
1 Minkowski Penalties for Rectangles

Let A,B ⊂ R2 and C = {x − y : x ∈ A, y ∈ B}. Then A ∩ B 6= ∅ ⇔ 0 ∈ C.
Moreover, value of the signed distance function φ of C at 0 gives us suitable
energies for the following simple objectives.

Energy Formula Objective
e1 max(φ(0, C), 0) Intersecting rectangles
e2 −min(φ(0, C), 0) Disjoint rectangles
e3 |φ(0, C)| Touching rectangles

1.1 Axis-Aligned Rectangles

Consider two axis-aligned rectangles
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The new rectangle C =
[
xC1 , x

C
2

]
×
[
yC1 , y

C
2

]
is given by

xC1 = min
i,j∈{1,2}

(
xAi − xBj

)
, yC1 = min

i,j∈{1,2}

(
yAi − yBj

)
,

xC2 = max
i,j∈{1,2}

(
xAi − xBj

)
, yC2 = max

i,j∈{1,2}

(
yAi − yBj

)
.

The signed distance function (see [3]) can be written as φ(0, C) = e1−e2, where

e1 =
[
max

(
xP − xR, 0

)2
+ max

(
yP − yR, 0

)2] 1
2

,

e2 = −min
(
max

(
xQ, yQ

)
, 0
)
,

and

xP = 1
2

(
xC1 + xC2

)
, xR = 1

2

(
xC2 − xC1

)
, xQ =

∣∣xP ∣∣− xR,
yP = 1

2

(
yC1 + yC2

)
, yR = 1

2

(
yC2 − yC1

)
, yQ =

∣∣yP ∣∣− yR.
1.2 General Rectangles

Here, C is an intersection of 8 half-planes (corresponding to sides of A and −B).
For a given side s of A, the half-plane Hs is given by a signed distance function

φ(x,Hs) = 〈x|ns〉 − max
v∈V−B

〈v|ns〉 − αs,

where ns is the outward unit normal vector for the side s, V−B is the set of
vertices of −B and αs = 〈p|ns〉 for any point p on s. The signed distance
function φ can be approximated by a level set function φ̃ of C given by

φ̃(x,C) = max
s∈S

φ(x,Hs), (1)

where S is a set of all sides of A and −B. Note that φ̃|C ≡ φ|C , but they slightly
differ outside. This can be fixed by accounting for the distance to the extreme
points of C.
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2 Minkowski Penalties for Polygons

2.1 Convex Polygons

The method for approximating φ for two arbitrary rectangles derived in Sub-
section 1.2 is applicable to any convex polygons.

2.2 Simple Polygons

Using algorithms for approximate [2] or optimal [1] convex partitioning of a
polygon, we decompose A and B into convex polygons as

A =
⋃
i∈I

Ai and B =
⋃
j∈J

Bj .

The signed distance function of C can then be approximated by

˜̃φ(x,C) := min
i,j∈I×J

φ̃(x,Ci,j), (2)

where φ̃ is defined in (1) and Ci,j := {x− y : x ∈ Ai, y ∈ Bj}.

2.3 General Polygons

General polygons which may include self-intersections can be treated in the same
way as simple polygons in the Subsection 2.2. However, the convex partitioning
is more involved and the resulting set of convex polygons may include new
vertices located at the points of intersection.

2.4 Polygonal Chains

Each line segment of a polygonal chain can be treated as a degenerate case of
a convex polygon, i.e. each segment should be regarded as two identical sides
with opposite normal vectors. This way polygonal chains can be handled using
(2), where the partitioning is just the set of the individual line segments.

2.5 Convex Hull Approximation

In the cases when the computational graph corresponding to (2) or the partition-
ing algorithm itself become to computationally demanding, one can approximate
the original polygon by its convex hull.

For simple polygons, one can iterate through all vertices in order and if two
consecutive ones are on the boundary of the convex hull, otherwise skip the
next vertex until it is on the boundary. It again becomes more involved when
self-intersections are allowed and one may have to resort to iterating through
all vertex-vertex combinations.
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