Consider an input space $X=\mathbb{R}^{n}$. Suppose you have two scalar-valued constraints, h_{1} and h_{2}, which are satisfied if $h_{i}=0$.

$$
\begin{array}{ll}
h_{1}(\mathbf{x}) & J_{h_{1}}(\mathbf{x})=\nabla_{h_{1}}^{T}(\mathbf{x})=\left[\begin{array}{llll}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} & \ldots & \frac{\partial h_{1}}{\partial x_{n}}
\end{array}\right] \\
h_{2}(\mathbf{x}) & J_{h_{2}}(\mathbf{x})=\nabla_{h_{2}}^{T}(\mathbf{x})=\left[\begin{array}{llll}
\frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}} & \ldots & \frac{\partial h_{2}}{\partial x_{n}}
\end{array}\right]
\end{array}
$$

We want to combine these into one constraint, and then use Newton's method to project an input point $\mathbf{x}_{i n}$ onto the combined constraint.

One option is to stack the constraints into a vector-valued constraint function:

$$
\mathbf{h}(\mathbf{x})=\left[\begin{array}{l}
h_{1}(\mathbf{x}) \\
h_{2}(\mathbf{x})
\end{array}\right]
$$

Then, apply Newton's method directly on \mathbf{h} :

$$
\begin{gathered}
\mathbf{h}_{\mathbf{p}}(\mathbf{x})=\mathbf{h}(\mathbf{p})+J_{\mathbf{h}}(\mathbf{p})(\mathbf{x}-\mathbf{p})=\mathbf{0} \\
\mathbf{x}=\mathbf{p}-J_{\mathbf{h}}^{\dagger}(\mathbf{p}) \mathbf{h}(\mathbf{p})
\end{gathered}
$$

with J^{\dagger} a left-inverse of J.
Alternatively, we could consider various ways of representing our constraint as a scalar-valued function $s(\mathbf{x})$. One common way is to use the ℓ^{2} norm:

$$
\begin{gathered}
s(\mathbf{x})=\|\mathbf{h}(\mathbf{x})\| \\
J_{s}(\mathbf{x})=\nabla_{s}^{T}(\mathbf{x})=\frac{\mathbf{h}^{T}(\mathbf{x})}{\|\mathbf{h}(\mathbf{x})\|} J_{\mathbf{h}}(\mathbf{x})
\end{gathered}
$$

Applying Newton's method to s yields:

$$
\mathbf{x}=\mathbf{p}-\frac{1}{\left\|\nabla_{s}(\mathbf{x})\right\|^{2}} J_{\mathbf{h}}^{T}(\mathbf{p}) \mathbf{h}(\mathbf{x})
$$

In other words, scalarizing the constraint using the ℓ^{2} norm is equivalent to a Jacobian-transpose approach to root-finding.

