Consider an input space X = R". Suppose you have two scalar-valued
constraints, hy and hg, which are satisfied if h; = 0.

GO Jn()=Vheo=] g guo . g]
ha(0) () =VEGo =] G2 gm . g

We want to combine these into one constraint, and then use Newton’s
method to project an input point x;,, onto the combined constraint.
One option is to stack the constraints into a vector-valued constraint func-

tion:
e = | i) |

Then, apply Newton’s method directly on h:
hy(x) =h(p) + Ju(p) (x—p) =0

x =p - Ji.(p) h(p)

with J a left-inverse of J.
Alternatively, we could consider various ways of representing our constraint
as a scalar-valued function s(x). One common way is to use the ¢? norm:

s(x) = [[h(x)]|
h” (x)
Jo(x) = VT(x) = Jh(x
Applying Newton’s method to s yields:
1 T
X=p- Jn (P) h(x)
V()2 7"

In other words, scalarizing the constraint using the ¢ norm is equivalent to a
Jacobian-transpose approach to root-finding.

