Permalink
Fetching contributors…
Cannot retrieve contributors at this time
279 lines (230 sloc) 11 KB
import tensorflow as tf
import numpy as np
import os
from numpy import genfromtxt
from keras import backend as K
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
import fr_utils
from keras.layers.core import Lambda, Flatten, Dense
def inception_block_1a(X):
"""
Implementation of an inception block
"""
X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name ='inception_3a_3x3_conv1')(X)
X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name = 'inception_3a_3x3_bn1')(X_3x3)
X_3x3 = Activation('relu')(X_3x3)
X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3a_3x3_conv2')(X_3x3)
X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_3x3_bn2')(X_3x3)
X_3x3 = Activation('relu')(X_3x3)
X_5x5 = Conv2D(16, (1, 1), data_format='channels_first', name='inception_3a_5x5_conv1')(X)
X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn1')(X_5x5)
X_5x5 = Activation('relu')(X_5x5)
X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
X_5x5 = Conv2D(32, (5, 5), data_format='channels_first', name='inception_3a_5x5_conv2')(X_5x5)
X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_5x5_bn2')(X_5x5)
X_5x5 = Activation('relu')(X_5x5)
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3a_pool_conv')(X_pool)
X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_pool_bn')(X_pool)
X_pool = Activation('relu')(X_pool)
X_pool = ZeroPadding2D(padding=((3, 4), (3, 4)), data_format='channels_first')(X_pool)
X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3a_1x1_conv')(X)
X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3a_1x1_bn')(X_1x1)
X_1x1 = Activation('relu')(X_1x1)
# CONCAT
inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)
return inception
def inception_block_1b(X):
X_3x3 = Conv2D(96, (1, 1), data_format='channels_first', name='inception_3b_3x3_conv1')(X)
X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn1')(X_3x3)
X_3x3 = Activation('relu')(X_3x3)
X_3x3 = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_3x3)
X_3x3 = Conv2D(128, (3, 3), data_format='channels_first', name='inception_3b_3x3_conv2')(X_3x3)
X_3x3 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_3x3_bn2')(X_3x3)
X_3x3 = Activation('relu')(X_3x3)
X_5x5 = Conv2D(32, (1, 1), data_format='channels_first', name='inception_3b_5x5_conv1')(X)
X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn1')(X_5x5)
X_5x5 = Activation('relu')(X_5x5)
X_5x5 = ZeroPadding2D(padding=(2, 2), data_format='channels_first')(X_5x5)
X_5x5 = Conv2D(64, (5, 5), data_format='channels_first', name='inception_3b_5x5_conv2')(X_5x5)
X_5x5 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_5x5_bn2')(X_5x5)
X_5x5 = Activation('relu')(X_5x5)
X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X)
X_pool = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_pool_conv')(X_pool)
X_pool = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_pool_bn')(X_pool)
X_pool = Activation('relu')(X_pool)
X_pool = ZeroPadding2D(padding=(4, 4), data_format='channels_first')(X_pool)
X_1x1 = Conv2D(64, (1, 1), data_format='channels_first', name='inception_3b_1x1_conv')(X)
X_1x1 = BatchNormalization(axis=1, epsilon=0.00001, name='inception_3b_1x1_bn')(X_1x1)
X_1x1 = Activation('relu')(X_1x1)
inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)
return inception
def inception_block_1c(X):
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_3c_3x3',
cv1_out=128,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
X_5x5 = fr_utils.conv2d_bn(X,
layer='inception_3c_5x5',
cv1_out=32,
cv1_filter=(1, 1),
cv2_out=64,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)
inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)
return inception
def inception_block_2a(X):
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_4a_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=192,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
X_5x5 = fr_utils.conv2d_bn(X,
layer='inception_4a_5x5',
cv1_out=32,
cv1_filter=(1, 1),
cv2_out=64,
cv2_filter=(5, 5),
cv2_strides=(1, 1),
padding=(2, 2))
X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X)
X_pool = fr_utils.conv2d_bn(X_pool,
layer='inception_4a_pool',
cv1_out=128,
cv1_filter=(1, 1),
padding=(2, 2))
X_1x1 = fr_utils.conv2d_bn(X,
layer='inception_4a_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception = concatenate([X_3x3, X_5x5, X_pool, X_1x1], axis=1)
return inception
def inception_block_2b(X):
#inception4e
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_4e_3x3',
cv1_out=160,
cv1_filter=(1, 1),
cv2_out=256,
cv2_filter=(3, 3),
cv2_strides=(2, 2),
padding=(1, 1))
X_5x5 = fr_utils.conv2d_bn(X,
layer='inception_4e_5x5',
cv1_out=64,
cv1_filter=(1, 1),
cv2_out=128,
cv2_filter=(5, 5),
cv2_strides=(2, 2),
padding=(2, 2))
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = ZeroPadding2D(padding=((0, 1), (0, 1)), data_format='channels_first')(X_pool)
inception = concatenate([X_3x3, X_5x5, X_pool], axis=1)
return inception
def inception_block_3a(X):
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_5a_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=384,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
X_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3), data_format='channels_first')(X)
X_pool = fr_utils.conv2d_bn(X_pool,
layer='inception_5a_pool',
cv1_out=96,
cv1_filter=(1, 1),
padding=(1, 1))
X_1x1 = fr_utils.conv2d_bn(X,
layer='inception_5a_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)
return inception
def inception_block_3b(X):
X_3x3 = fr_utils.conv2d_bn(X,
layer='inception_5b_3x3',
cv1_out=96,
cv1_filter=(1, 1),
cv2_out=384,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=(1, 1))
X_pool = MaxPooling2D(pool_size=3, strides=2, data_format='channels_first')(X)
X_pool = fr_utils.conv2d_bn(X_pool,
layer='inception_5b_pool',
cv1_out=96,
cv1_filter=(1, 1))
X_pool = ZeroPadding2D(padding=(1, 1), data_format='channels_first')(X_pool)
X_1x1 = fr_utils.conv2d_bn(X,
layer='inception_5b_1x1',
cv1_out=256,
cv1_filter=(1, 1))
inception = concatenate([X_3x3, X_pool, X_1x1], axis=1)
return inception
def faceRecoModel(input_shape):
"""
Implementation of the Inception model used for FaceNet
Arguments:
input_shape -- shape of the images of the dataset
Returns:
model -- a Model() instance in Keras
"""
# Define the input as a tensor with shape input_shape
X_input = Input(input_shape)
# Zero-Padding
X = ZeroPadding2D((3, 3))(X_input)
# First Block
X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1')(X)
X = BatchNormalization(axis = 1, name = 'bn1')(X)
X = Activation('relu')(X)
# Zero-Padding + MAXPOOL
X = ZeroPadding2D((1, 1))(X)
X = MaxPooling2D((3, 3), strides = 2)(X)
# Second Block
X = Conv2D(64, (1, 1), strides = (1, 1), name = 'conv2')(X)
X = BatchNormalization(axis = 1, epsilon=0.00001, name = 'bn2')(X)
X = Activation('relu')(X)
# Zero-Padding + MAXPOOL
X = ZeroPadding2D((1, 1))(X)
# Second Block
X = Conv2D(192, (3, 3), strides = (1, 1), name = 'conv3')(X)
X = BatchNormalization(axis = 1, epsilon=0.00001, name = 'bn3')(X)
X = Activation('relu')(X)
# Zero-Padding + MAXPOOL
X = ZeroPadding2D((1, 1))(X)
X = MaxPooling2D(pool_size = 3, strides = 2)(X)
# Inception 1: a/b/c
X = inception_block_1a(X)
X = inception_block_1b(X)
X = inception_block_1c(X)
# Inception 2: a/b
X = inception_block_2a(X)
X = inception_block_2b(X)
# Inception 3: a/b
X = inception_block_3a(X)
X = inception_block_3b(X)
# Top layer
X = AveragePooling2D(pool_size=(3, 3), strides=(1, 1), data_format='channels_first')(X)
X = Flatten()(X)
X = Dense(128, name='dense_layer')(X)
# L2 normalization
X = Lambda(lambda x: K.l2_normalize(x,axis=1))(X)
# Create model instance
model = Model(inputs = X_input, outputs = X, name='FaceRecoModel')
return model