-
Notifications
You must be signed in to change notification settings - Fork 102
PythonForPencil
For modern operating systems, Python is generally installed together with the system. If not, it can be installed via your preferred package manager or downloaded from the website https://www.python.org/. For convenience, I strongly recommend to also install IPython, which is a more convenient console for python. You will also need the NumPy, matplotlib, h5py and Tk library.
Perhaps the easiest way to obtain all the required software mentioned above is install either Continuum's Anaconda or Enthought's Canopy. These Python distributions also provide (or indeed are) integrated graphical development environments.
Another way of installing libraries, particularly on a cluster without root privileges you can use pip or pip3:
pip install h5py
pip3 install h5py
In order for python to find the Pencil Code commands you will have to add to your .bashrc:
export PYTHONPATH=$PENCIL_HOME/python
If you use IPython, for convenience, you should modify your ~/.ipython/ipythonrc
(create it if it doesn't exist) and add:
import_all pencil
Additional, add to your ~/.ipython/profile_default/startup/init.py
the following lines:
import numpy as np
import pylab as plt
import pencil as pc
import matplotlib
from matplotlib import rc
plt.ion()
matplotlib.rcParams['savefig.directory'] = ''
In case you are on a cluster and don't have access to IPython you can edit you ~/.pythonrc
:
#!/usr/bin/python
import numpy as np
import pylab as plt
import pencil as pc
import atexit
#import readline
import rlcompleter
# Enable search with CTR+r in the history.
try:
import readline
except ImportError:
print "Module readline not available."
else:
import rlcompleter
readline.parse_and_bind("tab: complete")
# Enables command history.
historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)
if os.path.exists(historyPath):
readline.read_history_file(historyPath)
atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath
plt.ion()
create the file ~/.pythonhistory
and add to your ~/.bashrc
:
export PYTHONSTARTUP=~/.pythonrc
For a list of all Pencil Code commands start IPython and type pc. <TAB>
(as with auto completion). To access the help of any command just type the command followed by a '?' (no spaces), e.g.:
In [1]: pc.math.dot?
Type: function
String Form:<function dot at 0x7f9d96cb0cf8>
File: ~/pencil-code/python/pencil/math/vector_multiplication.py
Definition: pc.math.dot(a, b)
Docstring:
take dot product of two pencil-code vectors a & b with shape
a.shape = (3, mz, my, mx)
You can also use help(pc.math.dot)
for a more complete documentation of the command.
There are various reading routines for the Pencil Code data. All of them return an object with the data. To store the data into a user defined variable type e.g.
ts = pc.read.ts()
Most commands take some arguments. For most of them there is a default value, e.g.
pc.read.ts(file_name='time_series.dat', datadir='data')
You can change the values by simply typing e.g.
pc.read.ts(datadir='other_run/data')
Reading the time series file is very easy. Simply type
ts = pc.read.ts()
and python stores the data in the variable ts
. The physical quantities are members of the object ts
and can be accessed accordingly, e.g. ts.t, ts.emag
. To check which other variables are stored simply do the tab auto completion ts. <TAB>
.
Plot the data with the matplotlib commands:
plt.plot(ts.t, ts.emag)
The standard plots are not perfect and need a little polishing. See further down about making pretty plots. You can save the plot into a file using the GUI or with
plt.savefig('plot.eps')
Read var files:
var = pc.read.var()
Read slice files:
slices = pc.read.slices(field='bb1', extension='xy')
This returns an object slices
with members t
and xy
. The last contains the additional member xy
.
If you want to plot e.g. the x-component of the magnetic field at the central plane simply type:
plt.imshow(var.bb[0, 128, :, :].T, origin='lower', extent=[-4, 4, -4, 4], interpolation='nearest', cmap='hot')
For a complete list of arguments of plt.imshow
refer to its documentation.
For a more interactive function plot use:
pc.visu.animate_interactive(slices.xy.bb, slices.t)
Be aware: arrays from the reading routines are ordered f[nvar, mz, my, mx]
, i.e. reversed to IDL. This affects reading var files and slice files.
With the functionality of writing snapshots directly into VAR*
or var.dat
the user can now generate an initial condition directly from a numpy array or modify the last snapshot and continue running. The function to be used is in python/pencil/io/snapshot.py
and is called write_snapshot
. Here we outline how to generate an initial condition. For modifying the var.dat
only the last steps are necessary.
First we need an empty run. For this let us use samples/kin-dynamo
cd pencil-code/samples/kin-dynamo
pc_setupsrc
In principle we can use any initial condition, as we are going to over write it. But it is cleaner to use
INITIAL_CONDITION = noinitial_condition
in src/Makefile.local
. Compile and start:
make
pc_start
This generates a VAR0
and var.dat
in every proc directory.
Our snapshot writing routine needs to know the cpu structure. Furthermore, we need to know the indices of the primary variables. The first can be obtained from src/cparam.local
, while the latter can be read from the newly generated data/index.pro
. The numpy arrays that are written need to have the shape [nvar, nz, ny, nz] with the correct order of variables and no ghost zones. Optionally, the number of ghost zones, which is usually 3, can be specified.
Putting it all together our python routine would look something like this:
import numpy as np
import pencil as pc
# Read the data to obtain the shape of the arrays, rather than the actual data.
var = pc.read.var(trimall=True)
# Modify the data.
var.aa += np.random.random(var.aa.shape)
# Write the new VAR0 and var.dat files.
pc.io.write_snapshot(var.aa, file_name='VAR0', nprocx=1, nprocy=1, nprocz=1)
pc.io.write_snapshot(var.aa, file_name='var.dat', nprocx=1, nprocy=1, nprocz=1)
Standard plots with any plotting library are not the prettiest ones. The same is true for matplotlib. Here are a few pretty examples of plots where the default style is changed. You can add your commands into a script e.g. plot_results.py
and execute it in IPython with execfile('plot_results.py')
.
Simple plot:
import pencil as pc
import numpy as np
import pylab as plt
# Read the time_series.dat.
ts = pc.read.ts()
# Prepare the plot.
# Set the size and margins.
width = 8
height = 6
plt.rc("figure.subplot", left=0.2)
plt.rc("figure.subplot", right=0.95)
plt.rc("figure.subplot", bottom=0.15)
plt.rc("figure.subplot", top=0.90)
figure = plt.figure(figsize=(width, height))
axes = plt.subplot(111)
# Make the actual plot.
plt.semilogy(ts.t, ts.brms/ts.brms[0], linestyle='-', linewidth=2, color='black', label=r'$\langle\bar{B}\rangle/\langle\bar{B}\rangle(0)$')
plt.semilogy(ts.t, ts.jrms/ts.jrms[0], linestyle='--', linewidth=2, color='blue', label=r'$\langle\bar{J}\rangle/\langle\bar{J}\rangle(0)$')
plt.semilogy(ts.t, ts.jmax/ts.jmax[0], linestyle=':', linewidth=2, color='red', label=r'$J_{\rm max}/J_{\rm max}(0)$')
plt.xlabel(r'$t$', fontsize=25)
plt.ylabel(r'$\langle\bar{B}\rangle, \langle\bar{J}\rangle, J_{\rm max}$', fontsize=25)
plt.title('various quantities', fontsize=25, family='serif')
# Prepare the legend.
plt.legend(loc=1, shadow=False, fancybox=False, numpoints=1)
leg = plt.gca().get_legend()
# Change the font size of the legend.
ltext = leg.get_texts() # all the text.Text instance in the legend
for k in range(len(ltext)):
legLine = ltext[k]
legLine.set_fontsize(25)
frame = leg.get_frame()
frame.set_facecolor('1.0')
leg.draw_frame(False)
# Make plot pretty.
plt.xticks(fontsize=20, family='serif')
plt.yticks(fontsize=20, family='serif')
axes.tick_params(axis='both', which='major', length=8)
axes.tick_params(axis='both', which='minor', length=4)
# Create an offset between the xylabels and the axes.
for label in axes.xaxis.get_ticklabels():
label.set_position((0, -0.03))
for label in axes.yaxis.get_ticklabels():
label.set_position((-0.03, 0))
Simple 2d plot:
import pencil as pc
import numpy as np
import pylab as plt
# Read the slices.
slices = pc.read.slices(field='bb1', extension='xy')
# Read the grid size.
grid = pc.read.grid()
x0 = grid.x[3]
x1 = grid.x[-4]
y0 = grid.y[3]
y1 = grid.y[-4]
# Prepare the plot.
# Set the size and margins.
width = 8
height = 6
plt.rc("figure.subplot", left=0.15)
plt.rc("figure.subplot", right=0.95)
plt.rc("figure.subplot", bottom=0.15)
plt.rc("figure.subplot", top=0.95)
figure = plt.figure(figsize=(width, height))
axes = plt.subplot(111)
# Make the actual plot.
plt.imshow(zip(*slices.xy.bb1[0, :, :]), origin='lower', interpolation='nearest', cmap='hot', extent=[x0, x1, y0, y1])
plt.xlabel(r'$x$', fontsize=25)
plt.ylabel(r'$y$', fontsize=25)
# Set the colorbar.
cb = plt.colorbar()
cb.set_label(r'$B_{x}(x,y,z=0)$', fontsize=25)
cbytick_obj = plt.getp(cb.ax.axes, 'yticklabels')
plt.setp(cbytick_obj, fontsize=15, family='serif')
# Make plot pretty.
plt.xticks(fontsize=20, family='serif')
plt.yticks(fontsize=20, family='serif')
axes.tick_params(axis='both', which='major', length=8)
axes.tick_params(axis='both', which='minor', length=4)
# Create an offset between the xylabels and the axes.
for label in axes.xaxis.get_ticklabels():
label.set_position((0, -0.03))
for label in axes.yaxis.get_ticklabels():
label.set_position((-0.03, 0))
Boris' short introduction about post-processing of Pencil Code runs:
http://www.nordita.org/~brandenb/teach/PencilCode/python.html
Boris' 2008 talk at the Pencil Code user meeting:
http://userpages.irap.omp.eu/~bdintrans/tmp/talk_pcmeeting08_19aug08.pdf
Python tutorial:
https://docs.python.org/2/tutorial/
IPython reference:
http://ipython.org/ipython-doc/2/interactive/reference.html
NumPy/SciPy tutorial:
http://wiki.scipy.org/Tentative_NumPy_Tutorial
Matplotlib gallery:
http://matplotlib.org/gallery.html
MayaVi:
http://docs.enthought.com/mayavi/mayavi/examples.html
Typically system administrators don't install all the software you need. Just contact the person in charge and ask for installing it.
Try launchin python with
ipython --pylab='qt'
If this doesn't work or you have only access to the python console try in Python:
plt.switch_backend('qt')
or any other backend like qtk
. If you are still out of luck you can still save the plot into a file with
plt.savefig('plot.eps')
Try:
plt.show()
plt.draw()