
Consider an input space X = Rn. Suppose you have two scalar-valued
constraints, h1 and h2, which are satisfied if hi = 0.
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We want to combine these into one constraint, and then use Newton’s

method to project an input point xin onto the combined constraint.
One option is to stack the constraints into a vector-valued constraint func-

tion:

h(x) =
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]
Then, apply Newton’s method directly on h:

hp(x) = h(p) + Jh(p) (x− p) = 0
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with J† a left-inverse of J .
Alternatively, we could consider various ways of representing our constraint

as a scalar-valued function s(x). One common way is to use the `2 norm:

s(x) = ||h(x)||
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Applying Newton’s method to s yields:
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In other words, scalarizing the constraint using the `2 norm is equivalent to a
Jacobian-transpose approach to root-finding.
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