/ penrose Public

Create beautiful diagrams just by typing mathematical notation in plain text.

# penrose/penrose

Switch branches/tags
Nothing to show

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

## Files

Failed to load latest commit information.
Type
Name
Commit time

# Penrose

Penrose is a platform that enables people to create beautiful diagrams just by typing mathematical notation in plain text. The goal is to make it easy for non-experts to create and explore high-quality diagrams and provide deeper insight into challenging technical concepts. We aim to democratize the process of creating visual intuition.

Check out our SIGGRAPH '20 paper and video on Penrose!

## Usage

You can try Penrose in your browser without any installation. For a more detailed step-by-step introduction, check out our tutorials. Or, for more reference-style information, take a look at our documentation.

## Example

Here's a simple Penrose visualization in the domain of set theory.

It's specified by the following trio of Domain, Substance, and Style programs (with variation `PlumvilleCapybara104`):

• `setTheory.domain`:

``````type Set

predicate Not(Prop p1)
predicate Intersecting(Set s1, Set s2)
predicate IsSubset(Set s1, Set s2)
``````
• `tree.substance`:

``````Set A, B, C, D, E, F, G

IsSubset(B, A)
IsSubset(C, A)
IsSubset(D, B)
IsSubset(E, B)
IsSubset(F, C)
IsSubset(G, C)

Not(Intersecting(E, D))
Not(Intersecting(F, G))
Not(Intersecting(B, C))

AutoLabel All
``````
• `venn.style`:

``````canvas {
width = 800
height = 700
}

forall Set x {
x.icon = Circle {
strokeWidth : 0
}

x.text = Equation {
string : x.label
fontSize : "25px"
}

ensure contains(x.icon, x.text)
encourage sameCenter(x.text, x.icon)
x.textLayering = x.text above x.icon
}

forall Set x; Set y
where IsSubset(x, y) {
ensure smallerThan(x.icon, y.icon)
ensure disjoint(y.text, x.icon, 10)
ensure contains(y.icon, x.icon, 5)
x.icon above y.icon
}

forall Set x; Set y
where Not(Intersecting(x, y)) {
ensure disjoint(x.icon, y.icon)
}

forall Set x; Set y
where Intersecting(x, y) {
ensure overlapping(x.icon, y.icon)
ensure disjoint(y.text, x.icon)
ensure disjoint(x.text, y.icon)
}
``````

## Contributing

Create beautiful diagrams just by typing mathematical notation in plain text.

v2.3.0 Latest
Mar 14, 2023