Permalink
Browse files

modified: ../../env/.aspell.en.prepl

modified:   ../../env/.aspell.en.pws
modified:   modernOpticsProblemSet1.tex
  • Loading branch information...
1 parent ef02ac9 commit 9a9cef00b862bb3d00e98030c057875dc69abe50 @peeterjoot committed Oct 4, 2012
Showing with 19 additions and 17 deletions.
  1. +1 −0 env/.aspell.en.prepl
  2. +14 −13 env/.aspell.en.pws
  3. +4 −4 notes/blogit/modernOpticsProblemSet1.tex
@@ -12,6 +12,7 @@ somethat something
persuing perusing
persuing Pursuing
persuing pursuing
+condractory contradictory
betwen between
expection Expectation
liew lieu
View
@@ -1,4 +1,4 @@
-personal_ws-1.1 en 370
+personal_ws-1.1 en 371
OuterMorphism
outermorphism
atm
@@ -102,10 +102,11 @@ iEt
Srednicki
GPS
Schwartzchild
-Hmm
hoc
+Hmm
sinc
inline
+telecentric
tuples
ijk
anticommutators
@@ -174,8 +175,8 @@ overdot
rejective
dH
isothermal
-dj
BT
+dj
Maxwell's
iux
dk
@@ -191,42 +192,42 @@ dn
online
trivector
LHS
-dp
dP
+dp
const
-dQ
dq
-dR
+dQ
dr
+dR
MFENCE
Liouville's
xyz
ds
dt
du
Cayley
-dv
dV
+dv
Baylis
dw
DeLambertian
antisymmetric
-dX
dx
+dX
FullSimplify
mgh
dy
ia
dinger
Poynting
GAViewer
-iB
ib
+iB
eV
ic
Savart
-iE
ie
+iE
beastie
iI
eigenkets
@@ -259,16 +260,16 @@ kets
mE
iz
vectoral
-l'm
lm
+l'm
inviscid
anticommute
mk
reparametrization
kx
mn
-nl
n'l
+nl
nm
brakets
Neumann
@@ -283,8 +284,8 @@ rc
Eulerian
linearized
Tong's
-nlm
n'l'm
+nlm
Lut
PDE
PV
@@ -170,7 +170,7 @@
\imageFigure{modernOpticsProblemSet1Fig1aTake2}{Input and output conjugate planes for paraxial thin lens}{fig:modernOpticsProblemSet1:modernOpticsProblemSet1Fig1aTake2}{0.4}
-The system tranfer matrix, a composition of a free propagation matrix, then a thin lens paraxial matrix, and one more free propagation matrix is
+The system transfer matrix, a composition of a free propagation matrix, then a thin lens paraxial matrix, and one more free propagation matrix is
\begin{dmath}\label{eqn:modernOpticsProblemSet1:1790}
M
@@ -452,7 +452,7 @@
y' = f \theta,
\end{dmath}
-demonstrating the claim that at the focus, the position is an angular distribution of the incident beam. This is clearly independent of $x$ so the input plane position is irrelavant.
+demonstrating the claim that at the focus, the position is an angular distribution of the incident beam. This is clearly independent of $x$ so the input plane position is irrelevant.
\item[(d)]
@@ -971,7 +971,7 @@
= \sin\theta_1
\end{dmath}
-Similarily for the y-component in the $x > 0$ region we have
+Similarly for the y-component in the $x > 0$ region we have
\begin{dmath}\label{eqn:modernOpticsProblemSet1:690}
\ycap \cdot \dds{\Br_2} = \sin\theta_2.
@@ -990,7 +990,7 @@
\end{dmath}
\item[(b)]
-We can produce a condractory result if we avoid the origin when treating the x-component of the Ray equation. Repeating the argument above for $\Abs{x} > 0$ where $\spacegrad n = 0$ would give us
+We can produce a contradictory result if we avoid the origin when treating the x-component of the Ray equation. Repeating the argument above for $\Abs{x} > 0$ where $\spacegrad n = 0$ would give us
\begin{dmath}\label{eqn:modernOpticsProblemSet1:790}
n \dds{x} = \text{constant}

0 comments on commit 9a9cef0

Please sign in to comment.