Skip to content


Subversion checkout URL

You can clone with
Download ZIP
OpenCV Bindings for node.js
C++ JavaScript Shell Python Ruby Makefile HTML
Latest commit 9a77841 @peterbraden Merge pull request #339 from jspdown/master
Add GetStructuringElement, kernel argument for Erode and Dilate
Failed to load latest commit information.
data Update Car Detection cascade for example
examples Merge pull request #339 from jspdown/master
lib Add pre compiled binaries for all 3 major platforms.
smoke Move smoke test into makefile
src Merge pull request #339 from jspdown/master
test Add some matrix unit tests
utils Added all opencv libraries to opencv.pc file.
vagrant clean up vagrant folder
.editorconfig stupid whitespace
.gitignore prep
.travis.yml Add automatic yes to prompts in travis script changelog
Dockerfile Merge branch 'master' of into dock…
MIT-LICENSE.txt add MIT license
Makefile stupid whitespace Merge pull request #292 from funky81/master
appveyor.yml Missed a character... [publish binary]
binding.gyp Add LDA SubspaceProject and SubspaceReconstruct functions
index.html Added videocapture working (libuv), some examples, more methods to Ma…
js_code_style.xml Fix code formatting for native code closes #295
native_code_style.xml Fix code formatting for native code closes #295
package.json Swapped out all "handle" for "local" Added info on how to create and name the branch to generate the OSX b…


Build Status

OpenCV bindings for Node.js. OpenCV is the defacto computer vision library - by interfacing with it natively in node, we get powerful real time vision in js.

People are using node-opencv to fly control quadrocoptors, detect faces from webcam images and annotate video streams. If you're using it for something cool, I'd love to hear about it!


You'll need OpenCV 2.3.1 or newer installed before installing node-opencv.

Specific for Windows

  1. Download Install opencv @ - (I used version 2.4.4) Put it in c:\opencv

  2. Install python version 2.7 @ put it in c:\python27

  3. install pkg-config by downloading the all in one bundle @ - (I used Gtk+ 3.6.4) put it in c:\pkg-config

  4. Add the following to your path variables C:\pkg-config\bin;C:\OpenCV\build\x64\vc11\bin;

  5. Install visual-studio in 4 steps

    • install Visual C++ 2010 Express

    • install Windows SDK for windows 7 and .net framework 4

    • install Visual Studio 2010 Service Pack 1

    • install Visual C++ 2010 Service Pack 1 Compiler

  6. Download npeterbraden/node-opencv fork git clone

  7. edit file src/Matrix.cpp put "inline double round( double d ) { return floor( d + 0.5);}" below "cv::Rect* setRect(Local objRect, cv::Rect &result);"

  8. run npm install

  9. Then:

    $ npm install opencv


    Run the examples from the parent directory.

    Face Detection

    cv.readImage("./examples/files/mona.png", function(err, im){
      im.detectObject(cv.FACE_CASCADE, {}, function(err, faces){
        for (var i=0;i<faces.length; i++){
          var x = faces[i]
          im.ellipse(x.x + x.width/2, x.y + x.height/2, x.width/2, x.height/2);

    API Documentation


    The matrix is the most useful base datastructure in OpenCV. Things like images are just matrices of pixels.


    new Matrix(rows, cols)

    Or if you're thinking of a Matrix as an image:

    new Matrix(height, width)

    Or you can use opencv to read in image files. Supported formats are in the OpenCV docs, but jpgs etc are supported.

    cv.readImage(filename, function(err, mat){
    cv.readImage(buffer, function(err, mat){

    If you need to pipe data into an image, you can use an ImageDataStream:

    var s = new cv.ImageDataStream()
    s.on('load', function(matrix){

    If however, you have a series of images, and you wish to stream them into a stream of Matrices, you can use an ImageStream. Thus:

    var s = new cv.ImageStream()
    s.on('data', function(matrix){

    Note: Each 'data' event into the ImageStream should be a complete image buffer.

    Accessing Data

    var mat = new cv.Matrix.Eye(4,4); // Create identity matrix
    mat.get(0,0) // 1
    mat.row(0)  // [1,0,0,0]
    mat.col(4)  // [0,0,0,1]


    var buff = mat.toBuffer()

    Image Processing

    im.canny(5, 300)

    Simple Drawing

    im.ellipse(x, y)
    im.line([x1,y1], [x2, y2])

    Object Detection

    There is a shortcut method for Viola-Jones Haar Cascade object detection. This can be used for face detection etc.

    mat.detectObject(haar_cascade_xml, opts, function(err, matches){})

    For convenience in face detection, cv.FACE_CASCADE is a cascade that can be used for frontal face detection.





    Using Contours

    findContours returns a Contours collection object, not a native array. This object provides functions for accessing, computing with, and altering the contours contained in it. See relevant source code and examples

    var contours = im.findContours;
    // Count of contours in the Contours object
    // Count of corners(verticies) of contour `index`
    // Access vertex data of contours
    for(var c = 0; c < contours.size(); ++c) {
      console.log("Contour " + c);
      for(var i = 0; i < contours.cornerCount(c); ++i) {
        var point = contours.point(c, i);
        console.log("(" + point.x + "," + point.y + ")");
    // Computations of contour `index`
    contours.arcLength(index, isClosed);
    // Destructively alter contour `index`
    contours.approxPolyDP(index, epsilon, isClosed);
    contours.convexHull(index, clockwise);

    MIT License

    The library is distributed under the MIT License - if for some reason that doesn't work for you please get in touch.

Something went wrong with that request. Please try again.