Skip to content

pengzhou1108/GSRNet

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.

GSRNet

Code for the GSRNet (AAAI 2020)

Environment

tensorflow 1.4.0, python3.4, cuda 8.0.44 cudnn 6.0

Other packages please run:

pip install -r requirements.txt

Download ImageNet pre-trained model:

Refer to https://github.com/DrSleep/tensorflow-deeplab-lfov for more detail

Download model.ckpt-pretrained, net_skeleton.ckpt and put it in the 'ckpt' folder

Prepare tfrecords for dataset

  1. Change the arguments of dataset, train_dir, mask_dir, output_directory, to corresponding directories.

  2. Run python3 im_pre_casia_pair.py

  3. The tfrecords for COCO and CASIA are provided in https://drive.google.com/drive/folders/1YY4UM1PBTbBWMyjx350ubp5udGZG66K1?usp=sharing

Train the model:

  1. Change the tfrecords directory in train_default.sh
  2. Run train_default.sh

Test the model

  1. python3 dry_run.py --model_weights='./snapshots/$FIXME' --dataset='$FIXME'

for single image, use --dataset='single_img'

  1. save output image: python3 dry_run.py --model_weights='./snapshots/$FIXME' --dataset='$FIXME' --save-dir='./output/$FIXME/' --vis=True

  2. visualize generated images: python3 dry_run.py --model_weights='./snapshots/$FIXME' --dataset='$FIXME' --save-dir='./output/$FIXME/' --vis=True --vis_gan=True

Citation:

If this code or dataset helps your research, please cite our paper:

@inproceedings{zhou2020generate,
  title={Generate, Segment, and Refine: Towards Generic Manipulation Segmentation},
  author={Zhou, Peng and Chen, Bor-Chun and Han, Xintong and Najibi, Mahyar and Shrivastava, Abhinav and Lim, Ser Nam and Davis, Larry S},
  booktitle = {AAAI},
  year={2020}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published