Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
147 lines (75 sloc) 4.73 KB
# Load requried libraries
require(ggplot2)
require(reshape2)
# Set working directory
setwd("~/set/working/directory/here")
# Load CSV file. Name needs updating each time.
csvfilename <- "changetorelevantfilename.csv"
originalcsv <- read.csv(file=csvfilename, sep=",", header=TRUE, fileEncoding="latin1")
# Stuff for the plotting
# Remove Draw column
PlotData <- within(originalcsv, rm(Draw))
# Use melt from reshape2 libraruy to convert data from long to wide
PlotData <- melt(PlotData, id.vars=c("Horse"), variable.name="Furlong",value.name="Time")
# Remove the Xs from the furlong distances. This occured when they were column names. R doesn't like numbers starting column names.
levels(PlotData$Furlong) <- gsub("X", "", levels(PlotData$Furlong))
# Plot the graph
ggplot(data=PlotData, aes(x=Furlong, y=Time, colour=Horse, group=Horse)) + geom_line() + geom_point()
# Save the file as a jpg, using the edited csvfilename
picfilename <- substring(csvfilename, 1, nchar(csvfilename)-4)
picfilename <- paste(picfilename,".jpg", sep="")
ggsave(file=picfilename)
# Count total number of columns in the original CSV
ColCount <- ncol(originalcsv)
# Total Distance of race. Total number of columns, minus first two containing horse and draw, gives total furlongs.
originalcsv$Dist <- ColCount - 2
# Calculate sectional distance. For races longer than 8f it is 3 furlongs, otherwise 2 furlongs
originalcsv$SectDist <- ifelse(originalcsv$Dist > 8, 3, 2)
# Calculate sectional distance for early calcs. For races longer than 8f it is columns 3 to 5, otherwise columsn 2 to 4
SectDistEarly <- ifelse(originalcsv$Dist > 8, 5, 4)
# Calculate number of columns to use for sustained sectionals (sum of all bar final sectionals)
SectDistSust <- originalcsv$Dist - originalcsv$SectDist
# Calculate total time of race. Starting at column 3, through to WP column (ColCount provides accurate number), add all times.
originalcsv$TotTime <- rowSums(originalcsv[ , 3:ColCount])
# Number of columns to count across to when adding total late sectional time.
SectColCount <- ColCount - originalcsv$SectDist
# Calculate late sectional times. Total time minus sum of relevant early rows.
originalcsv$SectTimeLate <- (originalcsv$TotTime) - (rowSums(originalcsv[ , 3:SectColCount[1]]))
# Calculate early sectional times. Sum of first rows, starting at column 3 across to SectDistEarly column number (which will be 4 or 5)
originalcsv$SectTimeEarly <- rowSums(originalcsv[ , 3:SectDistEarly[1]])
# Calculate sustained sectional times. Sum of rows 3 to SectColCount number
originalcsv$SectTimeSust <- rowSums(originalcsv[ , 3:SectColCount[1]])
# Calculate final sectional percentages and rank
originalcsv$FinPercent <- (originalcsv$TotTime*originalcsv$SectDist*100)/(originalcsv$Dist*originalcsv$SectTimeLate)
originalcsv$FinRank <- rank (-originalcsv$FinPercent)
# Calculate early sectionals percentages
originalcsv$EarlyPercent <- (originalcsv$TotTime*originalcsv$SectDist*100)/(originalcsv$Dist*originalcsv$SectTimeEarly)
# Calculate sustained sectionals percentages
originalcsv$SustPercent <- (originalcsv$TotTime*(originalcsv$Dist-originalcsv$SectDist)*100)/(originalcsv$Dist*originalcsv$SectTimeSust)
# Hold just final sectionals in new variable for easy display on screen.
FinalSectionals <- subset(originalcsv, select=c(Horse, FinPercent))
FinalSectionals$FinPercent <- round(FinalSectionals$FinPercent, 3)
# Final Percent rankings and rivals beaten
FinalSectionals$FinRank <- rank (-FinalSectionals$FinPercent)
# Hold just early sectionals, ordered by highest first, in new variable
EarlySectionals <- subset(originalcsv, select=c(Horse, EarlyPercent))
EarlySectionals$Horse <- as.character(EarlySectionals$Horse)
EarlySectionals <- EarlySectionals[order(-EarlySectionals$EarlyPercent),]
# Hold just sustained sectionals, ordered by highest first, in new variable
SustSectionals <- subset(originalcsv, select=c(Horse, SustPercent))
SustSectionals <- SustSectionals[order(SustSectionals$SustPercent),]
# Energy Distribution and ranking, adding to Final Sectionals variable
FinalSectionals$EnergyDist <- (SustSectionals$SustPercent / FinalSectionals$FinPercent)^2
FinalSectionals$EnergyDist <- round(FinalSectionals$EnergyDist, 3)
FinalSectionals$EnergyRank <- rank(FinalSectionals$EnergyDist)
# Add Energy Distribution to Original CSV
originalcsv$EnergyDist <- FinalSectionals$EnergyDist
originalcsv$EnergyRank <- rank(originalcsv$EnergyDist)
# Display data on screen
EarlySectionals
SustSectionals
FinalSectionals
# Write out new CSV file with edited filename. This will retain original CSV in unamended form.
newcsvfilename <- gsub(".csv", "", csvfilename)
newcsvfilename <- paste(newcsvfilename,"Calcs",".csv",sep = "")
write.csv(originalcsv, file=newcsvfilename, quote=TRUE, row.names=FALSE)