No description, website, or topics provided.
Python
Switch branches/tags
Nothing to show
Clone or download
Latest commit 20b87dc Sep 13, 2016
Permalink
Failed to load latest commit information.
.gitignore Initial commit Dec 29, 2015
LICENSE Initial commit Dec 29, 2015
README.md Adding groups Jan 19, 2016
load.py Initial commit Dec 29, 2015
magic_init.py Adding input layer Sep 12, 2016
measure_stat.py Just load the net if --data unspecified (#1) May 16, 2016

README.md

Data-dependent initialization of convolutional neural networks

Created by Philipp Krähenbühl.

Introduction

This code implements the initialization presented in our arXiv tech report, which is under submission at ICLR 2016.

This is a reimplementation and currently work in progress. Use at your own risk.

License

This code is released under the BSD License (refer to the LICENSE file for details).

Citing

If you find our initialization useful in your research, please consider citing:

@article{krahenbuhl2015data,
  title={Data-dependent Initializations of Convolutional Neural Networks},
  author={Kr{\"a}henb{\"u}hl, Philipp and Doersch, Carl and Donahue, Jeff and Darrell, Trevor},
  journal={arXiv preprint arXiv:1511.06856},
  year={2015}
}

Setup

Checkout the project and create a symlink to caffe in the magic_init directory:

ln -s path/to/caffe/python/caffe caffe

Examples

Here is a quick example on how to initialize alexnet:

python magic_init.py path/to/alexnet/deploy.prototxt path/to/output.caffemodel -d "path/to/some/images/*.png" -q -nit 10 -cs

Here -d flag allows you to initialize the network using your own images. Feel free to use imagenet, Pascal, COCO or whatever you have at hand, it shouldn't make a big difference. The -q (queit) flag suppresses all the caffe logging, -nit controls the number of batches used (while -bs controls the batch size). Finally -cs rescales the gradients accross layers. This rescaling currently works best for feed-forward networks, and might not work too well for DAG structured networks (we are working on that).

To run the k-means initialization use:

python magic_init.py path/to/alexnet/deploy.prototxt path/to/output.caffemodel -d "path/to/some/images/*.png" -q -nit 10 -cs -t kmeans

Finally, python magic_init.py -h should provide you with more help.

Pro tips

If you're numpy implementation is based on openblas, try disabeling threading export OPENBLAS_NUM_THREADS=1, it can improve the runtime performance a bit.