Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Automate the creation of benchmark tables.
branch: master
Failed to load latest commit information.
pybenchmarks
.gitignore
MANIFEST.in
README.rst
setup.py

README.rst

PyBenchmarks

Automate the creation of benchmark tables.

The benchmark utility times one or more code snippets or functions by iterating through input arguments or keyed variables. It returns a dictionary containing the elapsed time (all platforms) and memory usage (linux only) for each combination of the input variables. An argument or keyed variable is iterated if and only if it is a list, a tuple, a generator or a range.

Examples

>>> import numpy as np
>>> from pybenchmarks import benchmark
>>> b = benchmark((np.empty, np.ones), (100, 10000, 1000000),
...               dtype=(int, complex))
empty: 100     dtype=int       1.62 us
ones : 100     dtype=int       3.61 us
empty: 100     dtype=complex   1.70 us
ones : 100     dtype=complex   5.42 us
empty: 10000   dtype=int       1.53 us
ones : 10000   dtype=int       7.53 us
empty: 10000   dtype=complex   2.33 us
ones : 10000   dtype=complex  16.29 us
empty: 1000000 dtype=int       1.87 us
ones : 1000000 dtype=int       1.84 ms
empty: 1000000 dtype=complex   2.19 us
ones : 1000000 dtype=complex   4.20 ms
>>> b = benchmark(['np.empty(n, dtype=dtype)', 'np.ones(n, dtype=dtype)'],
...               dtype=(int, complex), n=(100, 10000, 1000000),
...               setup='from __main__ import np')
'np.empty(n, dt...: dtype=int     n=100       1.36 us
'np.ones(n, dty...: dtype=int     n=100       2.83 us
'np.empty(n, dt...: dtype=complex n=100       1.44 us
'np.ones(n, dty...: dtype=complex n=100       3.50 us
'np.empty(n, dt...: dtype=int     n=10000     1.22 us
'np.ones(n, dty...: dtype=int     n=10000     7.05 us
'np.empty(n, dt...: dtype=complex n=10000     1.35 us
'np.ones(n, dty...: dtype=complex n=10000    23.78 us
'np.empty(n, dt...: dtype=int     n=1000000   1.47 us
'np.ones(n, dty...: dtype=int     n=1000000   2.04 ms
'np.empty(n, dt...: dtype=complex n=1000000   2.91 us
'np.ones(n, dty...: dtype=complex n=1000000   4.26 ms
>>> import time
>>> benchmark(time.sleep, (1, 2, 3))
1   1.00 s
2   2.00 s
3   3.00 s
>>> shapes = (100, 10000, 1000000)
>>> setup = """
... import numpy as np
... a = np.random.random_sample(shape)
... """
>>> b = benchmark('np.dot(a, a)', shape=shapes, setup=setup)
shape=100       1.38 us
shape=10000     6.33 us
shape=1000000 855.44 us
>>> shapes = (10, 100, 1000)
>>> setup="""
... import numpy as np
... a = np.random.random_sample((m, n))
... b = np.random.random_sample(n)
... """
>>> b = benchmark('np.dot(a, b)', m=shapes, n=shapes, setup=setup)
m=10   n=10     1.08 us
m=100  n=10     1.61 us
m=1000 n=10     6.91 us
m=10   n=100    1.48 us
m=100  n=100    4.16 us
m=1000 n=100   20.69 us
m=10   n=1000   4.42 us
m=100  n=1000  39.23 us
m=1000 n=1000 931.04 us
>>> def f(x, n, start=1):
...     out = start
...     for i in range(n):
...         out *= x
...     return out
>>> b = benchmark(f, np.full(10, 2), xrange(10), start=2.)
0   1.09 us
1   4.15 us
2   5.25 us
3   5.53 us
4  13.10 us
5   9.23 us
6   9.69 us
7  10.46 us
8  13.03 us
9  10.77 us
Something went wrong with that request. Please try again.