SSM - an R package for fitting smooth supersaturated models.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
R
inst
man
vignettes
.RData
.Rbuildignore
.Rhistory
.gitignore
DESCRIPTION
NAMESPACE
NEWS.md
README.Rmd
README.md
SSM.Rproj
cran-comments.md

README.md

The SSM package provides functions to fit, plot and predict using smooth supersaturated models. It defines an S4 class called "SSM", and methods for plotting and predicting them. The fitting function is highly customizable and provides optional sensitivity analysis and the provision to estimate metamodel error using a Gaussian process.


The following code will fit a smooth supersaturated model to a 20 point design in four factors. Note the design should be held in a matrix, not a data.frame, and all entries must be numeric. The options SA, GP and validation turn on automated sensitivity analysis, Gaussian process metamodel error estimation and Leave-One-Out cross-validation respectively. The plot method plots the main effects of the model while the predict method gives the model prediction at a point and also a 95% credible interval if a metamodel error GP has been fit.

X <- matrix(runif(80, -1, 1), ncol = 4)
Y <- apply(apply(X, 1, "^", 1:4), 2, sum)
s <- fit.ssm(X, Y, SA = TRUE, GP = TRUE, validation = TRUE)
s
plot(s, yrange="yrange")
predict(s, rep(0.5, 4))
sensitivity.plot(s)

To install the most up-to-date SSM package through GitHub use devtools::install_github("peterrobertcurtis/SSM").


More details on how to use the SSM can be found in the vignette and help pages.