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Decomposing groundwater head variations
into meteorological and pumping components: a synthetic study

V. Shapoori - T. J. Peterson - A. W. Western -
J. F. Costelloe

Abstract Time-series modeling is often used to decom-
pose groundwater hydrographs into individual drivers
such as pumping and meteorological factors. To date,
there has been an assumption that a simulation fitting the
total hydrograph produces reliable estimates of the impact
from each driver. That is, assessment of the decomposition
has not used an independent estimate of each decompo-
sition result. To begin to address this, a synthetic study is
undertaken so that the impact of each driver is known. In
this study, 500 MODFLOW groundwater models of a one-
layer unconfined aquifer were constructed. For each
model, three hydrogeological properties (saturated hy-
draulic conductivity, storativity and depth to aquifer
basement), the distance between observation and pumping
bores, and extraction rate were set randomly and synthetic
groundwater hydrographs were derived. For each
hydrograph, the influence of individual drivers was
estimated using six different time-series models. These
estimates were then compared to the known meteorolog-
ical and pumping influences derived from the
MODFLOW models. The results demonstrate that
hydrograph separations obtained from time-series models
do not always result in reliable estimation of pumping and
meteorological influences even when the overall
hydrograph fit is good. However, when the time-series
model represents the important processes (e.g. phreatic
evaporation is included for shallow water tables) and the
(head) variance of the pumping signal to the meteorolog-
ical signal is between 0.1 and 10, the time-series model
has the potential to adequately separate the influence of
pumping and climate.

Keywords Statistical modeling - Groundwater
pumping - Time series modeling - Australia

Received: 29 October 2014 / Accepted: 6 May 2015

© Springer-Verlag Berlin Heidelberg 2015

V. Shapoori (&) - T. J. Peterson - A. W. Western - J. F. Costelloe
Department of Infrastructure Engineering,

The University of Melbourne, Parkville, Vic 3010, Australia
e-mail: shapoori@student.unimelb.edu.au

Published online: 22 May 2015

Introduction

The dynamics of unconfined groundwater levels are
usually the result of numerous and interacting factors,
including those arising from climate variability (e.g.
changes in recharge and discharge, phreatic evapotranspi-
ration) and those arising from anthropogenic causes (e.g.
land cover change and groundwater pumping; Doll 2009;
Shamsudduha et al. 2011). Over the last 50 years,
groundwater levels have declined dramatically in many
arid and semi-arid areas as the result of over-extraction
and changes in rainfall patterns (Konikow and Kendy
2005; Kundzewicz and Doll 2009; Sophocleous 2003;
Tularam and Krishna 2009; Zektser et al. 2005). To
support water-resource-management plans in such areas,
estimating the impact from pumping and separating its
influence on groundwater head variation from other
factors (i.e. mainly meteorological influences) is highly
significant. Recently, time-series modeling has been
introduced as a new tool to simulate those fluctuations
and further quantify the influence of individual drivers
(Obergfell et al. 2013; Peterson and Western 2011; Von
Asmuth et al. 2002, 2008; Yihdego and Webb 2011). This
involves first fitting the time-series model to a groundwa-
ter hydrograph and then using the calibrated model to
decompose the hydrograph and quantify the influence of
each driver; however, to date, there has been an
assumption that a simulation fitting the total hydrograph
produces reliable estimates of the impact from each driver.
This is a weak falsification test for the time-series
decomposition, whereas a more rigorous method would
use an independent estimate of the impacts from each
individual driver. Considering that in the field such data
are almost never available, in this study a synthetic
approach is adopted, whereby hydrographs are generated
with known impacts from pumping and meteorological
factors and then they are analyzed and decomposed using
time-series models. The robustness of this approach is
demonstrated by using synthetically derived groundwater
hydrographs and a wide range of possible time-series
models.

Time-series analysis is a convenient and strongly data
driven approach that can play a substantial role in
investigating the effects of climate and human interven-
tions in groundwater head fluctuations. To date, a variety



of studies have used a time-series approach to quantify
recharge estimates (Andreu et al. 2011; Crosbie et al.
2005; Cuthbert 2010; Scanlon et al. 2002; Viswanathan
1984) and vegetation consumption of groundwater (Butler
et al. 2007; Gerla 1992; Loheide et al. 2005; Rosenberry
and Winter 1997; White 1932). The time-series approach
has been also adopted specifically for modeling ground-
water levels and predicting the groundwater level
hydrograph under different scenarios. With respect to this
application, the specific time-series technique employed
ranges from simple—such as the linear regression
hydrograph analysis methodology (HARTT; Ferdowsian
et al. 2002)—to the more sophisticated such as transfer
function noise models (Bakker et al. 2008; Peterson and
Western 2011, 2014; Von Asmuth et al. 2002, 2008; Yi
and Lee 2004; Yihdego and Webb 2011). Overall, a
transfer function noise (TFN) model simulates an ob-
served output at a given point in time as a weighting of
recent input forcing data (i.e. the transfer function) plus a
correlation term for the observed output not explained by
the forcing data (i.e. the noise). Von Asmuth et al. (2002)
proposed a continuous form of TFN model which
basically simulates the groundwater level as the linear
combination of weighted past rainfall, potential
evaporation and pumping. Peterson and Western (2014)
extended the TFN model developed by Von Asmuth et al.
(2002) to account for nonlinear vadose zone processes.
This was achieved by inclusion of a parsimonious,
vertically lumped, soil moisture model in the Von Asmuth
et al. (2002) model structure.

While in some studies, time-series models were used to
simulate the groundwater level influenced by climatic
drivers only (Lehsten et al. 2011; Manzione et al. 2010;
Siriwardena et al. 2011), other studies have also applied
these models specifically to quantify or separate the
influence of individual drivers, including pumping and
meteorological factors (Obergfell et al. 2013; Shapoori
et al. 2015; Von Asmuth et al. 2008) and weather and land
use (Peterson and Western 2011; Yihdego and Webb
2011). In particular, Obergfell et al. (2013) applied the
model initially proposed by Von Asmuth et al. (2002) to
eleven observation bores around a well field consisting of
seven pumping bores. Given that the model performed
very well in hydrograph simulation for all bores in that
study, the modeled hydrograph separations (meteorologi-
cal influences as well as influence of seven pumping
bores) were assumed to represent the true influences and
no further assessment was undertaken to evaluate the
reliability of those separations. In other studies—e.g.
Peterson and Western (2011) and Yihdego and Webb
(2011)—a similar approach was also undertaken to
decompose groundwater hydrographs without any evalu-
ation of subsequent hydrograph separations. Although
good simulation of an observed groundwater hydrograph
is a prerequisite for plausible decomposition, it is a weak
falsification test for adequate decomposition. In other
words, simply fitting an observed hydrograph provides no
guarantee that the separation into major driver impacts is
accurate.
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This challenge is similar to that in rainfall-runoff
modeling, whereby a calibrated model may accurately
simulate total streamflow but inaccurately estimate sub-
components of the streamflow such as baseflow, or
internal catchments processes such as soil moisture
(Jakeman and Hornberger 1993; Sivapalan and Young
2005; Young 1978). To assess the adequacy of these sub-
fluxes and processes, synthetic studies have been under-
taken, whereby a ‘true’ system is simulated using a
complex, physically based, distributed, numerical model.
A simpler model is then calibrated to the synthetic total
streamflow and its internal fluxes and dynamics are
evaluated against that from the synthetic model (Ferket
et al. 2010; Li et al. 2013, 2014; Partington et al. 2012,
2011; Szilagyi 2004). For instance, in Li et al. (2013) and
(2014), the performances of recursive digital filter (RDF)
methods (simpler models) commonly used to estimate
baseflow were assessed using a fully integrated surface
water/groundwater model. In doing so, the synthetic (i.e.
known) outflow and baseflow hydrographs were generated
from the fully integrated model with different types of
hydrogeology and forcing conditions. The synthetic
outflow hydrograph was then used as the input to the
RDF techniques to simulate the filtered baseflow
hydrograph and provide a basis for evaluating the
accuracy of the RDF technique.

In this study, a similar synthetic approach was adopted
and the main goal is to assess whether groundwater-time-
series models can reliably decompose a groundwater
hydrograph to the major drivers. Ideally, to investigate
the adequacy of groundwater-time-series decomposition,
many synthetic catchment models with different types of
structure and/or boundary conditions are required. How-
ever, as a proof of concept, this paper focuses on one type
of catchment—an upland valley unconfined aquifer. As
demonstrated, the rigorous analysis of this synthetic
experiment is not a trivial exercise, even for one
catchment type. In constructing the synthetic environment,
500 aquifer models were created using the MODFLOW
code. All models simulated an irrigation region supplied
exclusively by time-varying groundwater extraction from
a single layer unconfined aquifer. Each model differed in
that randomly chosen aquifer hydraulic properties, depth
to aquifer basement, pumping rate, and distance between
observation and pumping bore were adopted. These
randomly chosen catchment variables provide a wide
range of scenarios (e.g. different magnitude of pumping
signal relative to climatic signal within shallow or deep
groundwater level situations). Next, transient MODFLOW
simulations were undertaken with and without groundwa-
ter pumping, and a synthetic hydrograph was extracted for
each simulation, with the subtraction of the two providing
the ‘true’ impact from the pumping (and associated
irrigation). The forcing data and synthetic hydrographs
with groundwater pumping impact were then used as the
input to the time-series models to calibrate time-series-
model parameters and simulate the hydrographs. The
simulated hydrographs from the time-series model were
then decomposed into the impacts from meteorological
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factors and pumping and evaluated against the ‘true
impacts from MODFLOW.

Methods

In this section, first, the MODFLOW models used to
generate the synthetic hydrographs are described. Next,
the linear and nonlinear time-series models are described,
followed by the implementation of the time series models
with the synthetically derived groundwater-level time
series. The head uncertainty and decomposition uncer-
tainty estimates are also explored for examples of shallow
and deep groundwater situations using DREAM uncer-
tainty analysis (Vrugt et al. 2008, 2009). The DREAM
analysis provides only the parameter uncertainty; to
estimate the total uncertainty, the remaining error needs
to be added to parameter uncertainty bounds (for further
detail of the application of the DREAM method, see
Shapoori et al. 2015).

Synthetic MODFLOW models

To assess the time-series models, 500 MODFLOW
groundwater models were constructed with a single-layer
unconfined aquifer. Figure 1 shows the geometry of the
MODFLOW models. All models consisted of a simple
rectangular catchment of 5 kmx10 km, cell resolution of
100%100 m (which reduced to 50x50 m for the 10 rows
and columns closest to the centre of catchment), 0.4 %

valley side slope and a 0.2 % slope along the valley, a
constant head boundary condition at the downstream end
of the catchment, and no flow boundaries on the sides and
top of the catchment. The evapotranspiration extinction
depth was set at 1.5 m. Within each synthetic MODFLOW
model, there was one groundwater pump in the middle of
the catchment servicing an irrigated pasture with the
maximum extent of 1.2 km x 1.2 km (see Fig. 1). Ground-
water supplied irrigation occurred for 6-month periods,
from October up to March of the following year (i.e.
southern hemisphere summer) and the extracted volume
for each month was calculated as a function of the
irrigation demand deficit, Dy, [LT '].
D = max(0, Exy—Pr,) (1)
where P,, and E,,, [LT '] are monthly rainfall and potential
evapotranspiration. The extracted volume was then calcu-
lated as follows:
Qm = IcAmaxDm (2)

Here I, [] is the fraction of irrigated land from a
maximum area, Apax [LZ], of 1.2 km %x1.2 km and Q,,
[L>T '] is the monthly pumping rate. Estimating the
pumping rate based on Eq. (1) allows the pumping to be a
function of climatic demand, which can result in correla-
tion between the input drivers (e.g. pumping and
recharge). Considering that this correlation between the
drivers is realistic and would occur often in agricultural
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catchments, such a highly correlated environment pro-
vides a promising basis to test the time-series model in a
generally realistic situation.

Within the irrigation area, rainfall and irrigation depths
were summed and, therefore, irrigation effects were
included in the recharge from the irrigation area. In this
case, pumping causes two anthropogenic influences—
pumping and irrigation recharge. Considering that on
average, 20 % of irrigation becomes recharge, between the
pumping and irrigation recharge, pumping is the dominant
factor; thus, hereafter, this driver is referred as simply
‘pumping’.

In generating the 500 models, the following model
properties were randomly chosen from a uniform distri-
bution: saturated horizontal hydraulic conductivity, spe-
cific yield, distance of observation from pumping bore,
elevation of the aquifer basement at the downstream end
of the catchment and the fraction of irrigated land. The
sampling of the five random properties was undertaken
using Latin Hypercube sampling from uniform distribu-
tions within the ranges shown in Table 1. The aquifer
parameters ranges were chosen to simulate unconsolidated
gravel to sandy aquifers, as specified by Freeze and
Cherry (1979).

In this study, the recharge was simulated as a function
of soil moisture by adoption of the unsaturated-zone-flow
MODFLOW code (UZF1; Niswonger et al. 2006). To
simulate unsaturated flow, UZF1 simplifies Richard’s
equation to vertical flow through a homogeneous unsatu-
rated zone driven only by gravitational potential gradients
and not suction gradients. In using UZF1, three additional
parameters were introduced, specifically, the saturated
water content, the Brooks-Corey exponent and the soil
vertical saturated hydraulic conductivity. The saturated
water content and the Brooks-Corey exponent parameters
were fixed at 0.3 and 3.5 respectively to simulate
unconsolidated sand (Brooks and Corey 1964). A sandy
soil profile, while unusual for an irrigated region, was
adopted because the soil vertical saturated hydraulic
conductivity was set to a fixed fraction (20 %) of the
randomly sampled aquifer saturated hydraulic conductiv-
ity. One consequence of using a sandy profile was that
most rainfall infiltrated and runoff was minimal.

Table 1 The range of physical characteristics of the catchment and
aquifer properties in the MODFLOW model. Min minimum; Max
maximum

Parameter Unit Min value = Max
value

Saturated hydraulic conductivity =~ m/day 1 30

Specific yield - 0.05 0.4

Bottom level of aquifer at the m 0 130
end of the catchment

Distance between pumping m 0 1,500
and observation®

Fraction of land used for - 0 1
irrigation

4The location of the observation bore was discretized to the centre
of the MODFLOW grid cell
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With regard to the meteorological forcing, observed
data from the Australian Bureau of Meteorology rainfall
station 081049 at the town of Tatura was adopted. This
area is located in an irrigation district of south-eastern
Australia (longitude = 145.27 °E and latitude=36.44 °S)
and the climate is classified as Cfb (i.e. temperate climate
without dry season and warm summer) under the Képpen—
Geiger climate classification system (Peel et al. 2007). The
potential evapotranspiration was derived from Morton’s
complementary relationship areal model (Morton 1983).
The input data for the Morton model are daily maximum
and minimum temperature, vapor pressure and net solar
radiation. The daily maximum and minimum temperature,
and vapor pressure were obtained from the Australian
Water Availability Project (AWAP) database and net solar
radiation was estimated following empirical equations
provided in FAO56 (Allen et al. 1998) for the closest grid
cell to the rainfall station. These data were then used as
the input to the Morton model and the potential
evapotranspiration was estimated accordingly. The same
potential evapotranspiration rates were applied across the
entire model domain as the vegetation within and outside
the irrigated area was assumed to be pasture. Figure 2
presents the monthly precipitation and potential evapo-
transpiration based on the data from 1942 to 2000.
Average annual rainfall and potential evapotranspiration
is 485 and 1,094 mm/year respectively. The rainfall is
almost uniformly distributed throughout the year with a
small rise during the winter and early spring. Potential
evapotranspiration is summer dominant and the monthly
average potential evapotranspiration varies from 28 mm/
month in June up to 168 mm/month during January.

Finally, the daily precipitation and potential evapo-
transpiration were aggregated into monthly rates, and
then specified as the infiltration (with any irrigation
added to rainfall) and evapotranspiration rates to the
top of the unsaturated zone in the UZF1 package.
Monthly meteorological forcing data were adopted for
computational efficiency and may result in a lower
recharge rate than if daily forcing data were adopted.
In running each model, the steady-state heads were
first derived using the long-term mean precipitation
and evapotranspiration rates (no pumping was simulat-
ed). Next, the steady-state heads were used as initial
conditions for a 20-year transient run that extended
from January 1980 to December 1999. The pumping
started in October 1989 and continued to the end of
the simulation. In order to quantify the drawdown
from the extraction bore and the meteorological
influence, the pump was removed and MODFLOW
transient solutions were rederived using the same
steady-state solution for the initial conditions. It should
be mentioned that in the model simulation without
pumping, there is no irrigation within the irrigation
area. The derived hydrograph with no pumping
represents the meteorological influence (i.e. only using
meteorological forcing data) and the difference be-
tween it and the hydrograph with pumping gives the
drawdown from pumping.
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Synthetic groundwater hydrographs

For each MODFLOW transient simulation, a groundwater
hydrograph was extracted at a randomly generated
distance from the extraction bore; however, to provide a
realistic assessment of the time-series models, forcing and
observation errors were introduced. Past studies have
adopted a log-normal multiplicative errors model for
precipitation (Kavetski et al. 2006; McMillan et al. 2011;
Renard et al. 2010). Following such studies, the daily
rainfall P, [LT '], for the time-series models was gener-
ated by corrupting the rainfall input, P, [LT '], to the
MODFLOW model with temporally independent, unbi-
ased, normal distribution of errors, e; [—], having a
standard deviation of 20 %:

P,
" ople) o
e~ N(0, 0.2%) (4)

While the evapotranspiration was assumed free of
errors, the monthly pumping rate input to the MODLFOW
model, O, [L3T'], was corrupted using an unbiased
normal multiplicative error, e, [—], with standard deviation
of 0.1 to give the extraction rate input, Q, [L>T '], to the
time-series models:

0, = éz(l +e) (5)

er~N (0, 0.1%) (6)

The error in the groundwater hydrograph was a
function of the depth to the groundwater. By replacing
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the depth to water level with the head, the observed

groundwater head ,%, [L], was corrupted using an
unbiased normal distribution, e; [—], with standard
deviation of 0.02 times the depth below natural
surface,B, [L]:

ht - ’};t_Bte:; (7)

es~N (0, 0.022)

Time-series model

Linear transfer function noise model

In the original TFN model, an observed univariate time
series is simulated as the linear sum of three main
components. The three components are a deterministic
transformation of an input time series, a noise term and
local drainage level (Eq. 6). Von Asmuth et al. (2002)
adopted this approach to simulate an observed
groundwater-level elevation as the dynamic relationship
between the input contribution to groundwater variation
(h,") and input forcing (e.g. meteorological factors) data
(Eq. 10):

he=h, +r +d (9)

(10)

n=y ( / ;Ri(f)e,-(z—T)dT>

i=1

where /4, [L] is the simulated groundwater level at time
step #; b, [L] is the contribution to the groundwater level
at time step ¢ attributed to the combination of all m
stressors; 7, [L] is the residual series; d [L] is the local
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drainage level; i [—] indexes individual stressors; 6; [—] is
the weighting or impulse response function of stress i; and
R; [L] is the value of stress i at time step ¢.

The most important part of the transfer noise function
is the impulse response function (f). It specifies the
response of groundwater head to an instantaneous change
in the stressor such as precipitation. The Pearson type III
distribution function was adopted by Von Asmuth et al.
(2002) for the precipitation response function; however,
Peterson and Western (2014) have identified five weak-
nesses in the use of the original Pearson type III
distribution in time-series models. Following Peterson
and Western (2014), a robust version of Pearson type III
distribution was selected in this study (Eqgs. 7 and 12) to
represent the impulse response function of climatic
stresses (6,).

When exp (z) — 1>1:

P22 exp(—bt)

expl)2) PE) 2
(2262) ™ exp(2-exp(2))

0, () = 4 (11)

When exp (z) — I<I:

7P 2exp (—=bt) [ 1imit

0,(¢t) =4
P 1=/ it

(12)

tlllnlt p(z)72exp (_b[limit) ( 13)

fllmlt

= min(¢)—100 x 365 (14)

Himit =

where A4, b, z are parameters and min(f) is the first
meteorological observation date; #;,;; is 100 years prior to
the first meteorological observation date and fj;;; is the
distribution value at 100 years prior to the first meteoro-
logical observation. The parameter 4 acts as a scalar to
transform the stress into the groundwater level time series.
This version of Pearson type III produces the same
response shape as the original one but minimizes the
covariance between the parameters and improves the
calibration efficiency (for more details see Peterson and
Western 2014).

For pumping stresses, Von Asmuth et al. (2008)
adopted Hantush’s well formula (Hantush 1956) for an
aquifer underlying a storage-free aquitard (i.e. a leaky
aquifer). The response function (fy) was defined by the
time derivative of the step response function (Eq. 8):

ﬁ2_2
7”)

where o, § and v are parameters that will only have
physical meaning if the basic Hantush assumptions are

o) = exp - (15)
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satisfied. In this paper, Hantush’s response function was
one option adopted for simulating the pumping draw-
down. The reasoning for simulating leakage within an
unconfined aquifer is that, like pumping within a
leaky confined aquifer causing inflow, preliminary
analysis indicated that within the MODFLOW model,
increased pumping can cause a similar response by
reducing groundwater evaporation and, hence, increas-
ing net recharge. However, to rigorously assess this
mechanism, the leakage term from Eq. (8) was
omitted and the simplest version of Hanstush’s well
formula, known as Ferris and Knowles’ well formula
(Ferris and Knowles 1963), was also investigated

(Eq. 9).

Or(t) = %exp <—’372) (16)

Finally, Eq. (10) details a linear TFN model com-
prising of both meteorological forcing and groundwater
pumping. The first and second integrals are the effect
of precipitation and evapotranspiration and the third
integral is the pumping effect, in which the transfer
function, Oy, can be set to either Hantush’s (Eq. 8) or
Ferris and Knowles” (Eq. 9) well formulas; henceforth,
it is referred to as the ‘Von Asmuth 2008 model (VA)
with Hantush’s (H) well formula’ or the * Von Asmuth
2008 (VA) model with Ferris and Knowles’ (FK) well
formula “.

t ‘ t
hy = / Pfep(t—r)dr—/ fEETop(t—T)dT—/ 0,0 H (t=r)dT +r,+d
- o —  H||F

(17)
where P, [LT '] is the daily precipitation; E, [LT ']is the
daily potential evapotranspiration; f [—] is a dimension-
less parameter scaling the transfer function for apPhcation
to the evapotransplratlon signal; and Q, [L°T '] is the
daily rate of pumping. Note that the evapotranspiration
(ET) component (i.e. the second integral in Eq. 10)
represents the head loss due to soil and plant
evapotranspiration of groundwater; however, this ET
is simulated as independent of catchment wetness.
Peterson and Western (2014) found that to adequately
simulate long-term head decline, the groundwater ET
(GET) should be inversely proportional to the catch-
ment wetness; that is, GET increases when the soil
moisture is low. Further detail pertaining to Peterson
and Western (2014) study is provided in the next
section.

Nonlinear transfer function noise model

The linear TFN model adopts a linear relationship
between precipitation and head; hence, if rainfall doubles
from 1 day to the next then the head response will also
double. However, because large rainfall events produce
runoff and groundwater recharge often occurs only when
the soil is wet, the relationship between precipitation and

DOI 10.1007/s10040-015-1269-7



head is nonlinear. To parsimoniously capture these
nonlinearities, Peterson and Western (2014) added a
nonlinear filter to the Von Asmuth 2008 model (see
section ‘Linear transfer function noise model’) consisting
of a vertically lumped soil moisture model. Depending
upon the dynamic sought, the soil moisture model can
have between one and five parameters. Siriwardena et al.
(2011) tested all of the models on 620 bores from across
Victoria, Australia and found the following soil model was
the most parsimonious:

ds S S
Z—p(1-—)-E
dt < SCap > (Scap >

In Eq. (11), Seap [L] is a parameter for soil-moisture-
storage capacity; S [L] is a state variable for the soil
moisture at time #; P [LT '] is the rate of precipitation and
E [LT '] is the potential evapotranspiration rate. Follow-
ing Peterson and Western (2014), to incorporate the soil
moisture component into the continuous TFN model, two
modifications were made to the transfer function model of
Eq. (10). Firstly, the precipitation term, P,, was replaced

(18)

K
by (Ss—p) where (3 is a parameter controlling the

responsiveness of recharge to soil moisture. This param-
eter () is similar to the Campbell or Brooks and Corey
pore index. The influence of soil evapotranspiration is
included in Eq. (11); however, in areas with a shallow
water table, groundwater evapotranspiration can also
occur. To simulate this effect, Peterson and Western
(2014) estimated the groundwater evapotranspiration as

ET(I—SS" ), which is the residual potential evapotranspi-
cap

ration remaining after evapotranspiration from the soil.
This flux estimate replaced the potential evapotranspira-
tion, £, in Eq. (10) and a unique evapotranspiration
transfer function, fg, based on Egs. (7) and (12) was
adopted. Peterson and Western (2014) tested this model
for a dry-land area in Victoria, Australia, where ground-
water pumping does not occur. They concluded that this
groundwater evapotranspiration term is essential for the
simulation of periods of long-term groundwater level
decline; however, by coupling the model with a pumping
component, preliminary analysis in this study showed that
the groundwater evapotranspiration term can compensate
for other influences (e.g. pumping effect), making the
hydrograph decomposition very challenging. Thus, to
further identify any possible internal compensation, the
nonlinear time-series model was tested both with and
without the groundwater evapotranspiration term.

In summary, Egs. (12) and (13) detail the nonlinear
TFN models with and without groundwater evapotranspi-
ration respectively. The two left-most integrals in Eq. (12)
show the free drainage (recharge estimate) and ground-
water evapotranspiration. The third integral is the
pumping component, in which similarly the transfer
function, Oy, can be set to either Hantush’s (Eq. 8) or
Ferris and Knowles’ (Eq. 9) well formulas; henceforth this
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model is referred to as the ‘Soil moisture transfer function
noise model (SMS-TFN) with groundwater evapotranspi-
ration (GET) and Hantush's (H) well formula’ or the ‘Soil
moisture transfer function noise model (SMS-TFN) with
groundwater evapotranspiration (GET) and Ferris and
Knowles’ (FK) well formula °.

t /g B t s
h, = / ( u ) Qp(t—T)dT—/ E, (1— u )HE(Z—T)dT
—0 \Scap —0 Scap

_/tQTQ H (t-7)dr+r,+d
—0 H||F

(19)
In Eq. (13), all components are the same and the
only difference is the omission of the groundwater
evapotranspiration component; henceforth this model
is referred to as the ‘Soil moisture transfer function
noise model (SMS-TFN) with Hantush’s (H) well
formula’ or the ‘Soil moisture transfer function noise
model (SMS-TFN) with Ferris and Knowles’ (FK)
well formula’.

t B t
hy = / < o ) ep(t*T)dT*/ 0.0 | (t=r)dT+r,+d
—o0 \Scap - H' ‘ F
(20)

Calibration and implementation of time-series model
In applying each time-series model, a split-sample
calibration-evaluation approach was adopted, whereby
the first 10 years of data (1980-1989) were removed to
minimize the impact of initial conditions from the
MODFLOW models, and the time-series model was
calibrated to the following 7 years of data (1990-1996)
and evaluated on the remaining 3 years data (1997-1999).
Following Von Asmuth et al. (2002) in calibrating the
time-series model, the residuals at each time point were
calculated as:
7t - hobs,t_hmod.t (21)
where 7; [L] is the residual at time # Ao, [L] is the
observed groundwater level at time #; and /04, [L] is the
modeled groundwater level at time ¢. Next, the innovation
series were calculated by subtraction of the exponential
noise components of previous time steps from the current
time step residuals:
v = F—e "M, (22)

Here, v, [L] is the innovation at time #; r,—a, [L] is the
residual at the previous time; At [T] is the time step; and
1 1s a time-series model parameter defining the decay rate
of the noise.

In calibrating the parameters, a weighted least squares
objective function was adopted whereby v,> was weighted
by the water-level-time-step size. The weighted least
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squares objective function was then minimized with
respect to the parameters using a multi-start, trust-region
Levenberg-Marquardt gradient based algorithm (Fan and
Pan 2006; Levenberg 1944; Marquardt 1963).

In assessing the performance of the models in
simulating the groundwater hydrographs and quantifying
the influence of individual drivers (i.e. pumping and
climatic effects), the Nash-Sutcliffe efficiency (NSE; Nash
and Sutcliffe 1970) was used.

D’ -D
NSE — 1— Z ( od obs)
(D Dobq)

obs

(23)

Here, Dp,q [L] and Dy, [L] denote either predicted
and observed groundwater head or predicted and observed
driver’s influence (pumping or meteorological effect). The
range of NSE is from 1 to —co. An NSE of 1 means a
perfect fit between modeled and observed hydrograph,
while NSE values of less than zero indicate that the
average of the observed hydrograph is better than the
model simulation.

Results

In this section, the results of applying six time-series
models—i.e. the combinations of the original TFN model
and the SMS-TFN models with the H and the FK
pumping transfer models—to the 500 synthetic
hydrographs are shown. The performance statistics
(NSE) were used to compare the results of these six
models. The simulated hydrographs were also
decomposed into their major drivers and compared with
known (i.e. synthetic) responses derived from the
MODFLOW models.

Hydrograph-time-series-model performance
The performance of each of the six models was assessed
by the NSE and Fig. 3 shows a box plot of NSE values for
the models during the calibration and evaluation periods.
Figure 3 shows that both linear time-series models (i.e.
Von Asmuth 2008 models with Hantush’s and Ferris and
Knowles’ well formulas; VA+H and VA+FK respectively)
had comparable performance in terms of the median and
inter-quartile range during the calibration period. For this
period, inclusion of the soil moisture component signifi-
cantly improved the median and inter-quartile range of the
NSE of all models. Compared with the calibration period,
the performance of all models significantly deteriorated
during the evaluation period. Considering just the evalu-
ation period and the models with the soil moisture
component, the median NSE was higher for the models
including the GET, compared with the equivalent models
without GET.

To explore the performance of the VA and SMS-TFN
models in detail, and to understand which model structure

Hydrogeology Journal

performs best under which conditions, Fig. 4 presents
scatter plots of the calibration NSE for VA against the two
SMS-TFN models (with GET and without GET). The
mean depth to groundwater level is shown by the color.
Overall, Fig. 4 shows that when the water table is deeper
than 1 m, VA+FK often performs worse than the SMS-
TFN+GET+FK and SMS-TFN+FK, which is primarily
because of the differences in the simulation of meteoro-
logical forcing and is further investigated later.

Simulation of selected hydrographs

To compare the models in detail, and to further explore the
change in performance with depth to the water table,
Fig. 5 shows simulations from the six models for a
hydrograph of 0.59 m mean depth (Fig. 5a-b) and a
hydrograph of 6.70 m mean depth (Fig. 5c—d). With
regard to the shallow hydrograph (Fig. 5a—b), all models
behaved similarly during the calibration and evaluation
periods and simulated most of the seasonal peaks and
troughs. Figure 5a-b also shows that simulations of the
seasonal peaks are poorest for two models without the
groundwater ET component (i.e. SMS-TFN+H and SMS-
TFN+FK; e.g. see 1996-1998 in Fig. 5a; note that the
extinction depth of the MODFLOW model was 1.5 m).
With regard to the deeper simulations (Fig. 5c—d), while
all models performed reasonably well, the SMS-TFN
models better simulated the hydrograph than the VA
models (especially between Jan 1992 and Jan 1994 in
Fig. 5c—d). The NSE values also improved when the soil
moisture model is included in the model structure. For
example, the calibration NSE for both VA models was
around 0.6, while it increased to more than 0.8 for all four
SMS-TFN models. This is consistent with the previous result
(see section ‘Hydrograph-time-series-model performance’)
and indicates better performance of SMS-TFN models
compared with the VA models for deeper (i.e. >1 m)
groundwater levels. Overall, these results showed that while
there is a clear difference in performance of the models with
depth to water table, all models worked reliably and
performed reasonably well.

To explore the uncertainties of the model prediction,
the nonlinear DREAM uncertainty analysis (Vrugt et al.
2008, 2009) was implemented. Figure 6 represents the
result of uncertainty analysis for the two best models of
VA+H and SMS-TFN+FK at the bores shown in Fig. 5. In
Fig. 6, the uncertainty bounds are shown with two
different colors, one is the 90 % prediction bounds due
to parameter uncertainty obtained from DREAM analysis
(i.e. dark grey color) and the other one (light grey)
represents the prediction bounds due to residual errors. In
general, the prediction bounds due to residual
(unexplained) errors represent the model structural errors
and measurement errors. Figure 6 shows that total uncer-
tainty (i.e. the parameter uncertainty plus the contribution
from residual error) captures most of the observation data.
The coverage of total uncertainty is 91 and 89 % for
shallow and deep groundwater level situations, respec-
tively, which is consistent with the 90 % uncertainty range
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used; hence, it can be concluded that the total uncertainty
derived from DREAM analysis gives plausible estimates of
actual uncertainty of total head. However, the parameter
uncertainty (dark grey) is relatively small compare to total
uncertainty, particularly for the shallow groundwater level
situation (Fig. 6a) and, hence, the parameter uncertainty
alone seems to underestimate the actual uncertainty.

Decomposition of selected hydrographs

Figure 5 shows that the performance of all six TFN
models in simulating a shallow and deeper water level was
acceptable to very good. To assess if an acceptable fit to
the observed hydrograph translates into comparably
reliable decomposition to the individual drivers, Fig. 7
presents the pumping decomposition for each of the six
models in Fig. 5 and the known impact from pumping
(including the irrigation recharge) derived from the

MODFLOW modeling. For the shallow water table,
Fig. 7a shows that each model using Hantush’s (H) well
formula reliably estimated the known pumping drawdown
and that differences in the groundwater hydrograph
simulations (see Fig. 5a) arose from differing model
structure for the meteorological forcing. However,
Fig. 7b shows that each model using Ferris and Knowles’
(FK) well formula could estimate the drawdown dynamics
but had a significant negative bias of between —0.56 and
—0.85 m. For a deeper water table, Fig. 7c shows that the
inclusion of the GET for each model using the H well
formula resulted in very poor estimation of the drawdown
and a considerable bias of 0.37 m. Lastly, Fig. 7d shows
that each model using the FK well formula resulted in
comparable performance to the pumping simulation with
SMS-TFN+H (blue line in Fig. 7¢), with a relatively small
bias but acceptable estimation of the dynamics. Overall,
Fig. 7 illustrates that reliable simulation of the total
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Fig. 4 Scatter plots of the soil moisture transfer function noise model (SMS-TFN) and Von Asmuth 2008 (V4) models with Ferris and
Knowles’ (FK) well formula: a SMS-TEN with groundwater ET component (GET) and VA models, b SMS-TFN and VA models. DTWL

depth to water level (m)

Hydrogeology Journal

DOI 10.1007/s10040-015-1269-7



Calibration period

Evaluation period

171 T T

Y

yla
>

Observed Head(MODFLOW)

Groundwater level (m)

VA+H

SMS-TEN+ GET + H SMS-TFN + H

01-Jan-92 01-Jan-94

(a)

01-Jan-96 01-Jan—-98 01-Jan-00

171 T T
Observed Head(MODFLOW)

169

168

Groundwater level (m)

167

VA+FK

T T
SMS-TEN + GET+ FK

SMS-TFN + FK

01-Jan-90 01-Jan-92 01-Jan-94

01-Jan-96 01-Jan-98 01-Jan-00

(b)

Ob‘sewed Head (MODFLOW)‘

Groundwater level (m)

VA+H

SMS-TFN+ GET + H

SMS-TFN + H

161
01-Jan-90

01-Jan-92

01-Jan-94

(©

01-Jan-96 01-Jan—-98 01-Jan—00

Ot;served Head(MODFLOW) ‘

Groundwater level (m)

VA+FK

‘ SMS-TFN + GET+ FK SMS-TEN + FK

161
01-Jan-90

01-Jan-92

01-Jan-94

01-Jan—-96 01-Jan—98 01-Jan—00

(d)

Fig. 5 Time series of observed and modeled groundwater head for two different bores. a—b The shallow groundwater level (mean depth to
water level: 0.59 m, distance between observation bore and pumping bore: 300 m, specific yield: 0.11, saturated hydraulic conductivity:
5.46 m/day, mean thickness of aquifer: 35 m). ¢—d The deep groundwater level (mean depth to water level: 6.70 m, distance between
observation bore and pumping bore: 400 m, specific yield: 0.12, saturated hydraulic conductivity: 17.98 m/day, mean thickness of aquifer:

88 m)

hydrograph (see Fig. 5), does not guarantee unbiased
estimation of the drawdown and reliable estimation of the
drawdown dynamics.

In an attempt to simulate the uncertainty bounds for the
pumping contribution, the pumping parameter uncertainty
derived from DREAM analysis for the head prediction in
the prior section was used to obtain the 90 % parameter
uncertainty bounds for the pumping contribution. The
result indicates that the 90 % parameter uncertainty
bounds do not demonstrate adequately the uncertainty
within the pumping decomposition, which is mainly
because, as described in the prior section, the majority of

Hydrogeology Journal

the total uncertainty in the head is represented by the
residual unexplained error, which cannot be split in the
decomposition analysis.

Pumping simulations

To further explore the reliability of drawdown estimation,
this section quantifies the drawdown from all six TFN
models applied to the 500 synthetic hydrographs. To
assess the model performances statistically in detecting the
pumping signal, the known drawdown from pumping and
that estimated from time-series models was used to
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Fig. 6 Observed and best modeled groundwater levels at bores provided in Fig. 5 for a shallow groundwater level b deep groundwater
level. The dark grey area represents the 90 % uncertainty interval due to parameter uncertainty. The /ight grey region shows the additional

spread due to remaining residual error

calculate the NSE of the pumping signal estimate. In
addition, it might be expected that the ability of the time
series to detect the pumping signal would be a function of
its variance relative to other drivers. Typically, a larger
variance of the pumping signal indicates a stronger
pumping impact on groundwater level variation, and
hence, a potentially higher chance of being detected by
the time-series model; therefore, the ratio between the
variance of pumping signal and variance of the recharge—
discharge signal (Q variance/R variance) has been also
calculated for each of the 500 synthetic hydrographs.
Figure 8 presents the scatter plot of the performance of
each model in estimating the pumping (NSE for pumping
signal in the evaluation period) as the color and the ratio
of the variance of pumping to recharge—discharge signals
(Q variance/R variance) and mean depth to groundwater
level as two important factors on the x and y axes
respectively (note that values of NSE<0 are denoted as
grey dots in Fig. 8). In addition, since significant bias
arose between the true and model pumping simulation
(Fig. 7b—c), the average of bias was also estimated for
each model within shallow (i.e. <1 m) and deeper
groundwater level (i.e. > 1 m) categories and is shown
in Table 2.

Figure 8 shows that when the pumping signal is weak
(i.e. Q variance/R variance is<0.1), the pumping NSE
from all model structures is less than or equal to zero,
which indicates that the small variance of pumping signal
(i.e. small pumping impacts) prevents the proper detection
of any impact from pumping. For those hydrographs
having a higher pumping signal and shallow groundwater
level (e.g. <1 m), the H well formula models performed
reasonably well (see the high NSE values in Fig. 8a,c,d)
while for similar hydrographs, the FK well formula

Hydrogeology Journal

performed poorly (see Fig. 8b,e,f). The low values of
NSEs were also associated with a considerable negative
bias (i.e. mean biases 0f<—0.35 m for the models with the
FK equation in shallow groundwater level in Table 2).
This poor performance of the FK equation is mainly due
to the change in the net recharge during pumping and
recovery. Overall, in the shallow groundwater situation,
the aquifer is nearly full and GET is the main process of
removing water from the aquifer. Any impact from
pumping decreases the groundwater level and, hence,
reduces the groundwater ET, which causes an increase in
the net recharge. In addition, the aquifer receives extra
recharge from irrigation within the irrigation area. These
two processes attenuate the pumping impact and cause the
full recovery after each period of pumping—e.g. known as
pumping drawdown (black dots) in Fig. 7a. The FK
equation is unable to simulate the impact of that extra
recharge, while the leakage term in the Hantush equation
enables the model to simulate extra recharge from other
sources. Interestingly, the simulated total hydrograph from
the FK models was relatively unbiased and well calibrated
since the meteorological contribution internally compen-
sates for the pumping bias.

For deeper groundwater levels (e.g. > 1 m) with a
comparable pumping signal (e.g. Q variance/R vari-
ance>0.1), it can be seen that for SMS-TFN+GET+H
and VA+H models, whereby the evapotranspiration
component (i.e. second integral in either Eqgs. 10 or 12)
is incorporated explicitly in the model structure, the NSE
degrades to less than or equal to zero. The mean bias was
also high (>0.35 m) for those two models simulating
deeper groundwater levels (Table 2). Again, this is in
agreement with Fig. 7c, which similarly shows poor
pumping simulation with significant bias for those two
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Fig. 7 Time series of observed and modeled pumping influence for two different bores. a—b The shallow groundwater level (mean depth
to water level: 0.59 m, distance between observation bore and pumping bore: 300 m, specific yield: 0.11, saturated hydraulic conductivity:
5.46 m/day, mean thickness of aquifer: 35 m). ¢—d The deep groundwater level (mean depth to water level: 6.70 m, distance between
observation bore and pumping bore: 400 m, specific yield: 0.12, saturated hydraulic conductivity: 17.98 m/day, mean thickness of aquifer:

88 m)

models (VA+H and SMS-TFN+GET+H models). Given
that the influence of groundwater evapotranspiration and
irrigation is minimal at deep groundwater levels, the
inclusion of the evapotranspiration component explicitly
in the time-series-model structure and the leakage term in
the Hantush well formula seems to be redundant and this
poor performance of pumping simulation is one of the
consequences of over-parameterization in the model
structure. Overall, these results are consistent with
previous findings (see section ‘Decomposition of selected
hydrographs”) and indicate that the decomposition of the
groundwater hydrograph does not necessarily result in
reliable impact of pumping, even if the overall head
prediction is good.

Hydrogeology Journal

With regard to the model structure providing the best
overall drawdown, for deep groundwater levels (i.e.>1 m),
it was found that the SMS-TFN model with FK’s well
formula gives the most reliable drawdown. However,
when the water level is shallow (i.e. <1 m), the pumping
drawdown can be reliably estimated using the Hantush
well formula with either the VA or SMS-TFN model for
the meteorological structure.

Meteorological simulations

Figure 8 showed that for quite modest to large pumping
signals (e.g. Q variance/R variance>0.1), the time-series
model has the ability to simulate the drawdown reliably.
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To assess if this reliable estimation of pumping drawdown
also results in reliable estimation of climatic influences,
Fig. 9 represents the NSE for the meteorological contri-
bution during the evaluation period for all six time-series
models in color, with the x and y axes showing the ratio of
the variance of pumping to recharge—discharge variance
and the depth to groundwater level, respectively. Figure 9
shows that poor NSEs resulted for all models when the
meteorological signal is small (e.g. those with Q variance/
R variance>10). This is similar to previous results for
pumping simulations in section ‘Pumping simulations’,
which showed that small variance in the pumping signal
inhibits the reliable estimation of pumping (e.g. those with
Q variance/R variance<0.1 in Fig. 8). These results
suggest that the accurate estimation of one driver
(pumping or meteorological signal) does not necessarily
result in adequate estimation of the other one and clearly
questions the validity of hydrograph decomposition when
the groundwater is dominated by one of the main drivers.

Comparison of model performances in Fig. 9 also
indicates that all SMS-TFN models perform acceptably

for deep groundwater levels (e.g. >1 m); however, the
SMS-TFN model without GET performs worse when the
groundwater level is shallow (e.g. <1 m). The lower model
performance for those models (SMS-TFN+FK and SMS-
TFN+H) in shallow aquifers is due to the lack of a
groundwater evapotranspiration component when the
groundwater evapotranspiration is one of the important
processes. In addition, both VA models cannot simulate
the meteorological contribution properly for deeper
groundwater levels (e.g. >1 m), which is consistent with
the previous findings for the overall model simulation in
section ‘Hydrograph-time-series-model performance’ and
indicates that poor estimation of the meteorological
contribution is the main reason for lower performance of
VA compare to SMS-TFN in Fig. 4a—b.

Recharge patterns for shallow and deep groundwater
levels

To explore the often poor meteorological simulation from
the VA models, Fig. 10 summarizes two dominate

Table 2 Mean bias in the simulated drawdown from the 500 hydrograph simulations for each of the six model structures. Note a positive
bias denotes the simulated pumping underestimated drawdown and vice versa for a negative bias. ltalic values denote significant negative

or positive bias

Water table VA+H VA+FK SMS-TFN+GET+H SMS-TFN+H SMS-TFN+GET+FK SMS-TFN+FK
Shallow (DTWL <1 m) 0.08 -0.35 0.08 0.07 —0.42 —0.58
Deep (DTWL >1 m) 0.49 —-0.05 0.50 0.15 0.05 0.06

¥4 Von Asmuth 2008 model, SMS-TFN soil moisture transfer function noise model, GET groundwater evapotranspiration component, -
Hantush’s well formula, FK Ferris and Knowles’ well formula, DTWL depth to water level (m)
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recharge mechanisms from the MODFLOW models for a
shallow (Fig. 10a) and a deeper (Fig. 10b) water table.
Figure 10a shows that there is no timing difference
between infiltration (the amount of water which is added
to the top of the unsaturated zone) and recharge (the
amount of water percolating to groundwater) for shallow

I
G

groundwater situations. In addition, most rainfall (about
60 %) infiltrates through the unsaturated zone and the
recharge is relatively linear with input infiltration. In
contrast, Fig. 10b shows that significant nonlinearity
occurs between the precipitation input and the recharge
output for a given month for deeper groundwater levels
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Fig. 10 The infiltration rate (m*/day) and recharge rate (m>/day) for a shallow groundwater and b deep groundwater example mentioned
in Fig. 5. Note the infiltration rate is the amount of volumetric water which is applied to the top of the unsaturated zone and the recharge rate
is the volumetric water that reaches to groundwater level after passing through the unsaturated zone flow model (UZF)
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and only small amounts percolate to the groundwater
(around 20 % of total volumetric infiltration). This
indicates that the VA model performs poorly because it
lacks the ability to simulate the nonlinearity between the
infiltrated water and recharge.

Discussion

Importance of hydrograph decomposition evaluation
One of the important aspects of a time-series model is its
ability to model the groundwater level and decompose the
groundwater hydrograph into its contributions; however,
the results of this study clearly demonstrate that simulat-
ing the groundwater hydrograph properly does not
necessary result in reliable hydrograph decomposition. It
was shown that internal model compensation, over-
parameterization and strong dominance of one driver over
the other inhibit accurate estimation of one or both of the
pumping and climatic influences, clearly highlighting the
need for model structure evaluation when accurate
hydrograph decomposition is desired. This has often not
been addressed in previous studies (Obergfell et al. 2013;
Von Asmuth et al. 2008; Yihdego and Webb 2011) where
successful simulation of groundwater hydrographs was
assumed to imply accurate decomposition. The inherent
lack of independent data for responses to major drivers at
field sites is the probable reason why this hydrograph
decomposition assessment has not been undertaken
previously.

Identifying the most reliable time-series model

The results of this study showed that reliable decomposi-
tion of drawdown and pumping could be achieved but
differing model structures were required for shallow and
deep water-table conditions. In summary, for a shallow
groundwater level, recharge responds linearly to infiltra-
tion, and GET and irrigation are essential drivers; thus,
Hantush’s well formula and either VA or SMS-TFN with
GET model structures were required to simulate the
pumping and climatic impacts properly. For deeper
groundwater levels, the recharge responds nonlinearly to
infiltration, and the influence of GET and irrigation are
minimal; therefore, the SMS-TFN model structure, which
accounts for nonlinearity in recharge combined with Ferris
and Knowles’ well formula (i.e. the well formula with no
leakage parameter), best simulated both pumping and
meteorological influences.

This work highlights the complexity of groundwater
level responses to different drivers, even within a synthetic
framework, and emphasizes the importance of good
knowledge about the catchments and the main processes
contributing to groundwater level variation prior to
adopting any particular time-series model. For instance,
if there is clear evidence indicating no pumping induced
recharge or leakage from other sources, adopting the
simplest pumping response function (i.e. the FK well
formula) is preferred over more complex response
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functions such as the H well formula, since it removes
any redundant component and reduces the chance of
internal compensation. Similarly, if water tables are
sufficiently deep to prevent the local vegetation accessing
groundwater, the GET component should be excluded.

Guidance for reliable estimation of pumping
drawdown

In section ‘Simulation of selected hydrographs’, the ratio
of pumping variance to recharge—discharge variance was
found to be a useful guide to determine the range of
pumping signals in which the time series approach might
be expected to detect the pumping drawdown with an
acceptable level of accuracy; however, for the application
of the time-series model to field sites, the ratio of the
pumping variance to recharge—discharge variance is
unknown. One alternative is to estimate the true ratio
using the simulated ratio. To trial such an approach, the
SMS-TFN+FK and SMS-TFN+GET+H models were
chosen for deep (e.g. >1 m) and shallow situations (e.g.
<1 m), respectively, and the simulated ratio was derived
for the two models and compared with the known ratio
from the synthetic MODFLOW models. Figure 11 pre-
sents the scatter plot of fitted and known pumping to
recharge—discharge variance ratio. Given that there is still
a modest bias occurring in the pumping simulation for
these two groups of models (mean bias of 0.06 and 0.08 m
for SMS-TFN+FK and SMS-TFN+GET+H for deep and
shallow groundwater respectively in Table 2), the evalu-
ation NSE for pumping was rederived for the two models
by removing the bias from the NSE estimation. In doing
s0, the bias was estimated from Eq. (17) and then added to
Eq. (18) to reestimate NSE.

n . .
Z i=1 (DinodiDi)bs)

n

Bias = (24)

Z i=1 (D:’nod_D;bS_B ias) ’ (25)
n . S
Z i=1 (ngs_DObs)z

Unbiased NSE = 1—-

This rederived NSE is further labeled ‘unbiased NSE’
and is represented by the color spectrum in Fig. 11, which
shows that for a fitted pumping to recharge—discharge
variance ratio of >1 (i.e. the size of pumping signal is at
least the same or bigger than the meteorological signal),
the fitted ratio is generally unbiased and good pumping
NSE is achieved (e.g. unbiased NSE>0.65), and the fitted
variance ratio represents, to some extent, the true variance
ratio. For a fitted variance ratio of<l, an acceptable
pumping NSE might be achieved but the grey dots
indicate that there is a risk that the fitted ratio could be a
poor representation of the true ratio, which suggests that,
overall, the model most likely represents the true influence
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Fig. 11  Scatter plot of ratio of variance of pumping to recharge—discharge signal (Q variance/R variance) resulted from fitted and true
estimation. The unbiased NSE is the NSE whereby the bias is removed from the NSE estimation. Note that the unbiased NSE values equal
or below zero are shown as dark grey color, and for better presentation, the fitted variance ratio for those where the fitted variance is equal

or less than 1077, is assumed to be equal to 10~

of pumping well if the simulated pumping impact is
significant relative to the other drivers.

Impact of additional errors to forcing and input data
To explore any possible impact of the forcing and head
measurement error introduced in section ‘Synthetic
groundwater hydrographs’ on the ability of the time series
model to detect the pumping and meteorological signals,
the two models (SMS-TFN+GET+H and SMS-TFN+FK),
used in the prior section for shallow and deep situations,
were selected and recalibrated with ‘true’ data (i.e. no
error was added to input forcing and groundwater heads).
The result indicates that removing measurement errors
does not change the 0.1 and 10 thresholds for the pumping
to meteorological variance ratio (identified in sections
‘Pumping simulations’ and ‘Meteorological simulations’),
which provide plausible estimation of pumping and
meteorological impacts. In addition, for pumping to
meteorological variance ratios between 0.1 and 10, the
median NSE for pumping decomposition improves sig-
nificantly from 0.13 to 0.59 when perfect input data are
used. Similarly, the median COE for meteorological
decomposition also indicates an improvement from 0.73
to 0.86 when using error free data. It should be noted that
the magnitude of error introduced in the paper is within
typical observation error range and consistent with errors
used in literature (e.g. Renard et al. 2010 and Hill and
Tiedeman 2006).

Conclusion

The results of this study demonstrate that hydrograph
separations obtained from time-series models do not
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always result in reliable estimation of pumping and
climatic influences even when the overall hydrograph fit
is good. However, when the time-series model represents
the important processes (e.g. phreatic evaporation is
included for shallow water tables) and the (head) variance
of the pumping signal to the meteorological signal is
between 0.1 and 10, the model has the potential to
adequately separate the influence of pumping and mete-
orological factors.

In this study, Hantush’s and Ferris and Knowles’ well
formulas were adopted to account for the impact of
pumping. The underlying assumptions of these equations
are that the aquifer is confined, horizontal, of infinite
extent and homogeneous and that the pumping bore fully
penetrates the aquifer. In this case, the main violations
from aforementioned assumptions are that the aquifer is
unconfined, finite and sloping. With regard to the adoption
of a confined aquifer well formula for an unconfined
situation, it has been demonstrated that the confined
pumping response function can be used in unconfined
situations if the phenomenon of delayed water-level
response is minimal and the drawdown due to pumping
remains small relative to the total aquifer thickness
(Kruseman and De Ridder 1994). In this synthetic study,
this assumption appears to be satisfied, because in all
simulations, there is no delayed response influence and the
maximum decline due to pumping is less than 10 % of the
total thickness of the aquifer. With regard to the
assumption of infinite extent, obviously, the catchment
here is bounded but considering that in 96 % of total
model simulations, the pumping impact does not reach to
any boundary around the catchment, this assumption
appears to be satisfied in most of model simulations. It
is acknowledged that for those 4 % of total simulation
where pumping influence reaches to the boundaries, there
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might be some degradation in the simulated pumping.
Some field trials have found that fixed head boundary
conditions, caused by surface-water bodies, can de-
grade the performance of the time-series model
(Shapoori et al. 2015).

It should also be noted that such a synthetic study of
model performance as presented here is rarely undertaken
in hydrogeological studies. It is not clear why few such
studies have been undertaken; however, in light of the
complexity of groundwater systems (e.g. boundary condi-
tions, aquifer structure, aquifer parameter values, recharge
dynamics) and the variability between systems, only a
subset of groundwater systems can ever be investigated
and investigation of all types is impossible. Hence, the
falsification and evaluation of the various time-series
models for decomposition will always be based on a
subset of possible synthetic model. Overall, the develop-
ment herein of 500 synthetic models of an unconfined
aquifer is felt to be a sufficient subset of models to identify
the applicability of the groundwater-time-series method
for reliable decomposition of the impacts of pumping and
meteorological factors.

While the results of this study can be used as a guide
for aquifers (i.e. upland valley) with a similar range of
properties, the details should not be generalized to all
situations. Any major changes could potentially lead to
different results—for example, if the pumping bore is used
for different purposes (e.g. for drinking usage), the
temporal pattern of pumping would be different (e.g.
constant extraction over the entire year instead of only
during the irrigation period). In addition, different as-
sumptions for the vegetation (e.g. deep-rooted vegetation)
could change the evapotranspiration extinction depth and
affect the rate of evapotranspiration, which would lead to
different thresholds for the mean depth to groundwater
level when differentiating between shallow and deeper
groundwater levels. Having said that, the result that
pumping impact estimates improve as the pumping signal
gets larger compared with the meteorological signal is
likely to be general, even if the relationship differs in
detail between situations. To provide guidance for other
cases, the time-series model performance needs to be
assessed in a synthetic environment simulating each
particular case with its specifics with regard to meteoro-
logical and pumping regimes.
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