Skip to content
master
Switch branches/tags
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

Project Varro

If FPGAs are universal function approximators, can they be used like neural networks?

This project expands upon Adrian Thompson's famous paper using modern FPGAs and advancements in evolutionary algorithms with the goal of universal function approximation (just like a neural network!)

Installation

Training (Fitting)

To train the individual to solve a problem, for example to evolve the neural network over 500 generations using the multiobjective novelty search - reward (nsr-es) just run:

  • python -m varro.algo.experiment --purpose 'fit' --cxpb 0 --ngen 500 --strategy 'nsr-es' --problem_type 'sinx'

Prediction

To predict from a checkpoint using a numpy file of inputs:

  • python -m varro.algo.experiment --purpose 'predict' --ckptfolder ./checkpoint/varro/algo/sinx_2019-Nov-16-19\:00\:41 --strategy 'nsr-es' --X ./varro/algo/X_test.npy

Results

  • python -m varro.algo.experiment --purpose 'fit' --cxpb 0.0 --mutpb 1.0 --imutsigma 0.1 --ngen 100 --popsize 500 --strategy 'sga' --problem_type 'sinx' sinx_evolve_sga

  • python -m varro.algo.experiment --purpose 'fit' --cxpb 0.0 --mutpb 1.0 --imutsigma 0.1 --ngen 100 --popsize 500 --strategy 'ns-es' --problem_type 'sinx' sinx_evolve_ns-es

  • python -m varro.algo.experiment --purpose 'fit' --cxpb 0.0 --mutpb 1.0 --imutsigma 0.1 --ngen 100 --popsize 500 --strategy 'nsr-es' --problem_type 'sinx' sinx_evolve_nsr-es

About

If FPGAs are universal function approximators, can they be used like neural networks?

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published