Curl Noise

Peter Werner

Overview

Take a look at end results

Cover some background stuff

Look at 2D case

Some more background stuff

Look at 3D case

General computation considerations

Curl Noise

Move a bunch of particles around
Used for smoke, fire, fluid effects
Relatively inexpensive to calculate

Especially compared to other methods of fluid
simulation

Also just generally looks kinda cool

Objectives

Aim is to understand what the curl operator
does

Can go off and read other peoples papers/
code

Not a mathematically rigourous talk
Interludes time for questions

Background

Curl is a mathematical operator like +, -, etc

Its input is a vector field

Its output is a divergence free vector field
Measure of rotational force

In our case the input will be Perlin Noise

We will use the output to move particles around

A divergence free vector field will stop our
particles smooshing together too much

t perlin noise

r N

Particles moving with straigh

N/ P

T / 2SS

Ll
1
\ \ T

N\ L2
e 1'11‘\\‘§\\\$~\\\\ e
a /i | \\\\\ \\\ SN
! Lo i) /'!‘.-\é:\g\\
f A ~-

-
=

Perlin Noise

Used whenever you want something that varies
but not completely randomly

Takes x/y/z locations
Gives values from [0, 1] or [-1, 1]

Low frequency noise varies from high values to
ow values slowly

High frequency noise varies quickly

Common to sum layers of noise at different
frequencies

Perlin Noise

Low frequency High frequency Sums of frequencies

Vector Field

We use Perlin noise as our vector field
For a particle at a certain (x, y) position

Evaluate the noise function at (x, y) to get a
value n

Make our velocity vector v = (n, n)

Next particle position = (x, y) + (n, n)

S
)
(d
S
@)
+—
O
v
>
)
)
@)
C
=
e
)
(e

Curl of same field

Curlin 2D

potential Field (perlin noise) ¥ =y, ¥,,y;)
nstead: F=(x,y2)
N 2D: F=(x,y)
Some point P=(x.)
® _ a'X"l a1
Curl: V“"”‘(@"alx)

v(x, y) is the output of the curl operator.
It has a vector value, so x,y in 2D, x,y,z in 3D
The derivative terms are rates of change.

Curlin 2D

Don’t worry, no calculus IS required
What does this term 2= L really mean?

dy
We want the rate of change in x

At a given point x1
On the y axis/relative to y

i.e. how much the x1 value would change as
the y values change around it

Just a regular number as its value

Curlin 2D

M
0x
How much do y values change around some

point y1l ...

Similarly for

As the values of x change?

What’s the rate of change in y relative to x?
How much does y change as x changes?
Gradient = derivative = rate of change

Computing the Curl

Step 1: Calculate the gradients

Step 2: Jigger the values round to fit curl
definition

e.g. Curl definition v(x,y>=(% —@)

ay’ 0x
. 0x, 0y,
=—, b:—
Step1l: « o -~

Step 2: vx»=(a-b)

v(x,y) = (%,_%)
dy ox

Finite Difference Gradient

But how to compute the gradients?

Can be done using calculus using simplex
noise

Much easier way is to approximate the rate of
change using a method called finite
differences.

Super easy, uses primary school math

Finite Differences

 We have a mystery function we want to
approximate a derivative for

mystery function

Finite Differences

Have some 2D data with x and y values
Want to approximate the rate of change of y
as x changes (i.e.2)atsayx=5

We know the x values and y values

But not the function that generated them

Finite Differences

* How about we take the average y values at
points “close” tox =5

 Inthiscase,x=4and x=6

mystery function

Finite Differences

* Looking at our data, we gety=16andy =36

Finite Differences

Taking the average gives 36;16 _ 220 _10

Our function is really y=x’

ﬂ=2x

We know its derivative .

Which at x = 5 gives 10, the same as our
approximation

Finite Differences

dtop or dtop
dbot d bot

Move the values of bot a bit

The general idea for some

Get the top values at those points
Subtract one of those values from the other
Divide it by 2 to get the average

This will approximate the gradient at that
point

Finite Differences

Common to talk of small differences in terms
of the greek epsilon &

For our < case with y=s(x)=x
Set epsilon to some small value (e=1)

Then look at f(“g)z‘f(x“"‘) =f(5+1;‘{(5‘”=62;42=...=1o
XE X

If you are using normalized texture coords
epsilon might be 0.0001

Computing the Curl

Step 1: Calculate the gradients

Step 2: Jigger the values round to fit curl
definition

e.g. Curl definition 2D: v(x,y>=(%,—@)

ady ox
. 0x, 0y,
=—’ b:—
Stepl: « o -~

Step 2: vx»=(a-b)

v(x,y) = (%,_%)
dy ox

ofVec2f ComputeCurl(float x, float y)

{

Computing the Curl

float eps = 1.0;
float n1, n2, a, b;

nl = noise(x, y + eps);
n2 = noise(x, y - eps);
a=(nl-n2)/(2* eps);

nl = noise(x + eps, y);
n2 = noise(x - eps, y);
b=(nl1-n2)/(2* eps);

ofVec2f curl = ofVec2f(a, -b);
return curl;

0x,
a=——
dy
_
0x
") = (ai_al)
dy ox

Recap

Perlin Noise

Vector Fields

Curlin 2D
Computing gradients
Computing curl in 2D

Mathematical Fact

e cosine can be used to approximate the normal
distribution

A, 5 o

Curlin 3D

1 . = _ oY, _‘Sl/jz oY, _57/}3 oY, _51/}1
Bridson: P.2) (6)/ 5z 0z ox ox (5y)
Some pointin 3D P=(x.y.z)

- _(9z, 0y, Ox; 0z Oy Ox
We gEt v(x,y,z)—(éy 8z 0z Ox Ox (5y)
Three valued function (a vector in 3D)

"he last term has and

Just like we saw for the 2D case

Curlin 3D

= _(9z _5)’1 ox, _(SZ] oy, _6X1
Curl v(x,y,z)—(éy 8z 8z Ox Ox 6y)
Gives a vector with three values:

¥ (x,,2) = (rate of change for x, rate of change for y,rate of change for z)
Say we have some function f(xyz)=x+y+2
To find the rate of change for z
Hold z constant
Will have an x component of change
And a y component of change
Hold z constant, jigger round x and y a bit

Curlin 3D

Curl stona)=(o355 55

Also need to find the rate of change for x
Will vary relative to y and z locations

The rate of change fory

Will vary relative to x and z locations
Let’s call all these ¥(x,y.2) = (Ax, Ay, Az)

Delta means “change in”

Curl 3D

. 0z, Oy, oOx, 0z, Oy, Ox
rI ViX,y, = L— ! ’ L— ! ’ L— !
Cu (%.3.:2) (oy 0z 06z Ox Ox Oy)

0z, Oy

Notice ar-2-%

We only care about y/z plane

. . 0
Likewise a-22-S% x/z plane

oy, Ox,

And 2-7:-2% all happening in the x/y plane
Think of bottom parts as the 2D plane letters

This enables a performance improvement
when actually computing the values

y’z plane Y axis

Naxis

x/z plane Y axis

X axis

x/y plane Y axis

%&ixis

Curlin 3D

- 0z, Oy, O0x, 0z, Oy, Ox
VX, Y, = - ’ - ’ -
Curl (x.3:2) 8y 6z 6z Ox Ox Oy

Step 1: Calculate the gradients

Step 2: Jigger the values round to fit curl
definition
If we think in terms of planes

The gradients are just the same as the 2D case

Curlin 3D

_o oy
Lets take A= -7

Let o= -2
ay 0z

Compute these two values as we did before
For a, hold z fixed, move y around

For b, hold y fixed, move z around

We get Ax=a-b

- ox, 0z, 0Oy, Ox,
=| Ax - -
We now have 7(xy.2)=|Ax -Ft-0n -0

Computing the Curl

e Continue on for the other components
e Step 1: Calculate the gradients

* Step 2: Jigger the values round to fit curl
definition

Computing the Curl

ofVec3f ComputeCurl(float x, float y, float z)
{

float eps = 1.0;

float n1, n2, a, b;

ofVec3f curl;

nl = noise(x, y + eps, z);
n2 = noise(x, y - eps, z);

a=(n1-n2)/(2 * eps); A_X,' 521 (5)71
R oy 0z
b =(n1-n2)/(2 * eps);

curl.x=a-b;

nl = noise(x, y, z + eps);

ISl ox, 0z
2ol o 0z Ox
b =(n1-n2)/(2 * eps);

curl,y=a-b;

nl = noise(x + eps, vy, z);

n2 = noise(x - eps, Y, z);

a=(nl-n2)/(2* eps); 5y1 (le
nl = noise(x, y + eps, z); 6x 6y

n2 = noise(x, y - eps, z);
b =(n1-n2)/(2 * eps);

curl.z=a-b;

) . 0z, Oy, Ox, Oz, O Ox
}returncur, V(X,y,Z)= 1 _ yl 1 _ 1 yl 1

oy 0z 07 Ox ox Oy

Mathematical Fact

* An infinite dimensional unit sphere (with
radius = 1) has no volume

o — N w 4 (&)}
T T T T T

Computational Considerations

Typically store noise values in floating point
textures

Can calculate noise on the fly

Noise scales really well, examples use 64x64
noise textures

Turn on bilinear interpolation and texture
wrapping

The 3D case could also use GL_TEXTURE_3D

Can also use point sprites, billboarding, blending
etc

Computational Considerations

* The 2D case uses one 2D texture
My 3D case uses three 2D textures, one for each plane
When sampling from textures add half a textel width

vec2 Grad(float x, float y)

{
float h = 1/dims.x * 0.5;
float eps = 1.0/dims.x;
float n1, n2, dx, dy;
vec2 dx0, dx1, dyO, dy1;
dx0 = vec2(x, y - eps) + h;
dx1 =vec2(x,y + eps) + h;

nl = texture(uPtex, dx0).r;
n2 = texture(uPtex, dx1).r;
dx=nl-n2;

Computational Considerations

* May also want to normalize curl values
ofVec3f curl = CalculateCurl(x, vy, z);
curl.normalize();

* Can skip the divison in finite differences

* Probably also want some fixed velocity for
each particle

* Curlis a measure of rotational force, so
particles will end up in loops

Computational Considerations

| usually have a variable to modulate curl
amount, eg from [0, 1]

Also a time step value also from [0, 1]

E.g.
particle.xyz += (fixedVel + curl * curlAmt) * dt;

Where curlAmt ranges [0,1]
dt is time step also from [0,1]

libcurl/curl/multi.h

— 7 1\

sys/socket.h sys/time.h curl.h

DN

sys/types.h curlver.h stdio.h limits.h time.h easy.h

References

Robert Bridson, original paper + code v

Philip RideOUt, COdE/tUtoriaIS http://prideout.net/blog/
MiaUMiau, WebGL COde http://www.miaumiau.cat

VECtOr Fleld http://tutorial.math.lamar.edu/Classes/Calclll/VectorFields.aspx

Pa rtlal DerlvatIVES http://tutorial.math.lamar.edu/Classes/Calclll/PartialDerivatives.aspx

C U r I http://tutorial.math.lamar.edu/Classes/Calclll/CurlDivergence.aspx

Bridson has a book on fluid simulation

Rideout has a cool book on iPhone OpenGL

Me

Blog http://petewerner.blogspot.com.au/

Twitter https://twitter.com/dizzy pete

Tumblr http://i-am-noise.tumblr.com/

Vimeo https://vimeo.com/dizzypete

Github https://github.com/petewerner

