP/1.1 June 1999
origin server or the first proxy or gateway to receive a Max-Forwards
value of zero (0) in the request (see section 14.31). A TRACE request
MUST NOT include an entity.
TRACE allows the client to see what is being received at the other
end of the request chain and use that data for testing or diagnostic
information. The value of the Via header field (section 14.45) is of
particular interest, since it acts as a trace of the request chain.
Use of the Max-Forwards header field allows the client to limit the
length of the request chain, which is useful for testing a chain of
proxies forwarding messages in an infinite loop.
If the request is valid, the response SHOULD contain the entire
request message in the entity-body, with a Content-Type of
"message/http". Responses to this method MUST NOT be cached.
9.9 CONNECT
This specification reserves the method name CONNECT for use with a
proxy that can dynamically switch to being a tunnel (e.g. SSL
tunneling [44]).
10 Status Code Definitions
Each Status-Code is described below, including a description of which
method(s) it can follow and any metainformation required in the
response.
10.1 Informational 1xx
This class of status code indicates a provisional response,
consisting only of the Status-Line and optional headers, and is
terminated by an empty line. There are no required headers for this
class of status code. Since HTTP/1.0 did not define any 1xx status
codes, servers MUST NOT send a 1xx response to an HTTP/1.0 client
except under experimental conditions.
A client MUST be prepared to accept one or more 1xx status responses
prior to a regular response, even if the client does not expect a 100
(Continue) status message. Unexpected 1xx status responses MAY be
ignored by a user agent.
Proxies MUST forward 1xx responses, unless the connection between the
proxy and its client has been closed, or unless the proxy itself
requested the generation of the 1xx response. (For example, if a
Fielding, et al. Standards Track [Page 57]
RFC 2616 HTTP/1.1 June 1999
proxy adds a "Expect: 100-continue" field when it forwards a request,
then it need not forward the corresponding 100 (Continue)
response(s).)
10.1.1 100 Continue
The client SHOULD continue with its request. This interim response is
used to inform the client that the initial part of the request has
been received and has not yet been rejected by the server. The client
SHOULD continue by sending the remainder of the request or, if the
request has already been completed, ignore this response. The server
MUST send a final response after the request has been completed. See
section 8.2.3 for detailed discussion of the use and handling of this
status code.
10.1.2 101 Switching Protocols
The server understands and is willing to comply with the client's
request, via the Upgrade message header field (section 14.42), for a
change in the application protocol being used on this connection. The
server will switch protocols to those defined by the response's
Upgrade header field immediately after the empty line which
terminates the 101 response.
The protocol SHOULD be switched only when it is advantageous to do
so. For example, switching to a newer version of HTTP is advantageous
over older versions, and switching to a real-time, synchronous
protocol might be advantageous when delivering resources that use
such features.
10.2 Successful 2xx
This class of status code indicates that the client's request was
successfully received, understood, and accepted.
10.2.1 200 OK
The request has succeeded. The information returned with the response
is dependent on the method used in the request, for example:
GET an entity corresponding to the requested resource is sent in
the response;
HEAD the entity-header fields corresponding to the requested
resource are sent in the response without any message-body;
POST an entity describing or containing the result of the action;
Fielding, et al. Standards Track [Page 58]
RFC 2616 HTTP/1.1 June 1999
TRACE an entity containing the request message as received by the
end server.
10.2.2 201 Created
The request has been fulfilled and resulted in a new resource being
created. The newly created resource can be referenced by the URI(s)
returned in the entity of the response, with the most specific URI
for the resource given by a Location header field. The response
SHOULD include an entity containing a list of resource
characteristics and location(s) from which the user or user agent can
choose the one most appropriate. The entity format is specified by
the media type given in the Content-Type header field. The origin
server MUST create the resource before returning the 201 status code.
If the action cannot be carried out immediately, the server SHOULD
respond with 202 (Accepted) response instead.
A 201 response MAY contain an ETag response header field indicating
the current value of the entity tag for the requested variant just
created, see section 14.19.
10.2.3 202 Accepted
The request has been accepted for processing, but the processing has
not been completed. The request might or might not eventually be
acted upon, as it might be disallowed when processing actually takes
place. There is no facility for re-sending a status code from an
asynchronous operation such as this.
The 202 response is intentionally non-committal. Its purpose is to
allow a server to accept a request for some other process (perhaps a
batch-oriented process that is only run once per day) without
requiring that the user agent's connection to the server persist
until the process is completed. The entity returned with this
response SHOULD include an indication of the request's current status
and either a pointer to a status monitor or some estimate of when the
user can expect the request to be fulfilled.
10.2.4 203 Non-Authoritative Information
The returned metainformation in the entity-header is not the
definitive set as available from the origin server, but is gathered
from a local or a third-party copy. The set presented MAY be a subset
or superset of the original version. For example, including local
annotation information about the resource might result in a superset
of the metainformation known by the origin server. Use of this
response code is not required and is only appropriate when the
response would otherwise be 200 (OK).
Fielding, et al. Standards Track [Page 59]
RFC 2616 HTTP/1.1 June 1999
10.2.5 204 No Content
The server has fulfilled the request but does not need to return an
entity-body, and might want to return updated metainformation. The
response MAY include new or updated metainformation in the form of
entity-headers, which if present SHOULD be associated with the
requested variant.
If the client is a user agent, it SHOULD NOT change its document view
from that which caused the request to be sent. This response is
primarily intended to allow input for actions to take place without
causing a change to the user agent's active document view, although
any new or updated metainformation SHOULD be applied to the document
currently in the user agent's active view.
The 204 response MUST NOT include a message-body, and thus is always
terminated by the first empty line after the header fields.
10.2.6 205 Reset Content
The server has fulfilled the request and the user agent SHOULD reset
the document view which caused the request to be sent. This response
is primarily intended to allow input for actions to take place via
user input, followed by a clearing of the form in which the input is
given so that the user can easily initiate another input action. The
response MUST NOT include an entity.
10.2.7 206 Partial Content
The server has fulfilled the partial GET request for the resource.
The request MUST have included a Range header field (section 14.35)
indicating the desired range, and MAY have included an If-Range
header field (section 14.27) to make the request conditional.
The response MUST include the following header fields:
- Either a Content-Range header field (section 14.16) indicating
the range included with this response, or a multipart/byteranges
Content-Type including Content-Range fields for each part. If a
Content-Length header field is present in the response, its
value MUST match the actual number of OCTETs transmitted in the
message-body.
- Date
- ETag and/or Content-Location, if the header would have been sent
in a 200 response to the same request
Fielding, et al. Standards Track [Page 60]
RFC 2616 HTTP/1.1 June 1999
- Expires, Cache-Control, and/or Vary, if the field-value might
differ from that sent in any previous response for the same
variant
If the 206 response is the result of an If-Range request that used a
strong cache validator (see section 13.3.3), the response SHOULD NOT
include other entity-headers. If the response is the result of an
If-Range request that used a weak validator, the response MUST NOT
include other entity-headers; this prevents inconsistencies between
cached entity-bodies and updated headers. Otherwise, the response
MUST include all of the entity-headers that would have been returned
with a 200 (OK) response to the same request.
A cache MUST NOT combine a 206 response with other previously cached
content if the ETag or Last-Modified headers do not match exactly,
see 13.5.4.
A cache that does not support the Range and Content-Range headers
MUST NOT cache 206 (Partial) responses.
10.3 Redirection 3xx
This class of status code indicates that further action needs to be
taken by the user agent in order to fulfill the request. The action
required MAY be carried out by the user agent without interaction
with the user if and only if the method used in the second request is
GET or HEAD. A client SHOULD detect infinite redirection loops, since
such loops generate network traffic for each redirection.
Note: previous versions of this specification recommended a
maximum of five redirections. Content developers should be aware
that there might be clients that implement such a fixed
limitation.
10.3.1 300 Multiple Choices
The requested resource corresponds to any one of a set of
representations, each with its own specific location, and agent-
driven negotiation information (section 12) is being provided so that
the user (or user agent) can select a preferred representation and
redirect its request to that location.
Unless it was a HEAD request, the response SHOULD include an entity
containing a list of resource characteristics and location(s) from
which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type given in the Content-
Type header field. Depending upon the format and the capabilities of
Fielding, et al. Standards Track [Page 61]
RFC 2616 HTTP/1.1 June 1999
the user agent, selection of the most appropriate choice MAY be
performed automatically. However, this specification does not define
any standard for such automatic selection.
If the server has a preferred choice of representation, it SHOULD
include the specific URI for that representation in the Location
field; user agents MAY use the Location field value for automatic
redirection. This response is cacheable unless indicated otherwise.
10.3.2 301 Moved Permanently
The requested resource has been assigned a new permanent URI and any
future references to this resource SHOULD use one of the returned
URIs. Clients with link editing capabilities ought to automatically
re-link references to the Request-URI to one or more of the new
references returned by the server, where possible. This response is
cacheable unless indicated otherwise.
The new permanent URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).
If the 301 status code is received in response to a request other
than GET or HEAD, the user agent MUST NOT automatically redirect the
request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.
Note: When automatically redirecting a POST request after
receiving a 301 status code, some existing HTTP/1.0 user agents
will erroneously change it into a GET request.
10.3.3 302 Found
The requested resource resides temporarily under a different URI.
Since the redirection might be altered on occasion, the client SHOULD
continue to use the Request-URI for future requests. This response
is only cacheable if indicated by a Cache-Control or Expires header
field.
The temporary URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).
Fielding, et al. Standards Track [Page 62]
RFC 2616 HTTP/1.1 June 1999
If the 302 status code is received in response to a request other
than GET or HEAD, the user agent MUST NOT automatically redirect the
request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.
Note: RFC 1945 and RFC 2068 specify that the client is not allowed
to change the method on the redirected request. However, most
existing user agent implementations treat 302 as if it were a 303
response, performing a GET on the Location field-value regardless
of the original request method. The status codes 303 and 307 have
been added for servers that wish to make unambiguously clear which
kind of reaction is expected of the client.
10.3.4 303 See Other
The response to the request can be found under a different URI and
SHOULD be retrieved using a GET method on that resource. This method
exists primarily to allow the output of a POST-activated script to
redirect the user agent to a selected resource. The new URI is not a
substitute reference for the originally requested resource. The 303
response MUST NOT be cached, but the response to the second
(redirected) request might be cacheable.
The different URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s).
Note: Many pre-HTTP/1.1 user agents do not understand the 303
status. When interoperability with such clients is a concern, the
302 status code may be used instead, since most user agents react
to a 302 response as described here for 303.
10.3.5 304 Not Modified
If the client has performed a conditional GET request and access is
allowed, but the document has not been modified, the server SHOULD
respond with this status code. The 304 response MUST NOT contain a
message-body, and thus is always terminated by the first empty line
after the header fields.
The response MUST include the following header fields:
- Date, unless its omission is required by section 14.18.1
Fielding, et al. Standards Track [Page 63]
RFC 2616 HTTP/1.1 June 1999
If a clockless origin server obeys these rules, and proxies and
clients add their own Date to any response received without one (as
already specified by [RFC 2068], section 14.19), caches will operate
correctly.
- ETag and/or Content-Location, if the header would have been sent
in a 200 response to the same request
- Expires, Cache-Control, and/or Vary, if the field-value might
differ from that sent in any previous response for the same
variant
If the conditional GET used a strong cache validator (see section
13.3.3), the response SHOULD NOT include other entity-headers.
Otherwise (i.e., the conditional GET used a weak validator), the
response MUST NOT include other entity-headers; this prevents
inconsistencies between cached entity-bodies and updated headers.
If a 304 response indicates an entity not currently cached, then the
cache MUST disregard the response and repeat the request without the
conditional.
If a cache uses a received 304 response to update a cache entry, the
cache MUST update the entry to reflect any new field values given in
the response.
10.3.6 305 Use Proxy
The requested resource MUST be accessed through the proxy given by
the Location field. The Location field gives the URI of the proxy.
The recipient is expected to repeat this single request via the
proxy. 305 responses MUST only be generated by origin servers.
Note: RFC 2068 was not clear that 305 was intended to redirect a
single request, and to be generated by origin servers only. Not
observing these limitations has significant security consequences.
10.3.7 306 (Unused)
The 306 status code was used in a previous version of the
specification, is no longer used, and the code is reserved.
Fielding, et al. Standards Track [Page 64]
RFC 2616 HTTP/1.1 June 1999
10.3.8 307 Temporary Redirect
The requested resource resides temporarily under a different URI.
Since the redirection MAY be altered on occasion, the client SHOULD
continue to use the Request-URI for future requests. This response
is only cacheable if indicated by a Cache-Control or Expires header
field.
The temporary URI SHOULD be given by the Location field in the
response. Unless the request method was HEAD, the entity of the
response SHOULD contain a short hypertext note with a hyperlink to
the new URI(s) , since many pre-HTTP/1.1 user agents do not
understand the 307 status. Therefore, the note SHOULD contain the
information necessary for a user to repeat the original request on
the new URI.
If the 307 status code is received in response to a request other
than GET or HEAD, the user agent MUST NOT automatically redirect the
request unless it can be confirmed by the user, since this might
change the conditions under which the request was issued.
10.4 Client Error 4xx
The 4xx class of status code is intended for cases in which the
client seems to have erred. Except when responding to a HEAD request,
the server SHOULD include an entity containing an explanation of the
error situation, and whether it is a temporary or permanent
condition. These status codes are applicable to any request method.
User agents SHOULD display any included entity to the user.
If the client is sending data, a server implementation using TCP
SHOULD be careful to ensure that the client acknowledges receipt of
the packet(s) containing the response, before the server closes the
input connection. If the client continues sending data to the server
after the close, the server's TCP stack will send a reset packet to
the client, which may erase the client's unacknowledged input buffers
before they can be read and interpreted by the HTTP application.
10.4.1 400 Bad Request
The request could not be understood by the server due to malformed
syntax. The client SHOULD NOT repeat the request without
modifications.
Fielding, et al. Standards Track [Page 65]
RFC 2616 HTTP/1.1 June 1999
10.4.2 401 Unauthorized
The request requires user authentication. The response MUST include a
WWW-Authenticate header field (section 14.47) containing a challenge
applicable to the requested resource. The client MAY repeat the
request with a suitable Authorization header field (section 14.8). If
the request already included Authorization credentials, then the 401
response indicates that authorization has been refused for those
credentials. If the 401 response contains the same challenge as the
prior response, and the user agent has already attempted
authentication at least once, then the user SHOULD be presented the
entity that was given in the response, since that entity might
include relevant diagnostic information. HTTP access authentication
is explained in "HTTP Authentication: Basic and Digest Access
Authentication" [43].
10.4.3 402 Payment Required
This code is reserved for future use.
10.4.4 403 Forbidden
The server understood the request, but is refusing to fulfill it.
Authorization will not help and the request SHOULD NOT be repeated.
If the request method was not HEAD and the server wishes to make
public why the request has not been fulfilled, it SHOULD describe the
reason for the refusal in the entity. If the server does not wish to
make this information available to the client, the status code 404
(Not Found) can be used instead.
10.4.5 404 Not Found
The server has not found anything matching the Request-URI. No
indication is given of whether the condition is temporary or
permanent. The 410 (Gone) status code SHOULD be used if the server
knows, through some internally configurable mechanism, that an old
resource is permanently unavailable and has no forwarding address.
This status code is commonly used when the server does not wish to
reveal exactly why the request has been refused, or when no other
response is applicable.
10.4.6 405 Method Not Allowed
The method specified in the Request-Line is not allowed for the
resource identified by the Request-URI. The response MUST include an
Allow header containing a list of valid methods for the requested
resource.
Fielding, et al. Standards Track [Page 66]
RFC 2616 HTTP/1.1 June 1999
10.4.7 406 Not Acceptable
The resource identified by the request is only capable of generating
response entities which have content characteristics not acceptable
according to the accept headers sent in the request.
Unless it was a HEAD request, the response SHOULD include an entity
containing a list of available entity characteristics and location(s)
from which the user or user agent can choose the one most
appropriate. The entity format is specified by the media type given
in the Content-Type header field. Depending upon the format and the
capabilities of the user agent, selection of the most appropriate
choice MAY be performed automatically. However, this specification
does not define any standard for such automatic selection.
Note: HTTP/1.1 servers are allowed to return responses which are
not acceptable according to the accept headers sent in the
request. In some cases, this may even be preferable to sending a
406 response. User agents are encouraged to inspect the headers of
an incoming response to determine if it is acceptable.
If the response could be unacceptable, a user agent SHOULD
temporarily stop receipt of more data and query the user for a
decision on further actions.
10.4.8 407 Proxy Authentication Required
This code is similar to 401 (Unauthorized), but indicates that the
client must first authenticate itself with the proxy. The proxy MUST
return a Proxy-Authenticate header field (section 14.33) containing a
challenge applicable to the proxy for the requested resource. The
client MAY repeat the request with a suitable Proxy-Authorization
header field (section 14.34). HTTP access authentication is explained
in "HTTP Authentication: Basic and Digest Access Authentication"
[43].
10.4.9 408 Request Timeout
The client did not produce a request within the time that the server
was prepared to wait. The client MAY repeat the request without
modifications at any later time.
10.4.10 409 Conflict
The request could not be completed due to a conflict with the current
state of the resource. This code is only allowed in situations where
it is expected that the user might be able to resolve the conflict
and resubmit the request. The response body SHOULD include enough
Fielding, et al. Standards Track [Page 67]
RFC 2616 HTTP/1.1 June 1999
information for the user to recognize the source of the conflict.
Ideally, the response entity would include enough information for the
user or user agent to fix the problem; however, that might not be
possible and is not required.
Conflicts are most likely to occur in response to a PUT request. For
example, if versioning were being used and the entity being PUT
included changes to a resource which conflict with those made by an
earlier (third-party) request, the server might use the 409 response
to indicate that it can't complete the request. In this case, the
response entity would likely contain a list of the differences
between the two versions in a format defined by the response
Content-Type.
10.4.11 410 Gone
The requested resource is no longer available at the server and no
forwarding address is known. This condition is expected to be
considered permanent. Clients with link editing capabilities SHOULD
delete references to the Request-URI after user approval. If the
server does not know, or has no facility to determine, whether or not
the condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cacheable unless indicated otherwise.
The 410 response is primarily intended to assist the task of web
maintenance by notifying the recipient that the resource is
intentionally unavailable and that the server owners desire that
remote links to that resource be removed. Such an event is common for
limited-time, promotional services and for resources belonging to
individuals no longer working at the server's site. It is not
necessary to mark all permanently unavailable resources as "gone" or
to keep the mark for any length of time -- that is left to the
discretion of the server owner.
10.4.12 411 Length Required
The server refuses to accept the request without a defined Content-
Length. The client MAY repeat the request if it adds a valid
Content-Length header field containing the length of the message-body
in the request message.
10.4.13 412 Precondition Failed
The precondition given in one or more of the request-header fields
evaluated to false when it was tested on the server. This response
code allows the client to place preconditions on the current resource
metainformation (header field data) and thus prevent the requested
method from being applied to a resource other than the one intended.
Fielding, et al. Standards Track [Page 68]
RFC 2616 HTTP/1.1 June 1999
10.4.14 413 Request Entity Too Large
The server is refusing to process a request because the request
entity is larger than the server is willing or able to process. The
server MAY close the connection to prevent the client from continuing
the request.
If the condition is temporary, the server SHOULD include a Retry-
After header field to indicate that it is temporary and after what
time the client MAY try again.
10.4.15 414 Request-URI Too Long
The server is refusing to service the request because the Request-URI
is longer than the server is willing to interpret. This rare
condition is only likely to occur when a client has improperly
converted a POST request to a GET request with long query
information, when the client has descended into a URI "black hole" of
redirection (e.g., a redirected URI prefix that points to a suffix of
itself), or when the server is under attack by a client attempting to
exploit security holes present in some servers using fixed-length
buffers for reading or manipulating the Request-URI.
10.4.16 415 Unsupported Media Type
The server is refusing to service the request because the entity of
the request is in a format not supported by the requested resource
for the requested method.
10.4.17 416 Requested Range Not Satisfiable
A server SHOULD return a response with this status code if a request
included a Range request-header field (section 14.35), and none of
the range-specifier values in this field overlap the current extent
of the selected resource, and the request did not include an If-Range
request-header field. (For byte-ranges, this means that the first-
byte-pos of all of the byte-range-spec values were greater than the
current length of the selected resource.)
When this status code is returned for a byte-range request, the
response SHOULD include a Content-Range entity-header field
specifying the current length of the selected resource (see section
14.16). This response MUST NOT use the multipart/byteranges content-
type.
Fielding, et al. Standards Track [Page 69]
RFC 2616 HTTP/1.1 June 1999
10.4.18 417 Expectation Failed
The expectation given in an Expect request-header field (see section
14.20) could not be met by this server, or, if the server is a proxy,
the server has unambiguous evidence that the request could not be met
by the next-hop server.
10.5 Server Error 5xx
Response status codes beginning with the digit "5" indicate cases in
which the server is aware that it has erred or is incapable of
performing the request. Except when responding to a HEAD request, the
server SHOULD include an entity containing an explanation of the
error situation, and whether it is a temporary or permanent
condition. User agents SHOULD display any included entity to the
user. These response codes are applicable to any request method.
10.5.1 500 Internal Server Error
The server encountered an unexpected condition which prevented it
from fulfilling the request.
10.5.2 501 Not Implemented
The server does not support the functionality required to fulfill the
request. This is the appropriate response when the server does not
recognize the request method and is not capable of supporting it for
any resource.
10.5.3 502 Bad Gateway
The server, while acting as a gateway or proxy, received an invalid
response from the upstream server it accessed in attempting to
fulfill the request.
10.5.4 503 Service Unavailable
The server is currently unable to handle the request due to a
temporary overloading or maintenance of the server. The implication
is that this is a temporary condition which will be alleviated after
some delay. If known, the length of the delay MAY be indicated in a
Retry-After header. If no Retry-After is given, the client SHOULD
handle the response as it would for a 500 response.
Note: The existence of the 503 status code does not imply that a
server must use it when becoming overloaded. Some servers may wish
to simply refuse the connection.
Fielding, et al. Standards Track [Page 70]
RFC 2616 HTTP/1.1 June 1999
10.5.5 504 Gateway Timeout
The server, while acting as a gateway or proxy, did not receive a
timely response from the upstream server specified by the URI (e.g.
HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed
to access in attempting to complete the request.
Note: Note to implementors: some deployed proxies are known to
return 400 or 500 when DNS lookups time out.
10.5.6 505 HTTP Version Not Supported
The server does not support, or refuses to support, the HTTP protocol
version that was used in the request message. The server is
indicating that it is unable or unwilling to complete the request
using the same major version as the client, as described in section
3.1, other than with this error message. The response SHOULD contain
an entity describing why that version is not supported and what other
protocols are supported by that server.
11 Access Authentication
HTTP provides several OPTIONAL challenge-response authentication
mechanisms which can be used by a server to challenge a client
request and by a client to provide authentication information. The
general framework for access authentication, and the specification of
"basic" and "digest" authentication, are specified in "HTTP
Authentication: Basic and Digest Access Authentication" [43]. This
specification adopts the definitions of "challenge" and "credentials"
from that specification.
12 Content Negotiation
Most HTTP responses include an entity which contains information for
interpretation by a human user. Naturally, it is desirable to supply
the user with the "best available" entity corresponding to the
request. Unfortunately for servers and caches, not all users have the
same preferences for what is "best," and not all user agents are
equally capable of rendering all entity types. For that reason, HTTP
has provisions for several mechanisms for "content negotiation" --
the process of selecting the best representation for a given response
when there are multiple representations available.
Note: This is not called "format negotiation" because the
alternate representations may be of the same media type, but use
different capabilities of that type, be in different languages,
etc.
Fielding, et al. Standards Track [Page 71]
RFC 2616 HTTP/1.1 June 1999
Any response containing an entity-body MAY be subject to negotiation,
including error responses.
There are two kinds of content negotiation which are possible in
HTTP: server-driven and agent-driven negotiation. These two kinds of
negotiation are orthogonal and thus may be used separately or in
combination. One method of combination, referred to as transparent
negotiation, occurs when a cache uses the agent-driven negotiation
information provided by the origin server in order to provide
server-driven negotiation for subsequent requests.
12.1 Server-driven Negotiation
If the selection of the best representation for a response is made by
an algorithm located at the server, it is called server-driven
negotiation. Selection is based on the available representations of
the response (the dimensions over which it can vary; e.g. language,
content-coding, etc.) and the contents of particular header fields in
the request message or on other information pertaining to the request
(such as the network address of the client).
Server-driven negotiation is advantageous when the algorithm for
selecting from among the available representations is difficult to
describe to the user agent, or when the server desires to send its
"best guess" to the client along with the first response (hoping to
avoid the round-trip delay of a subsequent request if the "best
guess" is good enough for the user). In order to improve the server's
guess, the user agent MAY include request header fields (Accept,
Accept-Language, Accept-Encoding, etc.) which describe its
preferences for such a response.
Server-driven negotiation has disadvantages:
1. It is impossible for the server to accurately determine what
might be "best" for any given user, since that would require
complete knowledge of both the capabilities of the user agent
and the intended use for the response (e.g., does the user want
to view it on screen or print it on paper?).
2. Having the user agent describe its capabilities in every
request can be both very inefficient (given that only a small
percentage of responses have multiple representations) and a
potential violation of the user's privacy.
3. It complicates the implementation of an origin server and the
algorithms for generating responses to a request.
Fielding, et al. Standards Track [Page 72]
RFC 2616 HTTP/1.1 June 1999
4. It may limit a public cache's ability to use the same response
for multiple user's requests.
HTTP/1.1 includes the following request-header fields for enabling
server-driven negotiation through description of user agent
capabilities and user preferences: Accept (section 14.1), Accept-
Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
Language (section 14.4), and User-Agent (section 14.43). However, an
origin server is not limited to these dimensions and MAY vary the
response based on any aspect of the request, including information
outside the request-header fields or within extension header fields
not defined by this specification.
The Vary header field can be used to express the parameters the
server uses to select a representation that is subject to server-
driven negotiation. See section 13.6 for use of the Vary header field
by caches and section 14.44 for use of the Vary header field by
servers.
12.2 Agent-driven Negotiation
With agent-driven negotiation, selection of the best representation
for a response is performed by the user agent after receiving an
initial response from the origin server. Selection is based on a list
of the available representations of the response included within the
header fields or entity-body of the initial response, with each
representation identified by its own URI. Selection from among the
representations may be performed automatically (if the user agent is
capable of doing so) or manually by the user selecting from a
generated (possibly hypertext) menu.
Agent-driven negotiation is advantageous when the response would vary
over commonly-used dimensions (such as type, language, or encoding),
when the origin server is unable to determine a user agent's
capabilities from examining the request, and generally when public
caches are used to distribute server load and reduce network usage.
Agent-driven negotiation suffers from the disadvantage of needing a
second request to obtain the best alternate representation. This
second request is only efficient when caching is used. In addition,
this specification does not define any mechanism for supporting
automatic selection, though it also does not prevent any such
mechanism from being developed as an extension and used within
HTTP/1.1.
Fielding, et al. Standards Track [Page 73]
RFC 2616 HTTP/1.1 June 1999
HTTP/1.1 defines the 300 (Multiple Choices) and 406 (Not Acceptable)
status codes for enabling agent-driven negotiation when the server is
unwilling or unable to provide a varying response using server-driven
negotiation.
12.3 Transparent Negotiation
Transparent negotiation is a combination of both server-driven and
agent-driven negotiation. When a cache is supplied with a form of the
list of available representations of the response (as in agent-driven
negotiation) and the dimensions of variance are completely understood
by the cache, then the cache becomes capable of performing server-
driven negotiation on behalf of the origin server for subsequent
requests on that resource.
Transparent negotiation has the advantage of distributing the
negotiation work that would otherwise be required of the origin
server and also removing the second request delay of agent-driven
negotiation when the cache is able to correctly guess the right
response.
This specification does not define any mechanism for transparent
negotiation, though it also does not prevent any such mechanism from
being developed as an extension that could be used within HTTP/1.1.
13 Caching in HTTP
HTTP is typically used for distributed information systems, where
performance can be improved by the use of response caches. The
HTTP/1.1 protocol includes a number of elements intended to make
caching work as well as possible. Because these elements are
inextricable from other aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching
design of HTTP separately from the detailed descriptions of methods,
headers, response codes, etc.
Caching would be useless if it did not significantly improve
performance. The goal of caching in HTTP/1.1 is to eliminate the need
to send requests in many cases, and to eliminate the need to send
full responses in many other cases. The former reduces the number of
network round-trips required for many operations; we use an
"expiration" mechanism for this purpose (see section 13.2). The
latter reduces network bandwidth requirements; we use a "validation"
mechanism for this purpose (see section 13.3).
Requirements for performance, availability, and disconnected
operation require us to be able to relax the goal of semantic
transparency. The HTTP/1.1 protocol allows origin servers, caches,
Fielding, et al. Standards Track [Page 74]
RFC 2616 HTTP/1.1 June 1999
and clients to explicitly reduce transparency when necessary.
However, because non-transparent operation may confuse non-expert
users, and might be incompatible with certain server applications
(such as those for ordering merchandise), the protocol requires that
transparency be relaxed
- only by an explicit protocol-level request when relaxed by
client or origin server
- only with an explicit warning to the end user when relaxed by
cache or client
Therefore, the HTTP/1.1 protocol provides these important elements:
1. Protocol features that provide full semantic transparency when
this is required by all parties.
2. Protocol features that allow an origin server or user agent to
explicitly request and control non-transparent operation.
3. Protocol features that allow a cache to attach warnings to
responses that do not preserve the requested approximation of
semantic transparency.
A basic principle is that it must be possible for the clients to
detect any potential relaxation of semantic transparency.
Note: The server, cache, or client implementor might be faced with
design decisions not explicitly discussed in this specification.
If a decision might affect semantic transparency, the implementor
ought to err on the side of maintaining transparency unless a
careful and complete analysis shows significant benefits in
breaking transparency.
13.1.1 Cache Correctness
A correct cache MUST respond to a request with the most up-to-date
response held by the cache that is appropriate to the request (see
sections 13.2.5, 13.2.6, and 13.12) which meets one of the following
conditions:
1. It has been checked for equivalence with what the origin server
would have returned by revalidating the response with the
origin server (section 13.3);
Fielding, et al. Standards Track [Page 75]
RFC 2616 HTTP/1.1 June 1999
2. It is "fresh enough" (see section 13.2). In the default case,
this means it meets the least restrictive freshness requirement
of the client, origin server, and cache (see section 14.9); if
the origin server so specifies, it is the freshness requirement
of the origin server alone.
If a stored response is not "fresh enough" by the most
restrictive freshness requirement of both the client and the
origin server, in carefully considered circumstances the cache
MAY still return the response with the appropriate Warning
header (see section 13.1.5 and 14.46), unless such a response
is prohibited (e.g., by a "no-store" cache-directive, or by a
"no-cache" cache-request-directive; see section 14.9).
3. It is an appropriate 304 (Not Modified), 305 (Proxy Redirect),
or error (4xx or 5xx) response message.
If the cache can not communicate with the origin server, then a
correct cache SHOULD respond as above if the response can be
correctly served from the cache; if not it MUST return an error or
warning indicating that there was a communication failure.
If a cache receives a response (either an entire response, or a 304
(Not Modified) response) that it would normally forward to the
requesting client, and the received response is no longer fresh, the
cache SHOULD forward it to the requesting client without adding a new
Warning (but without removing any existing Warning headers). A cache
SHOULD NOT attempt to revalidate a response simply because that
response became stale in transit; this might lead to an infinite
loop. A user agent that receives a stale response without a Warning
MAY display a warning indication to the user.
13.1.2 Warnings
Whenever a cache returns a response that is neither first-hand nor
"fresh enough" (in the sense of condition 2 in section 13.1.1), it
MUST attach a warning to that effect, using a Warning general-header.
The Warning header and the currently defined warnings are described
in section 14.46. The warning allows clients to take appropriate
action.
Warnings MAY be used for other purposes, both cache-related and
otherwise. The use of a warning, rather than an error status code,
distinguish these responses from true failures.
Warnings are assigned three digit warn-codes. The first digit
indicates whether the Warning MUST or MUST NOT be deleted from a
stored cache entry after a successful revalidation:
Fielding, et al. Standards Track [Page 76]
RFC 2616 HTTP/1.1 June 1999
1xx Warnings that describe the freshness or revalidation status of
the response, and so MUST be deleted after a successful
revalidation. 1XX warn-codes MAY be generated by a cache only when
validating a cached entry. It MUST NOT be generated by clients.
2xx Warnings that describe some aspect of the entity body or entity
headers that is not rectified by a revalidation (for example, a
lossy compression of the entity bodies) and which MUST NOT be
deleted after a successful revalidation.
See section 14.46 for the definitions of the codes themselves.
HTTP/1.0 caches will cache all Warnings in responses, without
deleting the ones in the first category. Warnings in responses that
are passed to HTTP/1.0 caches carry an extra warning-date field,
which prevents a future HTTP/1.1 recipient from believing an
erroneously cached Warning.
Warnings also carry a warning text. The text MAY be in any
appropriate natural language (perhaps based on the client's Accept
headers), and include an OPTIONAL indication of what character set is
used.
Multiple warnings MAY be attached to a response (either by the origin
server or by a cache), including multiple warnings with the same code
number. For example, a server might provide the same warning with
texts in both English and Basque.
When multiple warnings are attached to a response, it might not be
practical or reasonable to display all of them to the user. This
version of HTTP does not specify strict priority rules for deciding
which warnings to display and in what order, but does suggest some
heuristics.
13.1.3 Cache-control Mechanisms
The basic cache mechanisms in HTTP/1.1 (server-specified expiration
times and validators) are implicit directives to caches. In some
cases, a server or client might need to provide explicit directives
to the HTTP caches. We use the Cache-Control header for this purpose.
The Cache-Control header allows a client or server to transmit a
variety of directives in either requests or responses. These
directives typically override the default caching algorithms. As a
general rule, if there is any apparent conflict between header
values, the most restrictive interpretation is applied (that is, the
one that is most likely to preserve semantic transparency). However,
Fielding, et al. Standards Track [Page 77]
RFC 2616 HTTP/1.1 June 1999
in some cases, cache-control directives are explicitly specified as
weakening the approximation of semantic transparency (for example,
"max-stale" or "public").
The cache-control directives are described in detail in section 14.9.
13.1.4 Explicit User Agent Warnings
Many user agents make it possible for users to override the basic
caching mechanisms. For example, the user agent might allow the user
to specify that cached entities (even explicitly stale ones) are
never validated. Or the user agent might habitually add "Cache-
Control: max-stale=3600" to every request. The user agent SHOULD NOT
default to either non-transparent behavior, or behavior that results
in abnormally ineffective caching, but MAY be explicitly configured
to do so by an explicit action of the user.
If the user has overridden the basic caching mechanisms, the user
agent SHOULD explicitly indicate to the user whenever this results in
the display of information that might not meet the server's
transparency requirements (in particular, if the displayed entity is
known to be stale). Since the protocol normally allows the user agent
to determine if responses are stale or not, this indication need only
be displayed when this actually happens. The indication need not be a
dialog box; it could be an icon (for example, a picture of a rotting
fish) or some other indicator.
If the user has overridden the caching mechanisms in a way that would
abnormally reduce the effectiveness of caches, the user agent SHOULD
continually indicate this state to the user (for example, by a
display of a picture of currency in flames) so that the user does not
inadvertently consume excess resources or suffer from excessive
latency.
13.1.5 Exceptions to the Rules and Warnings
In some cases, the operator of a cache MAY choose to configure it to
return stale responses even when not requested by clients. This
decision ought not be made lightly, but may be necessary for reasons
of availability or performance, especially when the cache is poorly
connected to the origin server. Whenever a cache returns a stale
response, it MUST mark it as such (using a Warning header) enabling
the client software to alert the user that there might be a potential
problem.
Fielding, et al. Standards Track [Page 78]
RFC 2616 HTTP/1.1 June 1999
It also allows the user agent to take steps to obtain a first-hand or
fresh response. For this reason, a cache SHOULD NOT return a stale
response if the client explicitly requests a first-hand or fresh one,
unless it is impossible to comply for technical or policy reasons.
13.1.6 Client-controlled Behavior
While the origin server (and to a lesser extent, intermediate caches,
by their contribution to the age of a response) are the primary
source of expiration information, in some cases the client might need
to control a cache's decision about whether to return a cached
response without validating it. Clients do this using several
directives of the Cache-Control header.
A client's request MAY specify the maximum age it is willing to
accept of an unvalidated response; specifying a value of zero forces
the cache(s) to revalidate all responses. A client MAY also specify
the minimum time remaining before a response expires. Both of these
options increase constraints on the behavior of caches, and so cannot
further relax the cache's approximation of semantic transparency.
A client MAY also specify that it will accept stale responses, up to
some maximum amount of staleness. This loosens the constraints on the
caches, and so might violate the origin server's specified
constraints on semantic transparency, but might be necessary to
support disconnected operation, or high availability in the face of
poor connectivity.
13.2 Expiration Model
13.2.1 Server-Specified Expiration
HTTP caching works best when caches can entirely avoid making
requests to the origin server. The primary mechanism for avoiding
requests is for an origin server to provide an explicit expiration
time in the future, indicating that a response MAY be used to satisfy
subsequent requests. In other words, a cache can return a fresh
response without first contacting the server.
Our expectation is that servers will assign future explicit
expiration times to responses in the belief that the entity is not
likely to change, in a semantically significant way, before the
expiration time is reached. This normally preserves semantic
transparency, as long as the server's expiration times are carefully
chosen.
Fielding, et al. Standards Track [Page 79]
RFC 2616 HTTP/1.1 June 1999
The expiration mechanism applies only to responses taken from a cache
and not to first-hand responses forwarded immediately to the
requesting client.
If an origin server wishes to force a semantically transparent cache
to validate every request, it MAY assign an explicit expiration time
in the past. This means that the response is always stale, and so the
cache SHOULD validate it before using it for subsequent requests. See
section 14.9.4 for a more restrictive way to force revalidation.
If an origin server wishes to force any HTTP/1.1 cache, no matter how
it is configured, to validate every request, it SHOULD use the "must-
revalidate" cache-control directive (see section 14.9).
Servers specify explicit expiration times using either the Expires
header, or the max-age directive of the Cache-Control header.
An expiration time cannot be used to force a user agent to refresh
its display or reload a resource; its semantics apply only to caching
mechanisms, and such mechanisms need only check a resource's
expiration status when a new request for that resource is initiated.
See section 13.13 for an explanation of the difference between caches
and history mechanisms.
13.2.2 Heuristic Expiration
Since origin servers do not always provide explicit expiration times,
HTTP caches typically assign heuristic expiration times, employing
algorithms that use other header values (such as the Last-Modified
time) to estimate a plausible expiration time. The HTTP/1.1