# peeterjoot/physicsplay

modified: ../../env/.aspell.en.prepl

modified:   ../../env/.aspell.en.pws
modified:   modernOpticsProblemSet1.tex
 @@ -170,7 +170,7 @@ \imageFigure{modernOpticsProblemSet1Fig1aTake2}{Input and output conjugate planes for paraxial thin lens}{fig:modernOpticsProblemSet1:modernOpticsProblemSet1Fig1aTake2}{0.4} -The system tranfer matrix, a composition of a free propagation matrix, then a thin lens paraxial matrix, and one more free propagation matrix is +The system transfer matrix, a composition of a free propagation matrix, then a thin lens paraxial matrix, and one more free propagation matrix is \begin{dmath}\label{eqn:modernOpticsProblemSet1:1790} M @@ -452,7 +452,7 @@ y' = f \theta, \end{dmath} -demonstrating the claim that at the focus, the position is an angular distribution of the incident beam. This is clearly independent of $x$ so the input plane position is irrelavant. +demonstrating the claim that at the focus, the position is an angular distribution of the incident beam. This is clearly independent of $x$ so the input plane position is irrelevant. \item[(d)] @@ -971,7 +971,7 @@ = \sin\theta_1 \end{dmath} -Similarily for the y-component in the $x > 0$ region we have +Similarly for the y-component in the $x > 0$ region we have \begin{dmath}\label{eqn:modernOpticsProblemSet1:690} \ycap \cdot \dds{\Br_2} = \sin\theta_2. @@ -990,7 +990,7 @@ \end{dmath} \item[(b)] -We can produce a condractory result if we avoid the origin when treating the x-component of the Ray equation. Repeating the argument above for $\Abs{x} > 0$ where $\spacegrad n = 0$ would give us +We can produce a contradictory result if we avoid the origin when treating the x-component of the Ray equation. Repeating the argument above for $\Abs{x} > 0$ where $\spacegrad n = 0$ would give us \begin{dmath}\label{eqn:modernOpticsProblemSet1:790} n \dds{x} = \text{constant}