Skip to content
Tensorflow based Neural Conversation Models
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
LICENSE.txt
README.md
__init__.py Added initial models Jul 25, 2016
data_utils.py
my_seq2seq.py Added initial models Jul 25, 2016
neural_conversation_model.py
seq2seq_model.py updated tuple issue Mar 14, 2017

README.md

Neural_Conversation_Models

================================= This implementation contains an extension of seq2seq tutorial for conversation models in Tensorflow:

  1. Option to use Beam Search and Beam Size for decoding

  2. Currently, it supports

    • Simple seq2seq models
    • Attention based seq2seq models
  3. To get better results use beam search during decoding / inference

Examples of basic model can be found in this paper.

https://arxiv.org/abs/1702.05512

Prerequisites

Data

Data accepted is in the tsv format where first component is the context and second is the reply

TSV format Ubuntu Dialog Data can be found here

example :-

  1. What are you doing ? \t Writing seq2seq model .

Usage

To train a model with Ubuntu dataset:

$ python neural_conversation_model.py --train_dir ubuntu/ --en_vocab_size 60000 --size 512 --data_path ubuntu/train.tsv --dev_data ubuntu/valid.tsv  --vocab_path ubuntu/60k_vocan.en --attention

To test an existing model:

$ python neural_conversation_model.py --train_dir ubuntu/ --en_vocab_size 60000 --size 512 --data_path ubuntu/train.tsv --dev_data ubuntu/valid.tsv  --vocab_path ubuntu/60k_vocan.en --attention --decode --beam_search --beam_size 25

Todo

  1. Add other state of art neural models.
  2. Adding layer normalization( in progress )

https://github.com/pbhatia243/tf-layer-norm

Contact

Parminder Bhatia, parminder.bhatia243@gmail.com

You can’t perform that action at this time.