
    
      


    
      Skip to content
      
    
      
      
  











  
  
  





      

        

            



  
    Toggle navigation
  

  
    
      
        
    

      

      
        
          Sign in
        
      


      
          
    

            

            

  

      

    



    
      
          
            	
      
        Product
        
    

      
      
          
            	
  
      
    

      
        Actions

        Automate any workflow
      


    

	
  
      
    

      
        Packages

        Host and manage packages
      


    

	
  
      
    

      
        Security

        Find and fix vulnerabilities
      


    

	
  
      
    

      
        Codespaces

        Instant dev environments
      


    

	
  
      
    

      
        Copilot

        Write better code with AI
      


    

	
  
      
    

      
        Code review

        Manage code changes
      


    

	
  
      
    

      
        Issues

        Plan and track work
      


    

	
  
      
    

      
        Discussions

        Collaborate outside of code
      


    



          

          
              Explore
            	
  
      All features

    

	
  
      Documentation

    
    


	
  
      GitHub Skills

    
    


	
  
      Blog

    
    




          

      


	
      
        Solutions
        
    

      
      
          
              For
            	
  
      Enterprise

    

	
  
      Teams

    

	
  
      Startups

    

	
  
      Education

    
    




          

          
              By Solution
            	
  
      CI/CD & Automation

    

	
  
      DevOps

    

	
  
      DevSecOps

    
    




          

          
              Resources
            	
  
      Learning Pathways

    
    


	
  
      White papers, Ebooks, Webinars

    
    


	
  
      Customer Stories

    

	
  
      Partners

    
    




          

      


	
      
        Open Source
        
    

      
      
          
            	
  
      
      
        GitHub Sponsors

        Fund open source developers
      


    



          

          
            	
  
      
      
        The ReadME Project

        GitHub community articles
      


    



          

          
              Repositories
            	
  
      Topics

    

	
  
      Trending

    

	
  
      Collections

    



          

      


	
    Pricing



          

        
                



  
      
        
          
    

        

        Search or jump to...
          
            

          

      

    

    

  
      Search code, repositories, users, issues, pull requests...

    
      
                  
          
  
    
      
        Search
      
      
          
            
    

          
        
          

          
            

            
          

        

          Clear
            
    



      

      
  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    




  
    



        
                

        

      
        
          
    

        
        

    

    



          
            
              Search syntax tips
            

          

        




    



  

  

  
    

  
    
  
    
      
        Provide feedback
      

    

    
      
    

    

  



      
                
          We read every piece of feedback, and take your input very seriously.

          
          
          Include my email address so I can be contacted



      
                    Cancel

              Submit feedback





    
    

  
    
  
    
      
        Saved searches
      

        Use saved searches to filter your results more quickly

    

    
      
    

    

  



      
                


        
        
          


          

          
            Name
            
              
              
            
          


          
            Query
            
          


          
            To see all available qualifiers, see our documentation.
          


        


        
          

        




      
                    Cancel

              Create saved search




    
  




          
            
              Sign in
            
          


            
              Sign up
            
        

      

    

  



      
  
        
    

        You signed in with another tab or window. Reload to refresh your session.
        You signed out in another tab or window. Reload to refresh your session.
        You switched accounts on another tab or window. Reload to refresh your session.

      
    

Dismiss alert


  


    


  









    





  
    

  
    
      
    

    
    
      
      {{ message }}


    

  



  




    
    






  
        
    
      
  





    
    

    






  
  

      

        
            
  
      
    

    
    
      
        pdf-association
    
    /
    
      arlington-pdf-model
    

    Public
  



        


        
            	
                
    
Notifications

  
	
              
    
Fork
    6

  
	
        
            
    

          Star
          68
            
    



  
	
        

    



        

      


        
      
      
        A vendor- and implementation-independent specification-derived, machine-readable model of PDF.
      


    
      License

  
    
      
    

     Apache-2.0 license
    
  



    
        
          
    

          68
          stars
        
          
    

          6
          forks
          
            
    

            Branches
          
            
    

            Tags
        
          
    

          Activity
    


      
        
            
            
    

          Star

            
    



        

        
                    
    
Notifications

        

          
            

          
      

  






          

  	
  
    
              
    

        Code
          


    

	
  
    
              
    

        Issues
          26


    

	
  
    
              
    

        Pull requests
          1


    

	
  
    
              
    

        Discussions
          


    

	
  
    
              
    

        Actions
          


    

	
  
    
              
    

        Projects
          0


    

	
  
    
              
    

        Security
          

    

	
  
    
              
    

        Insights
          


    



          
  
      
    

Additional navigation options



  
    
                
  	
    
    
        
          
    

        
      
        
          Code

  
  

	
    
    
        
          
    

        
      
        
          Issues

  
  

	
    
    
        
          
    

        
      
        
          Pull requests

  
  

	
    
    
        
          
    

        
      
        
          Discussions

  
  

	
    
    
        
          
    

        
      
        
          Actions

  
  

	
    
    
        
          
    

        
      
        
          Projects

  
  

	
    
    
        
          
    

        
      
        
          Security

  
  

	
    
    
        
          
    

        
      
        
          Insights

  
  


  





      

  




  


  




    
    



    
      
  pdf-association/arlington-pdf-model

  
    

  
  
  
    
    


      This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.



  




  

  
          






















  
  
     


 master


BranchesTags



Go to file




Code


Folders and files
	Name	Name	Last commit message
	Last commit date

	Latest commit
 

History
1,160 Commits



	
3dvisualize


	
3dvisualize


	 
	 

	
Jupyter


	
Jupyter


	 
	 

	
TestGrammar


	
TestGrammar


	 
	 

	
gcxml


	
gcxml


	 
	 

	
resources


	
resources


	 
	 

	
scripts


	
scripts


	 
	 

	
tsv


	
tsv


	 
	 

	
xml


	
xml


	 
	 

	
.gitattributes


	
.gitattributes


	 
	 

	
.gitignore


	
.gitignore


	 
	 

	
Arlington-vs-ISO32K-Tables.xlsx


	
Arlington-vs-ISO32K-Tables.xlsx


	 
	 

	
CODE_OF_CONDUCT.md


	
CODE_OF_CONDUCT.md


	 
	 

	
CONTRIBUTORS.txt


	
CONTRIBUTORS.txt


	 
	 

	
INTERNAL_GRAMMAR.md


	
INTERNAL_GRAMMAR.md


	 
	 

	
LICENSE


	
LICENSE


	 
	 

	
MODEL_NOTES.md


	
MODEL_NOTES.md


	 
	 

	
Makefile


	
Makefile


	 
	 

	
NOTICE.txt


	
NOTICE.txt


	 
	 

	
PDF-Days-2021-Arlington-PDF-model.pdf


	
PDF-Days-2021-Arlington-PDF-model.pdf


	 
	 

	
README.md


	
README.md


	 
	 

	View all files



Repository files navigation
	README
	Code of conduct
	Apache-2.0 license


The Arlington PDF Model





   

   

   

   


Get your zero-cost copy of ISO 32000-2 now! Includes ISO-approved errata and new PDF 2.0 crypto extensions. This is what the Arlington PDF Model is based on...

TL;DR


The Arlington PDF Model is all about a machine-readable model data for PDF objects, not about code, runtimes, or tooling. If you want to start somewhere, start by exploring the TSV data model files at a Linux prompt, or in a Jupyter Notebook with the JSON equivalent (see ./scripts/README.md).

The starting assumption is that you are a software developer and already know about the PDF document object model, PDF syntax, and how PDF files generally 'work'. You also have experience in debugging valid and invalid PDFs.

Background


The Arlington PDF Model is a specification-derived, machine-readable definition of the full PDF document object model (DOM) as defined by the official PDF 2.0 specification ISO 32000-2:2020 and its related resolved errata. It provides an easy-to-process structured definition of all formally defined PDF objects (dictionaries, arrays and map objects) and their relationships beginning with the file trailer using a simple text-based syntax and a small set of declarative functions. The Arlington PDF Model is applicable to both parsers (PDF readers) and unparsers (PDF writers).

The Arlington definition does not replace the official ISO PDF specification and must always be used in conjunction with the PDF 2.0 document in order to fully understand the PDF DOM.

Each object from the latest PDF 2.0 dated revision (ISO 32000-2:2020) specification is represented by a single tabbed separated values (TSV) text file. Each TSV represents a single PDF object (either a dictionary, array, stream, or map) and contains all necessary data in the form of predicates (declarative functions or assertions) to validate real-world PDF files against the formal PDF specification. Sets of TSV files are also provided for each earlier PDF version - these are "down-derived" from the "latest" TSV file set using the version-based predicates.

The Arlington PDF Model predicates define various data integrity and other requirements expressed in the ISO PDF specification. All predicates start with fn: followed by a descriptive name. Predicates can be nested to form logical or mathematical expressions.

Text-based TSV files are platform independent, and easy to view/edit either in a spreadsheet application, in a text editor, in something like a Jupyter notebook, or directly here in Github. They are trivial to process using simple Linux commands (cut, grep, sed, etc.) or with more specialized "big data" utilities such as the EBay TSV-Utilities or GNU datamash. Scripting languages like Python also natively support TSV via:

import csv
tsvreader = csv.DictReader(file, delimiter='\t')


The Arlington PDF model is still under active development via the DARPA-funded SafeDocs fundamental research program!

What's new?


The latest release of Arlington includes:

	significant data model updates and corrections (including refinement of many object definitions),
	array naming convention of TSV files (*Array*.tsv, or *ColorSpace.tsv ) so that dictionaries and arrays are easily distinguishable,
	significant documentation updates,
	a large set of fully consistent predicates for PDF object data integrity rules and documented requirements,
	a far more comprehensive validation of the Arlington PDF grammar (to avoid typos or other potential errors),
	fix for memory leaks and some performance improvements (albeit with a far more computationally expensive data model now due to predicate determination!)
	significant updates to the TestGrammar (C++) proof-of-concept application to confirm predicates and perform a detailed version-based assessment of PDF files,
	functionality in both the data model and TestGrammar (C++) proof-of-concept application to define and test for extensions (whether that be ISO subsets, ISO/TS technical specifications, proprietary extensions, malformations, or user-defined),
	support for unsupported (unknown) encryption algorithms (currently limited to pdfium PDF SDK only)
	a far more detailed comparison of the Arlington PDF Model with the Adobe DVA grammar.


Limitations


The Arlington PDF Model currently does not define:

	PDF lexical rules and dialects (such as might be expressed with EBNF),
	PDF content streams (operators and operands),
	rules for the PDF file structure and layout including incremental updates, cross reference table data or linearization.


TSV Data Overview


Each row in a TSV files is the definition for a specific key in a dictionary or element in an array. All the characteristics captured in the TSV for that key/array element are defined in the PDF 2.0 specification, as corrected by PDF 2.0 errata.

	All PDF names are always expressed without the leading FORWARD-SLASH (/).
	PDF strings are required to have ' and ' (single quotes).
	PDF array objects must also have [ and ] and, of course, do not use commas between array elements.
	PDF Boolean (keywords) are always lowercase true and false.
	Logical Boolean values related to the description of PDF objects in the Arlington PDF Data Model are always uppercase TRUE/FALSE.
	TSV field names (a.k.a. column titles) are shown double-quoted (") in documentation to hopefully avoid confusion.


In the context of the Arlington PDF Model the following terminology is often used:

	"complex type" - a complex type is a key or array element which is allowed to be more than a single PDF type (e.g. array;dictionary). This often written as [];[];[] since this is how the Arlington model encodes this.
	"simple type" - a simple type is a predefined Arlington type that does not link to another Arlington TSV definition. This include bitmask, boolean, integer, number, matrix, etc.
	"version-based predicates" - a lot of details in the Arlington PDF model are dependent on the PDF version. These rules are encoded using several predicates including fn:SinceVersion(...), fn:IsPDFVersion(...), fn:BeforeVersion(...), and fn:Deprecated(...)


TSV fields are always in the following order and TABs must exist between all fields:

	"Key" - key in dictionary, or a zero-based integer index into an array. ASTERISK (*) represents a wildcard and means any key/index. An integer followed by an ASTERISK (*) represents the requirements to have repeating sets of array elements.
	"Type" - one or more of the pre-defined Arlington types alphabetically sorted and separated by SEMI-COLONs ;, possibly with version-based predicates.
	"SinceVersion" - version of PDF this key/array element was introduced in.
	"DeprecatedIn" - version of PDF this key/array element was deprecated in. Empty if not deprecated.
	"Required" - whether the key or array element is required. Might be expressed as a predicate.
	"IndirectReference" - whether the key is required to be an indirect reference (TRUE/FALSE) or if it must be a direct or indirect object (e.g. fn:MustBeDirect(...)).
	"Inheritable" - whether the key is inheritable (TRUE/FALSE). Might be expressed as a predicate.
	"DefaultValue" - optional default value of key/array element.
	"PossibleValues" - list of possible values. For dictionary /Type keys that must have a specific value, this will be a choice of just a single value.
	"SpecialCase" - predicates defining additional data integrity relationships.
	"Link" - name(s) of other TSV files for validating the values of this key/array element for dictionaries, arrays, streams, maps, name-trees or number-trees.
	"Notes" - free text for arbitrary notes. Often this will be a reference to a Table or subclause in ISO 32000-2:2020.


The two special objects _UniversalArray and _UniversalDictionary are not formally defined in the PDF 2.0 specification and represent generic an arbitrarily-sized PDF array and PDF dictionary respectively. They are used to resolve "Links" to generic objects for a few PDF objects.

TSV Field Summary


A very precise definition of all syntax rules for the Arlington PDF model as well as Python equivalent data structure descriptions and useful Linux commands is in INTERNAL_GRAMMAR.md. Only a simplified summary is provided below to get started. Note that not all TSV fields are shown in the examples below. And normally "Links" are not conveniently hyperlinked to actual TSV files either!

Key


Field 1 is "Key" and represents a single key in a dictionary, an index into an array, multiple wildcard entries (*), or an array with required sets of entries (DIGIT+*). Dictionary keys are obviously case-sensitive and array indices are always integers. To locate a key easily using Linux begin a regex with the start-of-line (^). For a precise match end the regex with a TAB (\t). Conveniently, ISO 32000 only uses ASCII characters for 1st class key names so there are no #-escapes used in Arlington. ISO 32000 also does not define any dictionary keys that are purely just an integer - Arlington leverages this fact so that array "keys" are always 0-based integers. Note that ISO 32000 does define some keys that start with integers (e.g. /3DD) but these are clearly distinguishable from array indices.

Example of a single entry in a dictionary with a /Type key:


	Key	Type	Required	...
	Type	name	TRUE	...




Example of an array requiring 3 floating-point numbers, such as RGB values:


	Key	Type	...
	0	number	...
	1	number	...
	2	number	...




Example of an array with unlimited number of elements of the same type ArrayOfThreads:


	Key	Type	...	Link
	*	dictionary	...	[Thread]




Dictionaries or arrays can also serve as maps, where an arbitrary name is associated with another definition. Examples include ClassMap or the Shading dictionary in the Resources dictionary. In such cases the Shading key is linked to ShadingMap and ShadingMap looks like this:


	Key	Type	...	Link
	*	dictionary;stream	...	[ShadingType1,ShadingType2,ShadingType3];[ShadingType4,ShadingType5,ShadingType6,ShadingType7]




Type


PDF 2.0 formally defines 9 basic types of object, but within the specification other types are commonly referred to. Therefore the Arlington PDF Model uses the following extended set of pre-defined types (case-sensitive, alphabetically sorted, SEMI-COLON (;) separated):

	array
	bitmask
	boolean
	date
	dictionary
	integer
	matrix
	name
	name-tree
	null
	number
	number-tree
	rectangle
	stream
	string
	string-ascii
	string-byte
	string-text


A single key in a dictionary can often be of different types. A common example is when a key is either a dictionary or an array of dictionaries. In this case "Type" would be defined as array;dictionary. Types are always stored in alphabetical order in the 2nd field using SEMI-COLON (;) separators. In addition, version-based predicates can occur indicating when new data types were added or removed.

These Linux commands lists all combinations of the Arlington types used in PDF:

cut -f 2 * | sort -u
cut -f 2 * | sed -e 's/;/\n/g' | sed -e 's/fn:[a-zA-Z]+(.\..,\([a-z\-]+\))//g' | sort -u


SinceVersion


Field 3 defines the PDF version when the relevant key or array element was introduced, as described in ISO 32000-2:2020. All TSV rows must have a valid (non-empty) "SinceVersion" entry. Valid values are PDF versions: 1.0, 1.1, ..., 1.7, or 2.0, or a fn:Extension or fn:Eval predicate.

cut -f 3 * | sort -u


DeprecatedIn


Field 4 defines the PDF version when the relevant key or array element was deprecated, as described in ISO 32000-2:2020. If the key/array element is still valid in PDF 2.0, then "DeprecatedIn" will be empty.  Valid values are PDF versions: 1.0, 1.1, ..., 1.7, or 2.0.

Required


Field 5 is effectively a Boolean field (TRUE/FALSE) but may also contain a fn:IsRequired(...) predicate. Examples include:

	
when a key changes from optional to required in a particular PDF version then the expression fn:IsRequired(fn:SinceVersion(x.y)) is used.


	
if a key/array entry is conditional based on the value of another key then an expression such as fn:IsRequired(@Filter!=JPXDecode) can be used. The @ syntax means "value of a key/array index".


	
if a key/array entry is conditional based on the presence or absence of another key then the nested expressions fn:IsRequired(fn:IsPresent(OtherKeyName)) or fn:IsRequired(fn:NotPresent(OtherKeyName)) can be used.




PossibleValues


Field 6 "PossibleValues" follows the same pattern as "Links":


	Type	...	PossibleValues	...
	integer;string	...	[1,3,99];[(Hello),(World)]	...




Often times it is necessary to use a predicate (fn:Xxxx) for situations when values are valid.

SpecialCase


A set of predicates is used to define more advanced kinds of relationships. Every predicate is always prefixed with fn:. Current predicates include:

fn:ArrayLength
fn:BeforeVersion
fn:BitSet
fn:BitsClear
fn:BitsSet
fn:Deprecated
fn:Eval
fn:ImageIsStructContentItem
fn:ImplementationDependent
fn:IsAssociatedFile
fn:IsMeaningful
fn:IsPDFTagged
fn:IsPDFVersion
fn:IsPresent
fn:IsRequired
fn:KeyNameIsColorant
fn:MustBeDirect
fn:NoCycle
fn:NotPresent
fn:PageContainsStructContentItems
fn:RequiredValue
fn:SinceVersion
fn:StringLength
...



Link


If a specific key or array element requires further definition (i.e. represents another dictionary, stream or array) the key is linked to another TSV via the "Link" field. It is the name of another TSV file without any file extension. Links are always encapsulated in [ and ].

Example in PageObject:


	Key	Type	...	Link
	Resources	dictionary	...	[Resource]




If "Key" is represented by different types we use following pattern with SEMI-COLON ";" separators:


	Type	...	Link
	array;dictionary	...	[ValidateArray];[ValidateDictionary]




Another common example is that one dictionary could be based on few different dictionaries. For example an Annotation might be Popup, Stamp, etc. In such cases the TSV filenames are separated with COMMA (",") separators like this:


	Type	...	Link
	array;dictionary	...	[ArrayOfAnnots];[AnnotStamp,AnnotRedact,AnnotPopup]




Links may also be wrapped in the fn:Deprecated or fn:SinceVersion predicates if a specific type of PDF object has been deprecated or introduced in specific PDF versions.



Proof of Concept Implementations


All PoCs are command line based with built-in help if no command line arguments are provided. Command line options for all Python scripts and TestGrammar C++ PoC are aligned to keep things simple.

Python scripts


The scripts folder contains several Python3 scripts and an example Jupyter Notebook which are all cross-platform (tested on both Windows and Linux). See scripts/README.md.

TestGrammar (C++17)


A CLI utility that can validate an Arlington grammar (set of TSV files), compare the Arlington PDF Model to the Adobe DVA definition, or perform a detailed validation check of PDF files against the Arlington PDF Model. All documentation is now located in TestGrammar/README.md.

GCXML (Java)


A CLI Java-based proof of concept application that can convert the main Arlington TSV file set (in ./tsv/latest) into PDF version specific file sets in both TSV and XML formats. The XML format is defined by this schema. In addition, some research oriented queries can be performed using the XML as input. Detailed documentation is now located in gcxml/README.md.

The Java gcxml.jar file must be run in this top-level folder (such that ./tsv/ and ./xml/ are both sub-folders):

java -jar ./gcxml/dist/gcxml.jar -xml


NOTE: some functionality of gcxml may no longer work as the TSV model has been improved. It is currently only used to convert the TSV data to XML, but the XML processing may be rotted.

3D and VR visualizations


The latest Arlington PDF Models for each PDF version can be visualized in 3D or using VR goggles at https://safedocs.pdfa.org.

Helpful editors


When --no-color is not specified, the output files from the TestGrammar proof-of-concept application will use a file extension of .ansi. When --no-color is specified, the output files from TestGrammar have a normal .txt extension. Associating .ansi files with Atom then provides a good experience. Linux, Mac and Windows CLI prompts all support colorized output.

Microsoft's free Visual Studio Code has several extensions which support ANSI color codes such as ANSI Colors, as well as extensions to support automatic column widths in TSV (VSCode TSV) and colorized columns in TSV files (Rainbow CSV).

Linux CLI commands


Basic Linux commands can be used on an Arlington TSV data set (cut, grep, sed, etc.), however field (column) numbering needs to be remembered and screen display can be messed up unless you have a wide monitor and small fonts. Alternative more specialized utilities such as the EBay TSV-Utilities or GNU datamash can also be used.

# Ensure sorting is consistent...
export LC_ALL=C

# If you have a wide terminal, this helps with TSV display from cat, etc.
tabs 1,20,37,50,64,73,91,103,118,140,158,175,190,210,230

# Change directory to a specific PDF version or "latest"
cd ./tsv/latest

# Confirm consistent field headers across all TSV files
head -qn1 * | sort -u | sed -e 's/\t/\\t/g'
# Correct response: Key\tType\tSinceVersion\tDeprecatedIn\tRequired\tIndirectReference\tInheritable\tDefaultValue\tPossibleValues\tSpecialCase\tLink\tNote

# Unique set of key names (case-sensitive strings), array indices (0-based integers) or '*' for dictionary or array maps
cut -f 1 * | sort -u
grep -Pho "^[^\t]+" * | sort -u
# Those PDF objects that have a defined /Type key
grep --files-with-match "^Type" *

# Confirm the Type field
cut -f 2 * | grep -v "fn:" | sort -u
# Correct response: each line only has Types listed above, separated by semi-colons, sorted alphabetically.
cut -f 2 * | grep -v "fn:" | sed -e 's/;/\n/g' | sort -u
# Correct response: Type, array, boolean, date, dictionary, integer, matrix, name, name-tree, nll, number,
#                   number-tree, rectangle, stream, string, string-ascii, string-byte, string-text

# Confirm all "SinceVersion" values
cut -f 3 * | sort -u
# Correct response: pdf-version values 1.0, ..., 2.0, fn:Extension, fn"Eval and SinceVersion (column title). No blank lines.

# Confirm all "DeprecatedIn" values
cut -f 4 * | sort -u
# Correct response: pdf-version values 1.0, ..., 2.0, DeprecatedIn. Blank lines OK.

# Confirm all "Required" values (TRUE, FALSE or fn:IsRequired predicate)
cut -f 5 * | sort -u
# Correct response: TRUE, FALSE, Required, fn:IsRequired(...). No blank lines.

# Confirm all "IndirectReference" values (TRUE, FALSE or fn:MustBeDirect() predicate)
cut -f 6 * | sed -e 's/;/\n/g' | sort -u
# Correct response: TRUE, FALSE, [TRUE], [FALSE], IndirectReference or a fn:MustBeDirect(...) predicate. No blank lines.

# Field 7 is "Inheritable" (TRUE or FALSE)
cut -f 7 * | sort -u
# Correct response: TRUE, FALSE, Inheritable.

# Field 8 is "DefaultValue"
cut -f 8 * | sort -u

# Field 9 is "PossibleValues"
cut -f 9 * | sort -u
# Responses should all be inside '[' .. ']', separated by semi-colons if more than one. Empty sets '[]' OK.

# Field 10: List all "SpecialCases"
cut -f 10 * | sort -u

# Field 11: Sets of "Link" to other TSV objects
cut -f 11 * | sort -u
# Responses should all be inside '[' .. ']', separated by semi-colons if more than one. Empty sets '[]' OK.

# All "Notes" from field 12 (free form text)
cut -f 12 * | sort -u

# Set of all unique custom predicates (starting "fn:")
grep -Pho "fn:[^,\(]+\(" * | sort -u

# Custom predicates with context
grep -Pho "fn:[^\t]*" * | sort -u


Example of a GNU datamash check command that can confirm that all TSV files in an Arlington data set have the correct number of fields:

for f in *.tsv; do echo -n "$f, " ; datamash --headers check 12 fields < $f || break; done


If the monolithic single TSV file pandas.tsv created by [scripts/arlington-to-pandas.py] is used (being a merge of all individual TSV files in an Arlington file set, with a left-most field object name being added), then GNU datamash can also be used to get some basic statistics with reference to field titles:

# Count the number of unique PDF objects and keys in an Arlington PDF Model
datamash --headers --sort countunique Object < ./scripts/pandas.tsv
datamash --headers --sort countunique Key < ./scripts/pandas.tsv

# Count number of keys / array elements in each object
datamash --headers --sort groupby 1 count 1 < ./scripts/pandas.tsv

# Count the number of new keys / array elements introduced in each PDF version
datamash --headers --sort groupBy SinceVersion count SinceVersion < ./scripts/pandas.tsv

# Count the number of keys / array elements that got deprecated in each PDF version
datamash --headers --sort groupBy DeprecatedIn count DeprecatedIn < ./scripts/pandas.tsv

# For each PDF object, when was it first introduced and when was something last added to it
datamash -H --round=1 --group Object min SinceVersion max SinceVersion < ./scripts/pandas.tsv


Examples of the more powerful EBay TSV-Utilities commands. Note that Linux shell requires the use of backslash to stop shell expansion. These commands can use TSV field names:

# Find all keys that are only 'string-byte'
tsv-filter -H --str-eq Type:string-byte *.tsv

# Find all keys that are only 'string-byte' but introduced in PDF 1.5 or later
tsv-filter -H --str-eq Type:string-byte --ge SinceVersion:1.5 *.tsv

# Find all keys that can be any type of string
tsv-filter -H --regex Type:string\* --ge SinceVersion:1.5 *.tsv


Publications


	
"Demystifying PDF through a machine-readable definition"; Peter Wyatt, LangSec Workshop at IEEE Security & Privacy, May 27th and 28th, 2021 [Paper] [Talk Video]


	
"The Arlington PDF Model" [presentation], Peter Wyatt, PDF Association's "PDF Days 2021" online event, Tuesday 28 Sept 2021.


	
"Strategies for Testing PDF Files", PDF Days Europe 2022, Michael Demey, iText Group NV.


	
"BFO PDF Library 2.27.2 - introducing the Arlington Model", blog post, 5 Dec 2022Mike Bremford, BFO.


	
"DARPA SafeDocs: an approach to secure parsing and information interchange formats", [30 minute presentation Video] Sergey Bratus, Microsoft Research Summit 2021, 20 October 2021.


	
"Development Preview: PDF file checker based on the Arlington PDF Model", 21 June 2023, Open Preserve Foundation. See https://software.verapdf.org/develop/arlington/


	
Online Arlington PDF Model checker by PDFix.






Copyright 2021-22 PDF Association, Inc. https://www.pdfa.org

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001119C0079. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency (DARPA). Approved for public release.






   



        


        

      
        
          
            
  About


      
        A vendor- and implementation-independent specification-derived, machine-readable model of PDF.
      


    Topics

    
        
      
  pdf

      
  iso

  


    


    Resources

    
      
        
    

        Readme
    


  
    License

  
    
      
    

     Apache-2.0 license
    
  



    Code of conduct

    
      
        
    

        Code of conduct
      
    



  
  

  
    
      
    

      Activity
  


    
      
        
    

        Custom properties
    


  Stars

  
    
      
    

      68
      stars
  


  Watchers

  
    
      
    

      18
      watching
  


  Forks

  
    
      
    

      6
      forks
  


    
      
          Report repository
    




          

        


        
            
              
                
  
    Releases
      3



  
    
    

    
      
        v0.5
        
          Latest
      

      Oct 2, 2021

    

    
      
        + 2 releases


              

            


        
        
            
              
                
  
    Packages
      0




      
        No packages published 

      




              

            


        
            
              
                

              

            


        
            
              
                
  
    Contributors
      5




    
      	
            

          
	
            

          
	
            

          
	
            

          
	
            

          





              

            


        
        
            
              
                Languages


  
    
    
    
    
    
    
    


	
        
          
    

          C
          60.3%
        
    
	
        
          
    

          C++
          38.2%
        
    
	
        
          
    

          Python
          0.4%
        
    
	
        
          
    

          Jupyter Notebook
          0.4%
        
    
	
        
          
    

          Java
          0.4%
        
    
	
        
          
    

          Makefile
          0.2%
        
    
	
      
        
    

        Other
        0.1%
      
    



              

            


              



  




  



  





    
  


  


          
  Footer


  


  
    
      
        
    


      
        © 2024 GitHub, Inc.
      
    


    
      Footer navigation


      	
            Terms
          
	
            Privacy
          
	
            Security
          
	
            Status
          
	
            Docs
          
	
            Contact
          
	
  
    
      Manage cookies
    
  

	
  
    
      Do not share my personal information
    
  



    
  






    


  
    
    

    
      
    

    
    You can’t perform that action at this time.
  


    
  
    
    
      
        
    

      
      

    
  


    
  
  




    
  
    
      
    

      
    

    
  



  
    
      
    

      
    

    
  






    


    

    

  