
Consider an input space X = Rn. Suppose you have two scalar-valued
constraints, h1 and h2, which are satisfied if hi = 0.

h1(x) Jh1
(x) = ∇T

h1
(x) =

[
∂h1

∂x1

∂h1

∂x2
. . . ∂h1

∂xn

]
h2(x) Jh2(x) = ∇T

h2
(x) =

[
∂h2

∂x1

∂h2

∂x2
. . . ∂h2

∂xn

]
We want to combine these into one constraint, and then use Newton’s

method to project an input point xin onto the combined constraint.
One option is to stack the constraints into a vector-valued constraint func-

tion:

h(x) =

[
h1(x)
h2(x)

]
Then, apply Newton’s method directly on h:

hp(x) = h(p) + Jh(p) (x− p) = 0

x = p− J†
h(p)h(p)

with J† a left-inverse of J .
Alternatively, we could consider various ways of representing our constraint

as a scalar-valued function s(x). One common way is to use the `2 norm:

s(x) = ||h(x)||

Js(x) = ∇T
s (x) =

hT (x)

||h(x)||
Jh(x)

Applying Newton’s method to s yields:

x = p− 1

||∇s(x)||2
JT
h (p)h(x)

In other words, scalarizing the constraint using the `2 norm is equivalent to a
Jacobian-transpose approach to root-finding.

1

