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Abstract This paper presents a nonlinear transfer function noise model for time-series modeling of
unconfined groundwater hydrographs. The motivation for its development was that existing groundwater
time-series models were unable to simulate large recharge events and multiyear droughts. This was because
existing methods do not partition rainfall to runoff and do not account for nonlinear soil water drainage. To
account for these nonlinear processes, a vertically integrated soil moisture module was added to an existing
transfer function noise model. The soil moisture module has a highly flexible structure that allowed 84 dif-
ferent forms to be built. Application of the time-series model requires numerical calibration of parameters
for the transfer functions, noise model and, for the nonlinear models, the soil moisture module. This was
undertaken using the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) global calibration
scheme. However, reproducible calibration to the global optima was challenging and a number of modifica-
tions were required to the transfer function noise model. In trialing the 84 nonlinear models and 2 linear
models, each was applied to eleven observation bores within a paired catchment study area in Great West-
ern, Victoria, Australia. In comparison with existing groundwater hydrograph time-series models, the pro-
posed nonlinear time-series model performed significantly better at all observation bores during calibration
and evaluation periods. Both the linear and nonlinear models were also used to quantify the impact of reve-
getation within the paired catchment; however, results were inconclusive, which is likely due to time-series
data for the state of the revegetation being unavailable. By analyzing the application of 84 nonlinear models
to each bore, an optimal structure for the soil moisture module was identified. It is unlikely, however, that
this model structure would be appropriate for all climates and geologies. To encourage further investiga-
tions, open-source code for the highly flexible groundwater time-series modeling framework is available
and we invite others to develop new models.

1. Introduction

In most catchments, the water table level is the only observed hydrological state variable. Other observa-
tions, such a stream flow and precipitation, are fluxes and other state variables such as soil moisture are
rarely observed, except through remote sensing of the top few centimeters. The water table level is also an
aggregation of the drivers and processes within the catchment, and potentially provides quantitative
insights into the catchment dynamics and impacts of management actions. Groundwater hydrographs
have been widely utilized to qualitatively inform catchment dynamics, derive linear temporal trends and
map the potentiometric surface. More recently, they have been widely used to calibrate groundwater mod-
els such as ModFlow [Harbaugh et al., 2000]. However, calibrating such models is often exceedingly difficult,
resource intensive, frequently requires considerable simplification of the ecohydrology and hydrogeology
and often does not achieve encouraging predictive performance. Despite these challenges, such bottom-up
deterministic models remain a powerful tool for exploring hydrological dynamics and management scenar-
ios; such as changes in groundwater pumping.

For undertaking tasks such as interpolating or extrapolating a groundwater hydrograph, predicting ground-
water levels under different climate scenarios or decomposing the hydrograph to individual drivers, a top-
down time-series approach is potentially a powerful yet simple option that has received insufficient atten-
tion. Development of such top-down approaches would enable significantly more quantitative use of
groundwater data and to contribute to this, this paper presents a new nonlinear groundwater hydrograph
time-series modeling framework. A range of model structures are developed and applied but, just like
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rainfall-runoff modeling, no one model structure should be expected to work best everywhere and, hence,
we encourage others to use the our open-source groundwater time-series modeling framework to test,
develop and share their own groundwater time-series models.

The motivation for developing the groundwater time-series modeling framework was that existing linear
groundwater time-series models [von Asmuth and Bierkens, 2005; von Asmuth et al., 2002; Ferdowsian et al.,
2001, 2002] were unable to simulate the large recharge events and multiyear droughts common through-
out Australia. One of the first groundwater hydrograph time-series models was the HARTT model [Ferdow-
sian et al., 2001, 2002; Ferdowsian and Pannell, 2009]. It has been widely used within Australia and models
an unconfined groundwater level as the sum of the cumulative monthly rainfall residual (CRR), a linear time
trend and, where appropriate, linear components for land cover change and pumping. Scalars on these
components are estimated by multiple linear regression and, with the exception of Ferdowsian and Pannell
[2009], serial correlation has not been included. A common use of the HARTT model is to quantify a linear
trend in the head not explained by the CRR [CSIRO, 2009; Sinclair Knight Merz, 2005, 2006a; Yihdego and
Webb, 2011]. However, the residuals often exhibit significant serial correlation. Furthermore, and more sig-
nificantly, the coefficients of the linear time trend and CRR components can have a very large covariance,
rendering the trend estimates very unreliable. This is most pronounced when applied to a hydrograph with
an approximately linear temporal trend and where the CRR over the concurrent period is approximately lin-
ear [Peterson and Western, 2011].

Application of the HARTT model presents additional challenges. Its use of monthly CRR requires the omis-
sion (or averaging) of submonthly groundwater level observations from the model, and hence high fre-
guency water level dynamics are omitted. The remaining observations must also be shifted to the end of
each month. Additionally, the use of the CRR requires the assumption that the climate is first-order station-
ary and that historic rainfall events say, 100 years ago, influence the current groundwater level.

Alternatively, von Asmuth and Bierkens [2005] and von Asmuth et al. [2002] proposed a more complex
approach applicable to water level observations with an irregular time step that does not assume a station-
ary climate. It is a transfer function noise model (TFN) composed of a deterministic component for the trans-
formation of climate observations to a groundwater level displacement (from a constant) and an
exponential noise model comparable to an auto-regressive lag 1 (AR1) model. Like other groundwater TFN
models, such as Fabbri et al. [2011], the deterministic component is effectively the sum of the weighted his-
toric precipitation and potential evapotranspiration record. For example, this component could be approxi-
mated for a given time point by applying, say, an exponentially decaying weight to all daily historic
precipitation and summing to estimate the water level displacement from precipitation. The weights are,
however, unknown. To estimate the weights, von Asmuth and Bierkens [2005] adopted a Pearson’s Type llI
distribution function for the weights. It has three parameters and a flexible structure that allows the estima-
tion of weighting function shapes ranging from a skewed Gaussian-like shape, simulating a time lag in the
response of the groundwater level, to an exponential-like decay with no lag. The noise component simu-
lates an exponential decay in the water level response not explained by the deterministic components.
Adoption of an exponential decay allows the calibration of the model to irregularly spaced water level
observations. This is possible because the exponential decay function allows the derivation of a relationship
between the residuals and the innovations (i.e., the change in the residuals over an irregular time step
when noise is accounted for, see von Asmuth et al. [2002]) and this allows the derivation of a weighted least
squares objective function and avoidance of a computationally expensive Kalman Filter. With this, von
Asmuth and Bierkens [2005] and von Asmuth et al. [2002] then apply a single start Levenberg-Marquardt gra-
dient-based calibration to optimize the four to five model parameters to the observed water level. Despite
use of such nonlinear regression techniques the TFN model is, however, a linear model. This is because the
head at any time point is estimated as the weighted sum of past precipitation plus the noise component.
Consequently, the response of the head to the climate is linear so that a doubling of a rainfall event pro-
duces twice the head response.

The linear TEN model of von Asmuth and Bierkens [2005] and von Asmuth et al. [2002] has been applied in a
number of papers [Lehsten et al., 2011; Yihdego and Webb, 2011; Manzione et al., 2010] and, for most applica-
tions, the performance during the calibration and evaluation periods is very good. However, Yihdego and
Webb [2011] found that the linear TFN model performed poorly at 30 of the 82 observations bores investi-
gated throughout south west Victoria, Australia, and for the remaining 52 bores the calibration scheme had
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to be repeatedly applied to achieve acceptable results. In other studies, the TFN model appeared to perform
best when the hydrographs show only many small recharge events and no long-term drainage [Lehsten

et al, 2011; Manzione et al., 2010]. To account for drivers in addition to climate, physically based weighting
functions (henceforth, referred to as impulse response functions) have been added for pumping [von Asmuth
et al., 2008; Shapoori et al., 2011] and stream flow [von Asmuth et al., 2008]. Like the inclusion of precipita-
tion and PET, these additional drivers were assumed to act independently of one another, despite evidence
to the contrary [Zhou, 2009]. For example, drawdown from pumping was assumed to not change recharge,
evaporative loss or the interaction with streams. Recently, TFN models models have also been used to gain
insights into the aquifer hydrological properties. For example, aquifer transmissivity and specific yield has
been estimated for observation bores influenced by pumping [Obergfell et al., 2013], and Bakker et al. [2008]
proposed a moment-based inverse modeling approach for estimating the transmissivity and specific yield
using the Pearson’s Type lll impulse response function.

These applications, while encouraging, assume all rainfall produces a groundwater level response and,
hence, ignore the nonlinear partitioning of rainfall to evapotranspiration and runoff and the nonlinearity of
soil drainage. This is obviously not realistic but is unlikely to have been problematic because many of the
above applications were to sites with small frequent recharge events. If the linear TFN model were applied
to a site having large infrequent rainfall events that produce runoff and a large head response, then the
model linearity would likely result in the poor simulation of large recharge events and acceptable simula-
tion of smaller events, or vice versa, but not acceptable simulation of both large and small recharge events.
If an additional driver, such a groundwater pumping, were input to the model then the numerical calibra-
tion may attempt to adjust this driver to make up for these climatic deficiencies, resulting in compromised
estimation of the impact from the pumping and the derived parameters, such as the aquifer hydraulic prop-
erties. A time-series model that did account for such nonlinearity should partition rainfall so that large
events produce runoff and small events produce little, if any, runoff. Assuming runoff is driven by saturation
excess, then the runoff from both events should be a function of the antecedence catchment wetness and,
most importantly, the soil vertical drainage should be a function of the soil wetness. A time-series model
should also account for the nonlinear response to PET whereby vegetation may preferentially uptake
groundwater during dry periods. Clearly such features of a nonlinear model are driven by soil moisture
dynamics, but to date the only known study accounting for such nonlinearity is Yi and Lee [2004]. They used
a 1-D finite element vadose zone model to transform the precipitation to an infiltration rate, which was
then input to a Kalman filter TFN model. While the nonlinear filtering of precipitation produced a clear
improvement, the soil and TFN models were not jointly calibrated, nor were alternative soil model struc-
tures explored or PET accounted for within the TFN model. In this paper, these weaknesses are addressed
by using a simple yet highly flexible soil moisture model that can transform precipitation and PET for input
to the impulse response functions. Hence, following Box et al. [2008], the model developed herein is not
strictly a nonlinear time-series model, but a nonlinear transfer function time-series model.

In the following, the methods section presents the study area; the modified linear and nonlinear transfer
function noise models; the selection, implementation and testing of a global calibration scheme; and the
implementation of models to the study area. The results section then details the reproducibility of the
global calibration scheme; the performance of the linear and nonlinear models for the study area; estima-
tion of the impacts from the revegetation using the linear and nonlinear TFN models; and an example of
the temporal decomposition of hydrographs. Lastly, the discussion and conclusions section summarizes the
findings and discusses the optimal structure for the nonlinear model and possible further developments
using the open-source modeling framework.

2. Methodology

The effectiveness of a nonlinear time-series model is a function of both the model structure and the global
calibration scheme. A complex model structure may be physically realistic but if, in optimizing its parame-
ters, there are numerous optima, the objective function response surface is not smooth or the parameters
are highly correlated, then the calibration may be ineffectual and/or be exceedingly slow, rendering the
time-series modeling impractical. Such challenges were reported by Yihdego and Webb [2011], and all arose
in the development of our linear and nonlinear TFN models. This occurred despite the linear TFN model
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simulating the head as a linear sum of weighted climate forcing, because the weights are from an analytical
equation that must be fitted to the observed heads using nonlinear regression. For these reasons, we put
considerable effort into developing robust TFN model structures and an efficient and reproducible global
optimization scheme. In the subsections below, the application study area is outlined, following which the
linear TFN is outlined and a number of refinements are detailed. The nonlinear TFN model is then pre-
sented, followed by the calibration scheme and the implementation of the linear and nonlinear TFN models
to the study area.

2.1. Study Area

The TFN models were applied to a paired catchment study area, located seven kilometers east the town of
Great Western in western Victoria, Australia. The catchments are on the north-west face of Tucker Hill and
are within the upper catchment of the Wimmera River. This region contains significant dryland salinity and
contributes a significant mass of salt to the Wimmera River [Sinclair Knight Merz, 2006b]. Figure 1 details the
topography, catchment boundaries, land cover, geological units, stream courses and observation bore loca-
tions. The annual average precipitation and ETo were estimated to be 487 mm yr~ ' and 1066 mm yr™"
respectively [Peterson, 2009] and the site is classified as Koppen-Geiger climate type Cfb, that is, temperate
with a warm summer and without a dry season [Peel et al., 2007]. Furthermore, as shown by the box-plots of
the seasonal climate forcing in Figure 2, the winters are cool and wet, the summers dry and the variability
in monthly ETo is low relative to precipitation.

The south-west catchment is the control catchment and has annual pasture vegetation, the dominant land
cover for grazing within the region. It is estimated to be 33.9 ha in area [McIntyre, 2003] and the catchment
is relatively uniform in width, with modest convergence. The north-western boundary is uncertain because
of the low slope.

The north-east catchment is the treated catchment and the land cover consists of tall wheatgrass and
perennial pastures in the lower catchment and various tree species in the upper catchment. It is estimated
to be 54.2 ha in area [Mcintyre, 2003] and the catchment width is relatively narrow in the upper catchment,
widens within the midslopes and converges toward the outlet. The northern boundary is uncertain because
of the low slope. The perennial pastures consist of phalaris, cocksfoot and subclovers and approximately
29.4 ha were sown in June 1996. In July 1996, approximately 14.9 ha were planted with 10,720 native seed-
lings (Acacia implexa, Allocasuarina vertticillata and various Eucalyptus species) [McIntyre, 2003]. A survey
estimated the average stand height at 2.8 m and the survival rate at 90.3% in 2003 [Mcintyre, 2003].

The catchments both have two distinct landforms and geologies. Drilling and field mapping found the
upper slopes to be Lower Ordovician meta-sediments (approximately 470 million years old) and the lower
slopes to be intrusive Devonian biolite granites (approximately 400 million years old) [HydroTechnology,
1995]. The Devonian granites occasionally outcrop, but more commonly have a sand dominated soil profile.
They are heavily weathered to a depth of 15-35 m [Sinclair Knight Merz, 2006b]. The Ordovician meta-
sediments occur mainly as meta-siltstone and shales, form the aquifer basement for the region, and are
slightly to moderately weathered to a depth of approximately 50 m. Twelve observation bores were drilled
in 1995 and six of the twelve observation bores were monitored electronically twice daily and the remaining
six bores were monitored monthly. Records span from July to August 1995 to January 2008. For further
details of the observation data see Table 1 and Peterson [2009, section 7.2].

2.2. Time-Series Models

2.2.1. Linear Transfer Function-Noise Model

The von Asmuth and Bierkens [2005] and von Asmuth et al. [2002] transfer-noise function (TFN) model, if
applied to regularly spaced observation, is effectively an auto-regressive moving-average externally forced
(ARMAX) time-series model with a lag 1 auto-correlation and a weighting of all historic external forcing
data. However, unlike traditional ARMAX models, it does not require uniformly spaced observations without
gaps, which makes it ideal for groundwater applications. This was achieved by adopting an exponential
noise model for simulation of the part of the water level response not explained by the deterministic com-
ponents. As stated above, this allowed the derivation of a relationship between the residuals and the inno-
vations (i.e., the change in the residuals over an irregular time step when noise is accounted for, see von
Asmuth et al. [2002]). This allowed the derivation of a weighted least squares objective function, avoiding a
computationally expensive Kalman filter.
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Figure 1. Control and treated catchment boundaries, elevation, bores and weir locations and land cover. Note: bores 124703 and 124704
are nested. All mapped data were adapted from Sinclair Knight Merz [1996, 19971.

Study Area 't;j

Following von Asmuth and Bierkens [2005] and von Asmuth et al. [2002], the observed groundwater level, h,
[L], at time, t [T], is modeled as:

he=h +e+d (1)

where h; [L] is the deterministic component predicting the groundwater level at t due to all the external
forcing, such as climate, and relative to a constant water level. This constant, d [L], is a variable set after
model calibration to produce a zero mean error. ¢, [L] is the residual groundwater level at time, t. Expanding
h; to a weighted integral of past precipitation gives the simplest linear TFN model:
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Figure 2. Box-plots of monthly SILO (a) precipitation and (b) ETo. The whiskers extends a maximum of 1.5 times the interquantile range.
Values beyond the whisker are marked as outliers and are denoted as +.

t
hi= J P.O(t—1)0t+etd (2)

T=—0C

where P, [L T~ '] is the daily precipitation at time t [T] and 0(t—1) is the impulse response function. The
impulse response function was defined by von Asmuth and Bierkens [2005] as a Pearson type lll function:
b"t"Texp (—bt)
0t)=A———= 3
(t T ®

where A, b and n are nonphysical parameters and I denotes a gamma function. Using the Pearson type I
function and a one parameter exponential noise model for ¢, (see equation (22)), the linear TFN model
(equation (2)) has four parameters. By accounting for PET, von Asmuth et al. [2008] extended equation (2) to
a five parameter model:

t t
h= J P.O(t—1)0t— J feE0(t—1)0t+e+d (4)
where E; [L T~ '] is the daily PET and f; is a parameter scaling the impulse response function, 6, from the pre-

cipitation to that for the PET. Throughout this paper, the five parameter linear TFN model for the non-re-
vegetated catchment is that given by equation (4) but with a rederived impulse response function.

Table 1. Summary of Observation Bore Construction, Lithology, and Salinity

Elevation Depth Screening Salinity (uS Data-

Bore ID (m AHD?) (m) (m) From To Lithology® cm™) logger?
Control Catchment
124705 269.18 7.9 3 7 Dgr 1030 N
124683 286.03 28 215 26.5 Dgr 1015 Y
124676 302.10 23 19.2 222 Oms 1114 N
124672 323.01 458 37 40 Oms 1610 N
124671 357.22 61.1 55 60 Oms 1105 Y
Treated Catchment
124704 269.59 7.64 2.6 6.6 Dgr 7440 Y
124703 269.35 354 29 35 Dgr 9080 N
124702 280.72 10 7 9 Dgr 5110 Y
124675 299.22 38 35 37 Oms 2138 N
124674 323.30 45 39 44 Oms 738 Y
124673 341.01 50 40 42 Oms 1097 N

46 49
124699 404.00 122 61 66 Oms 1069 Y

115 121

2AHD stands for Australian Height Datum.
PDgr denotes Devonian granites and Oms denotes Ordovician meta-sediments.
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Figure 3. Example Pearsons Type lll impulse response functions for A= 1 and eight combinations of parameters b and n that produce (a)
a Gaussian-like and (b) an exponential-like response function. It shows that b and n change the function peak value, which is also influenced
by parameter A, and this indicates parameter covariance.

von Asmuth et al. [2008] also proposed an approach to account for vegetation clearing. The approach
assumes clearing only changes evapotranspiration and does not change interception, infiltration or
recharge. The approach consists of a third integral added to those within equation (4) and is a weighting of
the ET integral by an additional parameter, f;, and the historic fraction of the clearing, L.:

t t t
he= J P.O(t—1)0t— J feE0(t—1)0t— J fil.E.0(t—1)0t+etd (5)

T=—00 T=—00 T=—00

Throughout this paper, the six parameter linear TFN model for the revegetated catchment is that within
equation (5).

The impulse response function, 0, is central to the TFN models. von Asmuth and Bierkens [2005] and von
Asmuth et al. [2002] adopted a Pearson type lll function because of its flexible form. To illustrate, Figure 3
shows 0 calculated for A =1 and eight combinations of parameters b and n. In addition to showing the
exponential-like and skewed Gaussian-like shapes, it shows that b and n change not only the shape of the
function but also its peak value. Considering that parameter A of equation (3) rescales the response func-
tion, and hence the peak value, parameters A, b and n of equation (3) have considerable covariance. This
weakness was one of five arising when calibrating TFN models using the Pearson type lll function. Solutions
to all five weakness are detailed in Appendix A and, throughout this paper, all application of the TFN models
used the revised impulse response function within Appendix A. An overview of the additional four weak-
nesses is given below.

The second modification addressed parameter transformations. In trialling the linear (and nonlinear) TFN
models, the parameter n (see equation (A11)) ranged over five orders of magnitude from less then 0.001
one to over three hundred, postcalibration. A similar range also occurred for the other two parameters, A
and b. This caused the calibration problem to often be poorly scaled, which compromised the calibration
reproducibility. This problem was overcome by undertaking a log 1o transformation of the parameters.

The third modification addressed the problem of exponential-like functions with very low values of b having a
significant value at long times, as illustrated in Figure 10b. This implies that the climate several decades or
even a century ago influences the current groundwater level. This is unrealistic and led to very low values of
the drainage elevation constant (see d within equation (4)). To address this problem, the exponential-like func-
tion was modified by subtracting its value at a fixed number of decades priors to the first climate observation.

The fourth modification addressed the integration of the function tail from the time lag at the first climate
observation to negative infinity (i.e., infinity days prior to the first climate observation). If the function was
exponential-like, integration was undertaken to the fixed number of decades prior to the first climate obser-
vation. This integration was undertaken because, without the tail integration, spurious parameter estimates
resulted from the calibration and the climate decomposition (see section 3.4) often showed the influence of
the climate at the longest time lag to increase throughout the simulation period.
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The fifth modification was undertaken to minimize rounding errors in the numerical estimation of the inte-
grals. Specifically, in equation (3), the term t"~! can become very large when n >> 1 and a very long daily cli-
mate record is input. When numerically approximating the integrals they can, and did, exceed machine
precision and rounded to co. To address this problem the order of operations was modified when n > 1.

2.2.2. Nonlinear Transfer Function-Noise Model

The TFN model of section 2.2.1, despite its apparent complexity, is a linear model. This is because the deter-
ministic component of the groundwater level, at a time point, is estimated as the sum of historic precipita-
tion weighted by the impulse response function. Each day’s climate is independent from each other day
and no transformation is applied to the climate data. Hence, being a linear model a rainfall event of 50 mm
would produce double the groundwater rise of a 25 mm rainfall event. Physically, however, the water table
does not respond linearly to the climate. Large rainfall events will produce recharge but there may be con-
siderable oss to interception and runoff, which themselves are functions of antecedent conditions such as
the soil moisture. Small events may produce very little recharge because of interception and the rainfall
that does infiltrate may be transpired by vegetation or be insufficient to increase soil moisture enough to
produce recharge. Furthermore, during very dry periods, vegetation may transpire groundwater. In sum-
mary, many unconfined aquifers respond very nonlinearly to climatic events and is influenced by various
antecedence conditions resulting from soil and interception storages.

Clearly, a nonlinear groundwater time-series model that is of practical use cannot account for all such nonli-
nearities and its parameters must be computationally efficient to calibrate. In building a nonlinear ground-
water time-series model, the linear transfer function from section 2.2.1 was adopted and a means was
sought for transforming the climate forcing for input into the transfer function. A biophysically based means
of transforming climate data is a 1-D soil moisture model. For a groundwater hydrograph with infrequent,
say seasonal, observations there is insufficient justification for adopting a vertically discretized soil moisture
model. That is, the soil model is only to be used to transform the precipitation signal into a recharge or infil-
tration signal and the soil parameters are to be estimated only from fitting to an infrequently observed
groundwater signal; not subdaily soil moisture observations. Furthermore, while a vertically discretized
model would allow simulation of heterogeneous soils and nonfree draining conditions, the computational
demands would be prohibitive considering simulation is required for each day of the input climate data.
Hence, a parsimonious vertically lumped soil model was sought. The implications of this are likely to be min-
imal if the vegetation can extract soil water from locally wet regions of the soil profile [Guswa et al., 2002].

In selecting a vertically integrated soil model, there is no shortage of choices. The chosen model should,
however, produce a smooth calibration response surface when the recharge, infiltration or the soil moisture
signals are input to the TFN model; have minimal parameters; capture the major dynamics of infiltration, ET
and vertical drainage; and allow exploration of different structural forms because the most parsimonious
model structure is unknown. While there are multiple models meeting these requirements (and the ground-
water time-series framework does allow exploration of alternative structures), the nonlinear saturated path-
way model of Kavetski et al. [2006] was adopted:

a B y
ds S - S S
=Pl 1-= —kKsat = —E| — (6)
dt Scap Scap SC“P

where S € (0, 00) [L] is the soil water storage; t [T] is time; P; [L T~ "l is the precipitation rate at time t;

E.[LT "is the potential evapotranspiration rate at time t; Sc;p € [1,00) [L] is an antilog transformed param-
eter for the maximum soil water storage ( denotes a transformed parameter); ksqt € (0,00) [LT '] is an anti-
log transformed parameter for the vertical saturated conductivity; o € [0, 00) is a dimensionless parameter
controlling the infiltration rate as a function of catchment wetness; 8 € [1,00) is an antilog transformed
dimensionless parameter controlling the free drainage as a function of wetness; and y € [0, 00) is a dimen-
sionless parameter controlling the soil evaporation as a function of wetness. Additionally, the aforemen-
tioned antilog transformations were undertaken to scale the parameters to be of a similar range and
sensitivity to the other time-series parameters. This was undertaken to improve the calibration reproducibil-
ity. Specifically, transformations were:

Seap =10 (7)
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Ksar =10"t 8)

p=10 9)

where S, € [0, 00) [L] is the nontransformed parameter for the maximum soil water storage; ksor € [00, 0)
[L T~ "] is the nontransformed parameter for the vertical saturated conductivity; and f§ € [0, 00) is the
dimensionless nontransformed parameter controlling the free drainage as a function of wetness.

A practical feature of the soil model in equation (6) is that different functional forms of the model can be
explored by fixing parameters to zero or one. For example, the full nonlinear soil model requires five param-
eters but fixing o, [)’ and y to one converts the model to a linear model and requires calibration of only two
soil model parameters; S.,, and ksq;. Furthermore, components can be removed by setting selected parame-
ters to zero. For example, fixing o to zero causes all rainfall to infiltrate until the soil layer is saturated; fixing

ksq: to zero removes the free-drainage component; and fixing y to zero forces the actual ET to equal to
potential ET.

Using equation (6) in the TFN model requires solution of the ODE at a daily time step from the first climate
observation to the last day of simulation. Traditionally, such hydrological ODEs have been solved by rear-
ranging to a fixed step explicit solution. However, Kavetski and Clark [2010] demonstrated that such an
approach can produce considerable discontinuities in the calibration response surface, produce spurious
local optima and shift the parameter location of the global optima. A fixed time step semi-implicit solver
with Newton'’s method convergence to an error approaching machine precision was shown to eliminate
such numerical artifacts, and in solving equation (6) such an approach was implemented. For the numeri-
cally inclined, details are given within the open-source file named forcingTransform_soilMoisture.c.

With the ODE solved, there are a number of options for how to use it to transform the precipitation and PET
for input to the TFN model. With regard to replacing precipitation in equation (4), the soil infiltration rate
could be adopted. This transformation would effectively remove runoff from the precipitation signal. Alter-
natively, the free-drainage from the soil layer could be adopted. Assuming 107 >> 1, this would transform
the precipitation to a more event driven signal whereby only large precipitation events would increase the
soil moisture sufficiently for free-drainage to occur. With regard to the evaporation term within the transfer
function (equation (4)), the soil evapotranspiration could be adopted in place of the potential ET. Alterna-
tively, the groundwater potential evapotranspiration (i.e., potential ET minus the simulated soil ET) could be
adopted to simulate longer term drying and wetting dynamics. During dry periods, the soil would be dry
and soil evaporation would be low. The groundwater potential ET would, however, be high and could be
used to simulate drought conditions. Biophysically, this can be interpreted as the soil moisture being insuffi-
cient to supply the vegetation water demand so the vegetation uptakes groundwater. While the uptake
may not be at the modeled observation bore, uptake in nearby areas would cause a change in the lateral
flux at the observation bore, and hence the water level.

In developing this nonlinear time-series model, it is not known which of these flux combinations is best.
Clearly fluxes relating to inflow or uptake from the water table are the most physically plausible. However, if
the soil model is considered as just a nonlinear climate signal filter then potentially less physically plausible
fluxes may be most applicable at selected bores. For example, at sites with a shallow water table the domi-
nant nonlinear process may be saturated excess runoff, and not soil free drainage, making the soil infiltra-
tion rate the most appropriate flux to replace precipitation in the time series model. Therefore it is difficult
to justify a particular soil model structure and fluxes a priori and so all model structure combinations were
investigated using each combination of the four fluxes. Furthermore, models using groundwater potential
ET were only able to adequately fit the observed head when the ET component of the TFN model had its
own impulse response function, rather than one scaled from the precipitation. Hence, separate impulse
response functions were adopted for the transformed precipitation, 0p, and transformed ET, 0. This added
two parameters to the time-series model.

Importantly, each of the adopted soil moisture model fluxes change throughout the daily time step and, in
this application, the fluxes for input to the TFN model were taken as the integral over the daily time step.
This was undertaken so that the evaluation of the nonlinear TFN models was consist with the linear TFN
models; which required input of daily integrated climate forcing (i.e., daily precipitation and PET) and subse-
quent multiplication by the trapezoidal integral of the impulse response function over the corresponding
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day (note, the time-series framework allows adoption of instantaneous fluxes (e.g., soil free drainage) and
hence more accurate numerical integration; specifically, 3/8 Simpson’s composite integration). In calculating
the daily integral of the soil moisture model fluxes, fixed subhourly time steps were found to produce very
low mass balance errors. Use of daily time steps did produce significantly larger mass balance errors but
this was found to be a result of the trapezoidal integration of the soil fluxes, and not due to errors in the
solution of equation (6). Finally, in transforming the precipitation term within the linear TFN model to either
the infiltration rate or the normalized soil free drainage, the fluxes were calculated as:

Se=Si—1 +gs{3+sf,1 L AtsiEs;
At 2 b2 s,

cap

Ir=

_AtsP+st
=

SR (11)
where I, [L T~ '] is the infiltration rate and D, [L T~ '] is the normalized soil free drainage rate at time t. Impor-
tantly D, does not depend upon k. and, hence, the normalized free drainage can be used in the TFN model
without the soil model simulating free drainage. This simplification to the biophysics was more parsimoni-
ous and was considered acceptable because free drainage may be a small percentage of total soil water
flux and, hence, an adequate transformation of the climate data into a normalized recharge signal may be
achievable without simulation of free drainage within the soil moisture model.

For transforming the PET term within the linear TFN model to either the soil evaporation or the ground-
water potential evaporation, the fluxes were calculated as follows:

At S} +S!
Vi=E —=— {71 (12)

2 Scap
Gt:Erf‘/r (13)

where V, [L T~ '] is soil evapotranspiration rate and G, [L T~ '] is the groundwater potential evapotranspira-
tion rate at time t. Drawing on these four flux equations, the first nonlinear time-series model with the
drainage-soil ET transformation was as follows. Note that the right most integral is for the revegetation and,
like the linear TFN model, it simulates a change in groundwater update. For the non-re-vegetated catch-
ment this integral was omitted from all nonlinear TFN models.
t t. t
hy= J D.0p(t—1)07— ‘ V0 (t—1)01— J il V.0 (t—1)0t+e+d (14)
T=—0C ‘[:._DO T=—0

The second nonlinear time-series model with the drainage-groundwater potential evaporation transforma-
tion was:

t t t
he= J D.0p(t—1)01— J G Oe(t—1)01— J fil.G.O(t—1)0t+e+d (15)
The third nonlinear time-series model was the infiltration-soil ET transformation model.
t_ t t
hy= J 1.0p(t—1)07t— J V. 0g(t—1)01— J il V. 0g(t—1)0t+e+d (16)
And, the fourth nonlinear time-series model for the infiltration-groundwater potential evaporation transfor-
mation was:

t t t
hy= J 1.0p(t—1)07— J G Oe(t—1)01— J fiL.G.O(t—1)0t+e+d (17)

T=—00 T=—00 T=—0C
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2.3. Calibration Objective Function and Noise Model

To apply the linear and nonlinear TFN models, the parameters for the impulse response functions and the
constant, d, need to be estimated and the residuals, ¢, statistically modeled. Following von Asmuth and
Bierkens [2005], the parameters were numerically optimized to best fit an observed hydrograph using a
weighted least squares objective function. The weighted objective function was adopted so that a statistical
model for the residuals could be derived that is applicable to irregularly spaced groundwater level observa-
tions. Following von Asmuth and Bierkens [2005], for practical reasons, the residuals were modeled as an
exponential weighting of previous time-step residuals. For regularly spaced data, this reduces to an autore-
gressive lag 1 model (AR1) plus a white noise process having a zero-mean, homoscedastic and serially
uncorrelated Gaussian distribution. Additionally, in applying this model to irregularly spaced observations,
the weighted least squares objective function used the innovations (i.e,, the change in the model residuals
over an irregular time step) rather than the model residuals. In the following, the equations from von
Asmuth and Bierkens [2005] are reproduced and a modification is presented to increase the numerical
stability.

The residuals at a time point were calculated as:

where ¢€; [L] is the residual at time t; h, [L] is the observed groundwater elevation at time t; h; [L] is the
deterministic component predicting the groundwater level at t due to all external forcing; and d [L] is the
drainage elevation constant. In modeling the groundwater level, the mean of the residuals was assumed to
equal zero and this allowed estimation of the drainage elevation constant:

d=h—nh, (19)

where h [L] is the mean observed groundwater level over the calibration period; and h, is the mean of the
deterministic components, hy, over the calibration period. Next, the innovations, v; [L], over an irregular
time step were defined by assuming an exponential decay of the residuals:

=6 —e ace M (20)
where ¢ [L] is the residual at the previous groundwater observation time; At [T] is the variable time step
to the previous groundwater observation; and p is a dimensionless parameter defining the decay rate of
the residuals. Using this equation for the innovations, von Asmuth and Bierkens [2005] derived an objective
function used to optimize all model parameters, include the noise parameter . The objective function is a
simplified likelihood function. It is referred to as the sum of weighted squared innovations (SWSI) criterion,
and was defined by von Asmuth and Bierkens [2005] as:

1 _efz;mr,») } -N

_e*ZuArj

N N
2 {Hi:1( 12 (¢,
VA /E:] ] ) (t,,Q) 21

where »2 is the SWSI criterion; N is the number of groundwater observations within the calibration period;
and v?(t;, B) is the innovations at time step j and for parameters Q. The fraction to the left of v?(t;, B)
defines the weight applied to each innovation and is a function of the time step size and the noise parame-
ter. Effectively, it is the mean noise variance across all time steps divided by the noise variance at each time
step.

A weakness of equation (21) is that for small values of 1 and small time steps, the numerator (1—e™2/A1)
approaches zero. When a large number of such time steps are multiplied, the numerator within equation
(21) approaches machine precision and rounds to zero. This causes a zero weight to be applied to all inno-
vations. In developing this paper, this problem frequently occurred. To overcome this weakness, the term 1
—e 2% was transformed to a natural log. Values close to zero hence became large negative values. Fur-
thermore, this required the product term of equation (21) to become a summation in log space, an opera-
tion less likely to approach machine precision. To convert out of log space, the mean was first derived and
then the exponential calculated. This modification significantly increased calibration stability. The objective
function applied to all models was as follows:
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N R
N_exp {ﬁzz [In (1—e 2H40)]}
2 XZZZ ,1 1_e—2[tAtj

j=1

v? (t;,B) (22)
1.5
. where i is the antilog transform of u
n § and ft=10*. Like the soil moisture and
B 165 impulse response functions, this trans-
2 9 formation was undertaken to scale the
E‘; “; parameter to a range and sensitivity
050 similar to the other model parameters.

2.4. Model Calibration
0 The successful application of the linear
or nonlinear TFN models is dependent
. . . . . upon a robust global calibration
0 0.5 1 1.5 2 2.5 3 scheme. That is, assuming there is only
Parameter - b %10~ one global optima, repeatedly applying
a global calibration scheme should
result in the same parameter estimates.

Figure 4. Two-parameter response surface illustrating the complexity of the model
calibration; specifically, the multiple optima, complex valleys and regions of low

sensitivity. The response surface was derived using the five parameter linear TFN However, calibration of either the lin-
model. Note, the remaining three parameters were fixed to that at a prior deter- ear or nonlinear TFN models is nontri-
mined optima. vial. To illustrate the challenges, Figure

4 shows a two-parameter response sur-
face derived from the five parameter linear TFN model. It shows two optima (at b < 0.0005), three valleys
and two regions of very low sensitivity. Following von Asmuth et al. [2002, 2012], the highly efficient
Levenberg-Marquardt local calibration [Marquardt, 1963; Levenberg, 1944] scheme was initially applied.
However, as expected from Figure 4, the optima to which such a local calibration scheme converges was
very dependent upon the initial parameter values and, furthermore, partitioning a parameter region likely
to contain the global optima was highly dependent upon the forcing and observation data. To address this,
Levenberg-Marquardt was extended to a trust region approach [Fan and Pan, 2006] using eigenvalues and
cluster analysis to dynamically select the number and location of initial starts [Tu and Mayne, 2002]. How-
ever, despite considerable extension to Tu and Mayne [2002] and subsequent testing, repeated application
of a five parameter linear TFN and nine parameter nonlinear TFN model to four control catchment bores
(see section 2.5) failed to achieve reproducible identification of the global optima.

In light of these challenges, multistart local calibration was abandoned in favor of a robust real-value global
calibration scheme. In selecting a scheme from the many global calibration schemes available, the following
criteria were adopted: (1) demonstrated robustness for 5-10 dimensional real-value problems with highly
variable response surface shape (i.e,, the global optima is highly likely to be identified when the scheme is
repeatably ran); (2) applicability to problems with bounded and unbounded parameter ranges (because
numerous time-series model parameters have a lower bound but no physical upper bound); and (3) suffi-
cient simplicity for a user to run without detailed knowledge of the scheme. Clearly there are a number of
schemes that would meet these criteria but a review, or testing, of each is beyond the scope of this paper.
The selected scheme, and one scheme meeting criteria 2 and 3 that has been reviewed, tested and found
to be very robust [Langdon and Poli, 2007; Das and Suganthan, 2011], is the Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [Hansen, 2006; Hansen et al., 2003]. In an evaluation of ten stochastic global
calibration schemes for hydrological modeling, CMA-ES was shown to perform as well or better than the
other nine methods with respect to both reliability of the solution and convergence speed [Arsenault et al.,
2014]. Interestingly, the widely applied Shuffled Complex Evolution (SCE) scheme [Duan et al., 1992] per-
formed best only when the model complexity was low and there were few parameters calibrated. Addition-
ally, like many schemes, SCE requires the user to input numerous settings for reliable and reproducible
identification of the global optima and, hence, requires the users to have an understanding of the calibra-
tion scheme. In contrast, an appealing aspect of CMA-ES is that the user only defines the number of reruns
of the scheme and all other settings are adaptively controlled by the scheme. For these reasons CMA-ES
was adopted for calibration of the TFN models.
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Critically important to the performance of CMA-ES is that the parameters are encoded so they have similar
sensitivity. To achieve this, selected parameters were log 1o transformed (see sections 2.2.1, 2.2.2, and 2.3 for
details). This resulted in a likely range of —10 to 10 for all parameters. Lastly, CMA-ES requires the input of a
standard deviation for the initial sampling distributions for each parameter. This was set very widely to half
the physical parameter range if bounded, or half the plausible range if unbounded.

2.5. Assessment of the Calibration Scheme

Considering the importance of the calibration scheme to successful groundwater time series modeling, the
robustness of the CMA-ES scheme was tested for both the five parameter linear TFN model and a nine
parameter nonlinear TFN model. The latter used groundwater potential ET (equation (13)) and the normal-
ized soil free drainage (equation (11)) with two calibrated soil parameters; specifically, the soil storage
parameter, Scqp, and the power term for free drainage f. The ET power parameter, 7, was fixed to one and
the infiltration parameter, «, was fixed to zero and k., was fixed to —oo (note, the latter omitted free-
drainage from the soil model. See section 2.2.2 for a discussion of using free drainage in the time series
despite it not being included in the soil model). In undertaking the testing, the aim was to assess the repro-
ducibility of the calibration results and to identify the number of CMA-ES reruns required to achieve repro-
ducible results. The testing was undertaken by repeating the calibration ten times for four bores within the
control catchment and assessing the distribution of objective function and parameter values from the ten
calibration runs. The trials were repeated for 0, 2, 4, 6 and 8 CMA-ES reruns. The underlying assumption of
this testing was that there is a single global optima.

2.6. Model Implementation

In testing the linear and nonlinear TFN models, all structural forms of each model were applied to eleven
observation bores within the study area. Specifically, two linear TFN models and 84 nonlinear TFN models
were applied to each bore (see the supporting information for details the 86 models). For the linear TFN
models, the models differed only in the impulse response function, 6, for ET. For the nonlinear TFN models,
the 84 models structures arose from 16 to 17 different soil moisture models applied to each combination of
soil fluxes input to the TFN model (equations (14-17)). An additional 16 subforms were derived for the free
drainage nonlinear TFN models by removing the free-drainage term from the soil model (equation (6)) but
retaining the free-drainage power parameter, f3, within the transfer functions.

In applying each model, a split-sample approach [Klemes, 1986] was adopted whereby the calibration was
undertaken on the first 10 years of water level observations and evaluation used the remaining 3 years. For
computational efficiency, those bores with data loggers were resampled to monthly frequency. All simula-
tions used SILO [Jeffrey et al., 2001] daily precipitation and ETo data (at 142.90° longitude and —37.15° lati-
tude) from 1890 to 2008 scaled by the monthly site precipitation. In calibrating each model, the CMA-ES
was rerun four times (see section 3.1). In assessing the nonlinear TFN models against the linear models, the
best performing nonlinear TFN model at each bore was defined as that having the maximum evaluation
period unbiased coefficient of efficiency; that is, the standard coefficient of efficiency (CoE) [Nash and Sut-
cliffe, 1970] extended so that the evaluation period bias is subtracted from the simulation.

3. Results

3.1. Reproducibility of the Model Optimization

To assess the reproducibility of the CMA-ES calibration scheme, it was applied ten times to four bores using
the five parameter linear TFN model and a nine parameter nonlinear TFN model. To summarize the assess-
ment, Figure 5 shows the minimum, maximum and median CoE and the required number of model evalua-
tions against the number of CMA-ES reruns.

For the linear TFN model, Figures 5a and 5b show that after four CMA-ES reruns the ten trials for three bores
each converged to a single optima after between 27,425 and 119,329 model evaluations (0.56-2.44 h
respectively, or 0.4429 s per model evaluation per core, using a 6-Core AMD Phenom Il 3.2 Ghz desktop).
However for bore 124705, the maximum difference in the CoE across the 10 trials was 0.015 for 4 reruns
and it declined to 0.008 for 10 reruns (results for 10 reruns not presented, they required a total of between
1,720,853 and 2,223,605 model evaluations). Thus the calibration of bore 124705 did not reproducibly con-
verge to a single optima. Similarly, for the nonlinear TFN model, Figures 5c and 5d show that after four
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Figure 5. Summary of (a, c) CMA-ES calibration solution reproducibility and (b, d) the required number of model evaluations. A linear and
nonlinear TFN model for four bores was calibrated ten times using 0, 2, 4, 6, and 8 CMA-ES reruns. Note, the whiskers denote the minimum
and maximum and the cross the mean.

CMA-ES reruns the ten trials for all four bores failed to converge to a single optima with the maximum dif-
ference in CoE over each of the ten trials ranging from 0.005 to 0.07. This required 80,249 to 384,739 model
evaluations. However, after 8 reruns requiring between 488,917 and 3,189,327 model evaluations (6-8 times
greater computational load), the maximum difference in CoE only reduced to 0.003-0.026. The failure to
repeatedly converge to a single optima highlights the probabilistic nature of this, and most, global calibra-
tion schemes; a finding supported by Arsenault et al. [2014] where, in calibrating the 10 parameter MOHYSE
rainfall-runoff model to 11 basins, 40 CMA-ES trials were undertaken and any one trial was deemed to have
converged if it was within 95% of the best optima. Overall, the increased complexity of the nonlinear TFN
model does reduce the calibration reproducibility and, given that a 6-8 times increase in model evaluations
only slightly improved reproducibility, an impractical number of evaluations appear required to achieve
100% calibration reproducibility. In light of Figure 5, four CMA-ES reruns appears to be sufficient to achieve
a near-global optimal solution and this was adopted for the following model runs.

3.2. Performance of Optimal Models

Figures 6 and 7 show the observed and modeled groundwater hydrographs at the control and treated
catchments respectively. Each plot presents simulation results from the five parameter linear TFN model
(i.e., without a unique impulse response function for ET), the seven parameter linear TFN model (i.e., with a
unique impulse response function for ET) and the best performing nonlinear TFN model, as defined by hav-
ing the maximum evaluation period unbiased CoE. For the treated catchment, all simulations included the
land use change component and hence they have an additional model parameter.

For the upper slopes of the control catchment, Figures 6¢ and 6d show that the nonlinear TFN model
achieved exceptionally good reproduction of the large recharge events in the late 1990s and the subse-
quent decadal decline. However, at the upper-most bore, Figure 6e shows that the nonlinear TFN model
simulation of the 1990s recharge event to have deteriorated relative to the nonlinear TFN simulation of
lower catchment bores. During the evaluation period, the prediction was exceptionally good at bore
124676, while at bores 124676 and 124672 the prediction was biased but the timing of the 2007 recharge
event was well simulated (Figures 6d and 6e). Neither of the two linear TFN models performed well on the
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Figure 6. Control catchment observed and modeled hydrographs for bores (a) 124705, (b) 124683, (c) 124676, (d) 124672, and (e) 124671.
The solid lines for the modeled estimates denote the calibration period and the dashed line the evaluation period.

upper slopes. Both failed to simulate the large recharge events in the 1990s and, during the subsequent deca-
dal decline, both incorrectly simulated groundwater dynamics comparable to those simulated during the
large recharge events in the 1990s. With regard to the lower slopes of the control catchment, Figures 6a and
6b show less distinction between the models (excluding the five parameter model in Figure 6a). For bore
124683, during the calibration period, all three models were comparable. However, during the evaluation
period, the seven parameter linear TFN model had a considerable bias. Finally, for bore 124705 the nonlinear
TFN model and the seven parameter linear TFN model did simulate the annual dynamics and the gentle rise
from 1995 to 2002. In contrast, the five parameter linear TFN model did not simulate the annual dynamics but
did simulate the long-term trend during the calibration period. During the evaluation period, only the nonlin-
ear TFN model simulated the gentle decline from 2004 onward and the 2007 recharge event.

For the upper slopes of the treated catchment, Figures 7c-7f show the nonlinear TFN model to again have
achieved exceptionally good reproduction of the large recharge events in the late 1990s and the subse-
quent decadal decline. The performance during the evaluation period was also exceptional; however, the
evaluation period was not a difficult test for the models as it contained minimal variance from a near linear
decline. With regard to the linear TFN models, they again failed to simulate the large recharge events and,
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Figure 7. Treated catchment observed and modeled hydrographs with the inclusion of land-use change for bores (a) 124704, (b) 124702,
(c) 124675, (d) 124674, (e) 124673, and (f) 124699. The solid lines for the modeled estimates denote the calibration period and the dashed
line the evaluation period.

for bore 124674, it also failed to simulate the subsequent long-term decline. For the lower slopes of the
treated catchment, Figures 7a and 7b showed less distinction between the models. All three models
adequately simulated the calibration and evaluation period dynamics with minimal bias.

To objectively assess the model performance, and to compare forms of the nonlinear TFN soil moisture
models, Table 2 summarizes the calibration and evaluation CoE, unbiased CoE and the bias from the best
nonlinear TFN model and the five and seven parameter linear TFN models (six and eight parameters
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Table 2. Model Performance Statistics During the Calibration and Evaluation Periods for Selected Models®

Control Catchment Treated Catchment Treated Catchment
Bore ID 124705 124683 124676 124672 124671 124704 124702 124675 124674 124673 124699
Nonlinear TFN
Model Number 23 56 31 24 17 29 63 31 63 57 27
Input form® InfSeL  InfCwNI DrNI InfSeL  InfCwNI  InfCwL DrNI DrNI DrNI DrNI DrNI
Output form® Gel Gel Gel Gel Gel GelL GeNI Gel GeNI Gel GelL
No. parameters 10 8 10 7 9 10 11 10 11 11 9
CoE-Cal. 0.513 0.967 0.997 0.906 0.784 0772 0.986 0.979 0.955 0.981 0.888
UnbiasCoEEval. 0.559 0.882 0.981 0.467 0.670  0.605 0.782 0.982 0.791 0.931 0.986
Bias-Eval(m) —0.031 —0.037 0.026 —0.243 —3.001 0010 —0.158 —0.066 —0316 —0.116 —0.155
Linear TEN—Seven Parameters (Eight for Treated Catchment)
CoE-Cal. 0.476 0.962 0.873 0.841 0.662 0.622 0.962 0917 —0.222 0.928 0911
UnbiasCoEEval. —0.158 0272 —3991 -1618 0457 0414 0590 —0.112 —1.403 0.766 0.022
Bias-Eval(m) —0.143 —0.500 0.710 0572 —1.737 0.019 0.175 0.083 —4.205 —1.145 1.008
Linear TEN—Five Parameters (Six for Treated Catchment)
CoE-Cal. 0.338 0.972 0.875 0.823 0626  0.606 0.956 0.900 —0.150 0.908 0.725
UnbiasCoEEval. -1.370 0795 —3.791 —1.083 0436 0382 0.558 0648 —1.196 0.760 0.586

Bias-Evaluation (m) —0.171 0.038 0.797 0344 —2774 0015 0125 —0447 —4.166 —1493 —4.018

“Note: the model number refers to the model structures detailed in the supporting information. Also, for the nonlinear models the
input and output form refers to the soil flux adopted to replace precipitation and PET respectively.

SDrNI: free drainage—nonlinear (i.e., calibrated f3). InfSeL: infiltration via saturation excess—linear (i.e., fixed o = 0). InfGwL: infiltration
via catchment wetness—linear (i.e., fixed o = 1). InfGwNI: infiltration via catchment wetness—nonlinear (i.e., calibrated o).

“GeL: groundwater evaporative potential—linear (e.g., fixed y = 1). GeNI: groundwater evaporative potential—nonlinear (e.g., cali-
brated 7).

respectively for the treated catchment). The best performing nonlinear model was that having the maxi-
mum evaluation period unbiased CoE. During the calibration period, the nonlinear TFN model had the
highest CoE at 9 of the 11 bores. During the evaluation period, the nonlinear TFN model had the highest
unbiased CoE at all 11 bores and, at 9 bores, it had the lowest bias. Overall, the nonlinear TFN models
performed consistently better than the linear TFN models during both the calibration and evaluation
periods.

With regard to which type of nonlinear TFN model performed best, Table 2 is less conclusive. For the evapo-
rative flux input to the nonlinear TFN model, the best performance was achieved at all bores by models
using the groundwater evaporation potential and at two bores this was nonlinear. For the rainfall flux input
to the nonlinear TFN model, the best predictive performance at treated catchment bores on the upper
slopes was achieved using the nonlinear free drainage from the soil layer. However, for the control catch-
ment the free drainage was the best option only at bore 124676. At the other four control catchment bores
the infiltration rate was the best option. Considering that recharge is driven by soil drainage, and not infil-
tration, this result is physically questionable.

To further explore evidence for adopting the infiltration rate, Figure 8 compares the calibration and evalua-
tion period CoE from the best infiltration model against the best free drainage model (the best model was
selected by the maximum CoE during the evaluation period). It shows that, at bores where the infiltration
model is the best model during either period, the drainage model performance is very comparable to that
from the infiltration, with the only exception being bores 124671 and 124704 during the calibration period.
Furthermore, if the best model was instead chosen by the maximum CoE during the calibration period,
then the best nonlinear TFN model structure is more consistent with all but the shallowest bore in each
catchment (bores 124704 and 124705) being best simulated using the free drainage rate while at the shal-
lowest bore adoption of free drainage would reduce the CoE by only 0.03 and 0.008 respectively (results
not presented). Overall, this suggests that the nonlinear TFN modeling should use the groundwater evapo-
ration and the more physically realistic option of nonlinear free drainage.

With regard to the best soil model structure, there was considerable variability across the 11 bores with the
number of parameters ranging from one to four. However some similarities did arise whereby six bores
simulated infiltration as a function of soil moisture (o # 0), ten bores simulated nonlinear free drainage

([} > 1) and nine simulated k;ar > 0 (see section 2.2.2 for a discussion of simulating free drainage with

ksq: =0) while nine bores simulated linear evaporation (y = 1). So while optimal model performance is
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Figure 8. Comparison of best nonlinear TFN models using the soil infiltration rate versus the soil free drainage rate during the (a) calibra-
tion and (b) evaluation period.

dependent upon the soil model structure, the following soil models appear to be viable options (note,
model numbers 31 and 63 respectively):

B
B_pl1- 2 ) k(=) B[ (23)
dt Scap Scap scap
B
ds - S S
— :P_ksat — _Et = (24)
dt Scap Scap

3.3. Estimation of Land-Use Change Impacts

To account for the revegetation within the treated catchment, and to quantify its impact on the ground-
water level, each model included an integral simulating the groundwater uptake from the revegetation. For
each model the integral was a rescaling of the ET integral weighted by the fraction of land use change. To
summarize the estimated impact from the revegetation, Table 3 shows the total change in head on the final
day of simulation for each treated catchment bore and the three types of models. Taking note that a nega-
tive value denotes a decline in head, Table 3 shows that the nonlinear TFN model estimates a decline in
head on the midslopes (bores 124702, 124675 and 124673) and an increase in head at the lower and upper
slopes (bores 124704, 124674 and 124699). This inconsistent impact of the revegetation also arose using
the six and eight parameter linear TFN models. However, all models estimated a comparable decline at
bores 124702 and 124675 and a comparable rise at bore 124704.

To further explore the validity of including the revegetation in the models, Table 4 shows the change in the
calibration and evaluation CoE when the revegetation integral was added to each model (note, a positive
value denotes an improved performance with the revegetation integral). It shows the nonlinear TFN to have a
consistent improvement in evaluation period unbiased CoE when revegetation was added. For the calibration
period, the changes were very modest and notably improved only at bore 124702. For the eight parameter
linear TFN bores, the inclusion of revegetation improved evaluation period performance at four bores, while
for the six parameter linear TFN bores the evaluation period performance improved only at two bores.

In evaluating the model estimates of the impacts from revegetation, an independent estimate is required.
However, no clear impact is observable when comparing the hydrographs from the treated catchment (Fig-
ures 7) to those at similar elevation within the control catchment (Figures 6). All but the lowest elevation
bore within both catchments show a long-term declining head and no obvious difference in response to
recharge events. Considering that from the late 1990s to 2010 southeast Australia experienced the driest
conditions since 1900 [van Dijk et al., 2013], and that the observed dynamics within both catchments is typi-
cal of drought conditions, it is not surprising that the revegetation appears to have had minimal impact on
groundwater levels. However to quantitatively investigate, Table 3 also presents the difference in the
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Table 3. Groundwater Elevation Impact (meters) From Revegetation Within the Treated Catchment in the Final Year of Simulation®

Bore ID 124704 124702 124675 124674 124673 124699
Nonlinear TFN 0.213 —1.709 —1.008 0.1460 —6.524 1538
Linear TFN—eight parameters 0.229 —2.280 —3.007 2.0955 1.9062 0.2703
Linear TFN—six parameters 0.287 —2.034 —4.254 21414 0.0 —1.825
Estimated observed impact 0.766 —0.290 —1.840

“Note: a negative impact indicates that the water table became deeper.

observed long-term trend at treated catchment bores compared to the control catchment bores having a
similar elevation multiplied by the duration to the end of the record. This independent estimate shows an
inconsistent impact from the revegetation where, compared with the control catchment bores, the water
level is estimated to have risen at bore 124702 and declined at bores 124675 and 124674. Furthermore, the
total decline in head from the revegetation appears to be small. Hence, it is not surprising that adding reve-
getation to the models produced modest performance improvements and small and inconsistent estimates
of the impacts from revegetation.

3.4. Temporal Decomposition of Hydrographs

A strength of the linear TFN models is that the transfer functions provide insight into the response times of
the aquifer. For example, in Figure 3a the skewed Gaussian-like curves represent a lagged response to cli-
mate while Figure 3b shows exponential-like curves with no lag. However, for the nonlinear TFN models the
climate data is processed through the soil moisture model before input to the transfer function. Hence, the
transfer functions cannot provide direct insight to the climate lags and response times. To address this limi-
tation, the soil model and the climate transfer functions were used to decompose the simulated hydro-
graph into the contributions from climate periods of 0-1, 1-2, 2-5, 5-10, and 10-20 years ago. To illustrate,
Figure 9 shows the decomposition for treated catchment bores 124704 and 124674 (note, in interpreting
these decomposition plots, the magnitude of the fluctuations and trends is most informative and not the
mean value over time). For bore 124704, Figure 9a shows that the climate 0-1 years ago drove most of the
water level fluctuation while the climate from 1 to 2 years ago caused fluctuations of approximately 0.05 m.

Regarding bore 124674, Figure 9b shows that climate 0-1 years ago drove the recharge events while cli-
mate 2-5 and 5-10 years ago drove longer term trends; with the latter periods appearing to explain the
observed long-term water level decline shown in Figure 7d. Considering that at the study area the Austra-
lian Millennium Drought [van Dijk et al., 2013] started in 1994 [see Peterson, 2009, Figure 7.5] and that the
downward trend in Figure 7d is only apparent 4 years later in 1998, a 2-10 year lag is plausible. This finding,
however, must be viewed in the context of the problematic estimation of the revegetation impacts.

4, Discussion and Conclusions

This paper presented nonlinear groundwater hydrograph transfer function noise (TFN) models that extend
von Asmuth and Bierkens [2005] to account for the nonlinear processes of runoff and recharge and long-
term groundwater level decline. To achieve efficient calibration, and hence a useful model, the impulse
response functions from von Asmuth and Bierkens [2005] was rederived to minimize the parameter covari-
ance and the CMA-ES global calibration scheme was adopted. The model nonlinearity arose from the trans-
formation of daily precipitation and PET using a highly flexible soil moisture model. The precipitation was
transformed to free drainage or to the surface infiltration rate while the PET was transformed to the

Table 4. Change in the CoE as a Result of Including a Land Use Change Component Within a Treated Catchment Time-Series Model®

Bore ID 124704 124702 124675 124674 124673 124699
Nonlinear TFN ACOoE calibration 0.006 0.772 —0.009 —0.011 0.0170 —0.030
ACoOE evaluation 0.232 0.300 0.603 0.609 0.228 0.072
Linear TFN 8 param. ACoE calibration 0.159 0.792 0.003 —1.08 0.660 0.001
ACoE evaluation —0.092 0.135 3.944 1.150 0.509 —0.818
Linear TFN 6 param. ACoE calibration 0.149 0.905 0.027 —0.256 8.257 0370
ACoE calibration —0.002 0.246 1.692 —0.233 4E-08 —0.001

“Note: a negative value indicates that the model performance declined when the land use change component was added to the
model.
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Figure 9. Temporal decomposition of bores (a) 124704 and (b) 124674 within the treated catchment.

groundwater evaporation potential; that is, the evaporative potential after soil ET was subtracted from the
PET. For each combination of these fluxes, at least 16 soil moisture model structures were derived which
resulted in 84 different nonlinear TFN models.

To evaluate the linear and nonlinear models, two linear models and all 84 nonlinear models were applied to
the 11 piezometers within the Great Western paired catchment in Victoria, Australia. However, before exploring
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Figure 10. Four weaknesses of Pearson’s function and some solutions. (a) Pearson’s a function with very long lag times. (b) Pearson’s expo-
nential-like function with a large weighting in the tail. (c) Pearson’s Gaussian-like function with a large weighting in the tail. (d) Rounding
errors from finite machine precision can cause an extremely rough calibration response surface.
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the performance of individual models, the reproducibility of the CMA-ES calibration scheme to identify the
global optima was assessed. This was undertaken by repeating the calibration 10 times at four bores within
the control catchment and assessing the variability of the estimated global optima. For a five parameter linear
TFN model, the calibration was 100% reproducible at three of the four bores. For a nine parameter nonlinear
TFN model, the calibration was reproducible at each of the four bores but only to within two to three decimal
places in the coefficient of efficiency (CoE). This outcome, while not ideal, is consistent with Arsenault et al.
[2014] and highlights the challenge of global calibration and the probabilistic nature of this, and most, global
calibration schemes. That is, for all but the most trivial applications, one cannot be sure that the global optima
has been identified. It also highlights that the interaction of the model structure with the observation and
forcing data often produces multiple local optima that challenge even a robust global calibration scheme
[Langdon and Poli, 2007] and that render the calibration of the TFN models potentially suboptimal.

The lower reproducibility for the more complex models may have caused some of the 84 nonlinear models
applied to each bore to be calibrated to a local optima. Despite these calibration challenges, the nonlinear
models performed significantly better than both linear TFN models during both calibration and evaluation
periods. Only the nonlinear TFN model was able to simulate major recharge events and the observed long-
term decline. Unexpectedly, however, the best performing nonlinear TFN model at five of eleven bores
used the soil infiltration rate in place of the precipitation rather than the more physically plausible soil drain-
age rate. Closer examination of the 84 nonlinear models showed that adopting the drainage rate at these
five bores only slightly reduced model performance compared with using the infiltration rate. Combined
with the variability in the best soil model structure (see Table 2) this suggests that optimal performance can
be sensitivity to the soil model structure and the fluxes taken from it. Nevertheless, reasonable performance
can likely be achieved using the suggested overall best performing model structure (see section 3.2). Fur-
thermore, the best nonlinear TFN model for a bore is dependent upon how the best model is selected. In
this paper, the best nonlinear TFN model was selected by the evaluation period CoE. Often this identified a
robust model that performed well during the calibration and evaluation periods. However, occasionally the
calibration period CoE was notably lower than if the best model had been selected using the calibration
period CoE (e.g., for bore 124671 selection by the evaluation period CoE gave a calibration period CoE of
0.67 while selection by the calibration period CoE gave a calibration period CoE of 0.96). Combined with the
variable model structure, this highlights that when building nonlinear TFN models carefully consideration
should be given to the purpose of the application (e.g., interpolation or extrapolation) and the importance
of identifying the optimal model structure.

In using the calibrated linear and nonlinear TFN models, for selected bores, the simulated hydrographs
were decomposed into the contribution from each stressor and, for the nonlinear models, to periods over
time. For the decomposition to the stressors, both the linear and nonlinear TFN model estimates of the
impacts of revegetation were unreliable, although the nonlinear model results were slightly more consist-
ent. This was probably due to both the Millennium drought in southeast Australia reducing the impacts
from the revegetation and by the simplistic representation of the land use change as a binary change at the
planting date. Potentially, a more reliable estimate of the impacts from revegetation could be achieved by
using a time series of vegetation data, such as the Normalized Difference Vegetation Index. The temporal
decomposition provided an interesting output that potentially explains the climatic time-lag driving long-
term water level trends without resorting to simple fixed trend estimates derived either from the hydro-
graph or use of a simple regression model such as HARTT [Ferdowsian et al., 2001]. However, the outputs do
require future evaluation against independent measures.

Overall, the proposed optimal nonlinear TFN model, while performing best in this application, should be
adopted with some caution. It was derived for only one climate type, geology and land use and the predic-
tive period at most bores had a declining trend of low variance. The latter does not present the most chal-
lenging test to the predictive performance but, unlike stream flow, an aquifer effectively has no minimum
water level (i.e., if the head is far above the basement) so a long-term decline does give opportunity for the
prediction to be very biased. Despite this, it is unlikely that the identified optimal model structure would be
appropriate for all climates and geologies. To aid the exploration of different nonlinear TFN structures the
source code is open-source (see section 5) and, because of its object oriented structure, is highly flexible.
New TFN model structures can easily be built and tested with different climate transformations and transfer
functions or entirely new types of models can be built and linked into the overall modeling framework. In
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summary, the nonlinear transformation of climate forcing is essential for simulating large infrequent
recharge events and long-term head declines. We do not expect the model structures presented herein to
be optimal everywhere and invite others to use the groundwater time-series modeling framework to
develop and test new models.

Appendix A: Revised Pearson’s Type lll Function

Five weaknesses were identified with the Pearson type Il function adopted for the impulse response function.
In the following, each weakness is detailed and modifications to the Pearson type lll function are presented.

The first modification was to minimize the parameter covariance. To begin with, the term b” within equa-
tion (3) was removed. This simply caused the scaling effect of b” to be shifted to parameter A. Similarly, the
term I'(n) also produces a scalar result and was removed:

0(t)=At"""exp (—bt) (A1)

Equation (A1) does, however, still have a covariance between parameters A, b and n when n is greater than
one; that is when it has a Gaussian-like shape. To address this, when n is greater than one, the terms
t""Texp (—bt) were divided by the peak value of the function. By simple calculus the peak was determined
as follows:

f=t""Texp (—bt) (A2)

of
P =(n—1)t""2exp (—bt)—bt" Texp (—bt) (A3)
To determine the timing of the peak, equation (A3) was equated to zero and rearranged to an explicit equa-

tion for t:

0=(n—1)t"2exp (—bt)—bt" "exp (—bt) (A4)
(n—1)t"%exp (—bt)=bt""exp (—bt) (A5)
(n—1)t" 2=pt""" (A6)
-t (A7)

=21 _ % (A8)

t= % (A9)

Next, the value of f at the peak was determined by substituting equation (A9) into equation (A2):

n—1 n—1
fpeak= <T> exp (1—n) (A10)
Finally, dividing equation (A1) by equation (A10) gave the following impulse response function for when
parameter n is greater than one:

" Texp (—bt)
(%)nﬂexp (1—n)

The second modification addressed parameter transformations. In trialling the linear (and nonlinear) TFN
models, the parameter n (see equation (A11)) postcalibration ranged over five orders of magnitude from less
than 0.001 one to over three hundred (similar range occurred for parameters A and b). To illustrate, Figure 10a
shows the Pearson'’s Type lll function curves for n ranging from 1 to 1000. It shows that larger values of n shift
the peak back in time; hence simulating a larger time-lag between a climate event and a head response. Con-
sidering that global calibration methods often sample the parameter space from within user-set upper and

0(t)=A (A17)
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lower bounds, such a large parameter range for n would reduce the sampling density; which would cause
either a lower reliability in locating the global optima or require an excessive number of calibration iterations.
To minimize these calibration problems, parameters A, b and n within equation (A11) were antilog trans-
formed. This effectively back-transformed the parameters from a compressed parameter space during the cali-
bration to a value of the same form as within equation (A11). Hence, equation (A11) was modified to:

0(t)=A th_{eXp <_6t) (A12)

(%)nﬂexp(]—h)

where A is the antilog transform of A and A=10% bis the antilog transform of b and 5=10b; and n is the
antilog transform of n and h=10".

The third modification was undertaken for when n < 1 in order to reduce the impulse response function
value at the start of the climate record. To illustrate, Figure 10b shows that, when the function has an
exponential-like form, very low values of parameter b can result in a large value thousands of days prior.
When such an impulse response function is multiplied by a very long daily precipitation record and inte-
grated, precipitation from many years past will be estimated to produce a significant head displacement
from that of the drainage elevation (that is, the d constant within equation (4)). This problem did occur and
caused d, which is derived postcalibration, to have an unrealistically low elevation. To fix this problem, the
parameter A was first omitted and the function value at 100 years prior to the first climate observation was
calculated. This was subtracted from the function and, to minimize parameter covariance, was then used to
normalize the impulse response function. The final impulse response function for n < 1 was:

" Texp (_BT> — fiimit

0(t)=A (A13)
® 1= fiimit
where:
fimic =timd exp (—Bt/;m;r) (A14)
timie=min (t)—100X365 (A15)

Additionally, Figure 10c shows that the Gaussian-like form of the function can also have a very large value
at 10,000 days in the past. A challenge in fixing this form of the problem is that the impulse response func-
tion does not monotonically decrease. No solution could be derived for this problem and it remains a weak-
ness of the impulse response function based on the Pearson’s type Ill function.

The fourth modification, and one related to the third, was the integration of the function from the first climate
observation to negative infinity. This was undertaken because, without the tail integration, spurious parameter
estimates resulted from the calibration. To undertake the modification, the function was integrated from the
first climate observation, t, [T], to negative infinity and multiplied by the mean daily climate forcing rate:

J P.0(t—1)dt ~ P J 0(t—1)0t (A16)

For the Gaussian-like function in equation (A12), an analytical solution to the integral was derived by firstly
moving the constants to outside the integral:

‘j’ L e (~b(t-) ;
T=—00 (%;1)"1exp (n—=1)

: <hj1)ﬁ_1exp (1-h) TL(t_T)“eXp (_B(t_rnar
b

Note that the integral is of a similar form to the Gamma function:

T

(A17)
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[(a)= ‘ s9 e ™%ds (A18)
5=0

To rearrange the integral into this form, u was substituted for b(t—1):

to 0
ou

J (t—r)ﬁqexp(—é(t—r))at: J h1_1uf”1exp(—u)? (A19)

T=—00 u=—-o0

0
=— J u"lexp (—u)du (A20)

— 7 (A21)

where I'j(1, u) is the incomplete Gamma function integrated from zero to u. Integrating from —oo to t,,
replacing n for 1 and reinserting the constants from equation (A17) gives the following equation for the
integration of equation (A12) from the first climate observation to negative infinity:
T PAT (i
P | o(t—c)or=— AL(7) [r,— (ﬁ, Bto) —1} (A22)
~h A1 n—1 N
o 6" (%)) e (1)

For the exponential-like function in equation (A13), a similar approach was adopted. However, to integrate
from t;;mir and not from —oo, the third modification of subtracting the function value at the start of the cli-
mate record was incorporated and the first modification of scaling by the peak was omitted. The integration
of equation (A13) from the first climate observation to t;,;; was:

to

. PA [T( -
P J 0(t—1)0r= = (2:,7) [Fi <n7bfo>—1] —ﬁimir(tﬁmir—To)> (A23)

= limit

In implementing the fourth modification, the mean daily forcing rate became a function of the calibration
period. That is, if a time-series model was calibrated from, say, years 1990 to 2000 and the input climate
date extended from 1950 to 2000, then the mean daily precipitation and PET was calculated for 1950 to
2000 and all subsequent simulations used these mean rates.

The fifth modification was undertaken to minimize numerical rounding in the convolution of the transfer
functions with daily climate data. Within equation (A12), the term t"~'! can become very large when n > 1
and a very long daily climate record is input.

When numerically approximating the TFN integrals they can, and did, exceed machine precision and
rounded to co. To address this problem the order of operations was modified when n > 1. Initially, the
time points rounding to co were removed from the convolution sum. However, as shown within Figure 10d,
this produced an extremely rough response surface with hundreds of local optima. To overcome this prob-
lem, the order of operation within equation (A12) was modified by shifting the power term n—1 applied to
t (see equation (A12)) to the outer of the equation:

0(t)=A ﬂ (A24)

n-1

() o 6

A1

. A—1
texp (;—f{)

| Eee

(A25)
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~ ~ n—1

exp (1) (A26)

=A|texp =

Importantly, in equation (A26) was only adopted if 1 was sufficiently large that the convolution with the

daily forcing rate rounded to oc. This was because as n approaches 1 and bis large (e.g., 0.01), the term exp

%) within equation (A26) exceeds machine precision and rounds to zero, and hence produces a disconti-

nuity in the response surface.

Lastly, the integration of the tail to —oco (equation (A22)) was similarly modified when rounding errors
occurred:

i [T, bt0) 1] (A27)
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