Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Initial b7493f7 Jun 11, 2019
1 contributor

Users who have contributed to this file

3402 lines (2765 sloc) 108 KB
/*
PL_MPEG - MPEG1 Video decoder, MP2 Audio decoder, MPEG-PS demuxer
Dominic Szablewski - https://phoboslab.org
-- LICENSE: The MIT License(MIT)
Copyright(c) 2019 Dominic Szablewski
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files(the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
-- Synopsis
// Define `PL_MPEG_IMPLEMENTATION` in *one* C/C++ file before including this
// library to create the implementation.
#define PL_MPEG_IMPLEMENTATION
#include "plmpeg.h"
// This function gets called for each decoded video frame
void my_video_callback(plm_t *plm, plm_frame_t *frame, void *user) {
// Do something with frame->y.data, frame->cr.data, frame->cb.data
}
// This function gets called for each decoded audio frame
void my_audio_callback(plm_t *plm, plm_samples_t *frame, void *user) {
// Do something with samples->interleaved
}
// Load a .mpg (MPEG Program Stream) file
plm_t *plm = plm_create_with_filename("some-file.mpg");
// Install the video & audio decode callbacks
plm_set_video_decode_callback(plm, my_video_callback, my_data);
plm_set_audio_decode_callback(plm, my_audio_callback, my_data);
// Decode
do {
plm_decode(plm, time_since_last_call);
} while (!plm_has_ended(plm));
// All done
plm_destroy(plm);
-- Documentation
This library provides several interfaces to load, demux and decode MPEG video
and audio data. A high-level API combines the demuxer, video & audio decoders
in an easy to use wrapper.
Lower-level APIs for accessing the demuxer, video decoder and audio decoder,
as well as providing different data sources are also available.
Interfaces are written in an object orientet style, meaning you create object
instances via various different constructor functions (plm_*create()),
do some work on them and later dispose them via plm_*destroy().
plm_* -- the high-level interface, combining demuxer and decoders
plm_buffer_* -- the data source used by all interfaces
plm_demux_* -- the MPEG-PS demuxer
plm_video_* -- the MPEG1 Video ("mpeg1") decoder
plm_audio_* -- the MPEG1 Audio Layer II ("mp2") decoder
This library uses malloc(), realloc() and free() to manage memory. Typically
all allocation happens up-front when creating the interface. However, the
default buffer size may be too small for certain inputs. In these cases plmpeg
will realloc() the buffer with a larger size whenever needed. You can configure
the default buffer size by defining PLM_BUFFER_DEFAULT_SIZE *before*
including this library.
With the high-level interface you have two options to decode video & audio:
1) Use plm_decode() and just hand over the delta time since the last call.
It will decode everything needed and call your callbacks (specified through
plm_set_{video|audio}_decode_callback()) any number of times.
2) Use plm_decode_video() and plm_decode_audio() to decode exactly one
frame of video or audio data at a time. How you handle the synchronization of
both streams is up to you.
If you only want to decode video *or* audio through these functions, you should
disable the other stream (plm_set_{video|audio}_enabled(FALSE))
Video data is decoded into a struct with all 3 planes (Y, Cr, Cb) stored in
separate buffers. You can either convert this to RGB on the CPU (slow) via the
plm_frame_to_rgb() function or do it on the GPU with the following matrix:
mat4 rec601 = mat4(
1.16438, 0.00000, 1.59603, -0.87079,
1.16438, -0.39176, -0.81297, 0.52959,
1.16438, 2.01723, 0.00000, -1.08139,
0, 0, 0, 1
);
gl_FragColor = vec4(y, cb, cr, 1.0) * rec601;
Audio data is decoded into a struct with either one single float array with the
samples for the left and right channel interleaved, or if the
PLM_AUDIO_SEPARATE_CHANNELS is defined *before* including this library, into
two separate float arrays - one for each channel.
See below for detailed the API documentation.
*/
#ifndef PL_MPEG_H
#define PL_MPEG_H
#include <stdint.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C" {
#endif
// -----------------------------------------------------------------------------
// Public Data Types
// Object types for the various interfaces
typedef struct plm_t plm_t;
typedef struct plm_buffer_t plm_buffer_t;
typedef struct plm_demux_t plm_demux_t;
typedef struct plm_video_t plm_video_t;
typedef struct plm_audio_t plm_audio_t;
// Demuxed MPEG PS packet
// The type maps directly to the various MPEG-PES start codes. pts is the
// presentation time stamp of the packet in seconds. Not all packets have
// a pts value.
typedef struct {
int type;
double pts;
size_t length;
uint8_t *data;
} plm_packet_t;
// Decoded Video Plane
// The byte length of the data is width * height. Note that different planes
// have different sizes: the Luma plane (Y) is double the size of each of
// the two Chroma planes (Cr, Cb) - i.e. 4 times the byte length.
// Also note that the size of the plane does *not* denote the size of the
// displayed frame. The sizes of planes are always rounded up to the nearest
// macroblock (16px).
typedef struct {
unsigned int width;
unsigned int height;
uint8_t *data;
} plm_plane_t;
// Decoded Video Frame
// width and height denote the desired display size of the frame. This may be
// different from the internal size of the 3 planes.
typedef struct {
double time;
unsigned int width;
unsigned int height;
plm_plane_t y;
plm_plane_t cr;
plm_plane_t cb;
} plm_frame_t;
// Callback function type for decoded video frames used by the high-level
// plm_* interface
typedef void(*plm_video_decode_callback)
(plm_t *self, plm_frame_t *frame, void *user);
// Decoded Audio Samples
// Samples are stored as normalized (-1, 1) float either interleaved, or if
// PLM_AUDIO_SEPARATE_CHANNELS is defined, in two separate arrays.
// The `count` is always PLM_AUDIO_SAMPLES_PER_FRAME and just there for
// convenience.
#define PLM_AUDIO_SAMPLES_PER_FRAME 1152
typedef struct {
double time;
unsigned int count;
#ifdef PLM_AUDIO_SEPARATE_CHANNELS
float left[PLM_AUDIO_SAMPLES_PER_FRAME];
float right[PLM_AUDIO_SAMPLES_PER_FRAME];
#else
float interleaved[PLM_AUDIO_SAMPLES_PER_FRAME * 2];
#endif
} plm_samples_t;
// Callback function type for decoded audio samples used by the high-level
// plm_* interface
typedef void(*plm_audio_decode_callback)
(plm_t *self, plm_samples_t *samples, void *user);
// Callback function for plm_buffer when it needs more data
typedef void(*plm_buffer_load_callback)(plm_buffer_t *self, void *user);
// -----------------------------------------------------------------------------
// plm_* public API
// High-Level API for loading/demuxing/decoding MPEG-PS data
// Create a plmpeg instance with a filename. Returns NULL if the file could not
// be opened.
plm_t *plm_create_with_filename(const char *filename);
// Create a plmpeg instance with file handle. Pass TRUE to close_when_done
// to let plmpeg call fclose() on the handle when plm_destroy() is
// called.
plm_t *plm_create_with_file(FILE *fh, int close_when_done);
// Create a plmpeg instance with pointer to memory as source. This assumes the
// whole file is in memory. Pass TRUE to free_when_done to let plmpeg call
// free() on the pointer when plm_destroy() is called.
plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done);
// Create a plmpeg instance with a plm_buffer as source. This is also
// called internally by all the above constructor functions.
plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);
// Destroy a plmpeg instance and free all data
void plm_destroy(plm_t *self);
// Get or set whether video decoding is enabled.
int plm_get_video_enabled(plm_t *self);
void plm_set_video_enabled(plm_t *self, int enabled);
// Get or set whether audio decoding is enabled. When enabling, you can set the
// desired audio stream (0-3) to decode.
int plm_get_audio_enabled(plm_t *self);
void plm_set_audio_enabled(plm_t *self, int enabled, int stream_index);
// Get the display width/height of the video stream
int plm_get_width(plm_t *self);
int plm_get_height(plm_t *self);
// Get the framerate of the video stream in frames per second
double plm_get_framerate(plm_t *self);
// Get the number of available audio streams in the file
int plm_get_num_audio_streams(plm_t *self);
// Get the samplerate of the audio stream in samples per second
int plm_get_samplerate(plm_t *self);
// Get or set the audio lead time in seconds - the time in which audio samples
// are decoded in advance (or behind) the video decode time. Default 0.
double plm_get_audio_lead_time(plm_t *self);
void plm_set_audio_lead_time(plm_t *self, double lead_time);
// Get the current internal time in seconds
double plm_get_time(plm_t *self);
// Rewind all buffers back to the beginning.
void plm_rewind(plm_t *self);
// Get or set looping. Default FALSE.
int plm_get_loop(plm_t *self);
void plm_set_loop(plm_t *self, int loop);
// Get whether the file has ended. If looping is enabled, this will always
// return FALSE.
int plm_has_ended(plm_t *self);
// Set the callback for decoded video frames used with plm_decode(). If no
// callback is set, video data will be ignored and not be decoded.
void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user);
// Set the callback for decoded audio samples used with plm_decode(). If no
// callback is set, audio data will be ignored and not be decoded.
void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user);
// Advance the internal timer by seconds and decode video/audio up to
// this time. Returns TRUE/FALSE whether anything was decoded.
int plm_decode(plm_t *self, double seconds);
// Decode and return one video frame. Returns NULL if no frame could be decoded
// (either because the source ended or data is corrupt). If you only want to
// decode video, you should disable audio via plm_set_audio_enabled().
// The returned plm_frame_t is valid until the next call to
// plm_decode_video call or until the plm_destroy is called.
plm_frame_t *plm_decode_video(plm_t *self);
// Decode and return one audio frame. Returns NULL if no frame could be decoded
// (either because the source ended or data is corrupt). If you only want to
// decode audio, you should disable video via plm_set_video_enabled().
// The returned plm_samples_t is valid until the next call to
// plm_decode_video or until the plm_destroy is called.
plm_samples_t *plm_decode_audio(plm_t *self);
// -----------------------------------------------------------------------------
// plm_buffer public API
// Provides the data source for all other plm_* interfaces
// The default size for buffers created from files or by the high-level API
#ifndef PLM_BUFFER_DEFAULT_SIZE
#define PLM_BUFFER_DEFAULT_SIZE (128 * 1024)
#endif
// Create a buffer instance with a filename. Returns NULL if the file could not
// be opened.
plm_buffer_t *plm_buffer_create_with_filename(const char *filename);
// Create a buffer instance with file handle. Pass TRUE to close_when_done
// to let plmpeg call fclose() on the handle when plm_destroy() is
// called.
plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done);
// Create a buffer instance with a pointer to memory as source. This assumes
// the whole file is in memory. Pass 1 to free_when_done to let plmpeg call
// free() on the pointer when plm_destroy() is called.
plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done);
// Create an empty buffer with an initial capacity. The buffer will grow
// as needed.
plm_buffer_t *plm_buffer_create_with_capacity(size_t capacity);
// Destroy a buffer instance and free all data
void plm_buffer_destroy(plm_buffer_t *self);
// Copy data into the buffer. If the data to be written is larger than the
// available space, the buffer will realloc() with a larger capacity.
// Returns the number of bytes written. This will always be the same as the
// passed in length, except when the buffer was created _with_memory() for
// which _write() is forbidden.
size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length);
// Set a callback that is called whenever the buffer needs more data
void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user);
// Rewind the buffer back to the beginning. When loading from a file handle,
// this also seeks to the beginning of the file.
void plm_buffer_rewind(plm_buffer_t *self);
// -----------------------------------------------------------------------------
// plm_demux public API
// Demux an MPEG Program Stream (PS) data into separate packages
// Various Packet Types
static const int PLM_DEMUX_PACKET_PRIVATE = 0xBD;
static const int PLM_DEMUX_PACKET_AUDIO_1 = 0xC0;
static const int PLM_DEMUX_PACKET_AUDIO_2 = 0xC1;
static const int PLM_DEMUX_PACKET_AUDIO_3 = 0xC2;
static const int PLM_DEMUX_PACKET_AUDIO_4 = 0xC2;
static const int PLM_DEMUX_PACKET_VIDEO_1 = 0xE0;
// Create a demuxer with a plm_buffer as source
plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done);
// Destroy a demuxer and free all data
void plm_demux_destroy(plm_demux_t *self);
// Returns the number of video streams found in the system header.
int plm_demux_get_num_video_streams(plm_demux_t *self);
// Returns the number of audio streams found in the system header.
int plm_demux_get_num_audio_streams(plm_demux_t *self);
// Rewinds the internal buffer. See plm_buffer_rewind().
void plm_demux_rewind(plm_demux_t *self);
// Decode and return the next packet. The returned packet_t is valid until
// the next call to plm_demux_decode() or until the demuxer is destroyed.
plm_packet_t *plm_demux_decode(plm_demux_t *self);
// -----------------------------------------------------------------------------
// plm_video public API
// Decode MPEG1 Video ("mpeg1") data into raw YCrCb frames
// Create a video decoder with a plm_buffer as source
plm_video_t *plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);
// Destroy a video decoder and free all data
void plm_video_destroy(plm_video_t *self);
// Get the framerate in frames per second
double plm_video_get_framerate(plm_video_t *self);
// Get the display width/height
int plm_video_get_width(plm_video_t *self);
int plm_video_get_height(plm_video_t *self);
// Set "no delay" mode. When enabled, the decoder assumes that the video does
// *not* contain any B-Frames. This is useful for reducing lag when streaming.
void plm_video_set_no_delay(plm_video_t *self, int no_delay);
// Get the current internal time in seconds
double plm_video_get_time(plm_video_t *self);
// Rewinds the internal buffer. See plm_buffer_rewind().
void plm_video_rewind(plm_video_t *self);
// Decode and return one frame of video and advance the internal time by
// 1/framerate seconds. The returned frame_t is valid until the next call of
// plm_video_decode() or until the video decoder is destroyed.
plm_frame_t *plm_video_decode(plm_video_t *self);
// Convert the YCrCb data of a frame into an interleaved RGB buffer. The buffer
// pointed to by *rgb must have a size of (frame->width * frame->height * 3)
// bytes.
void plm_frame_to_rgb(plm_frame_t *frame, uint8_t *rgb);
// -----------------------------------------------------------------------------
// plm_audio public API
// Decode MPEG-1 Audio Layer II ("mp2") data into raw samples
// Create an audio decoder with a plm_buffer as source
plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done);
// Destroy an audio decoder and free all data
void plm_audio_destroy(plm_audio_t *self);
// Get the samplerate in samples per second
int plm_audio_get_samplerate(plm_audio_t *self);
// Get the current internal time in seconds
double plm_audio_get_time(plm_audio_t *self);
// Rewinds the internal buffer. See plm_buffer_rewind().
void plm_audio_rewind(plm_audio_t *self);
// Decode and return one "frame" of audio and advance the internal time by
// (PLM_AUDIO_SAMPLES_PER_FRAME/samplerate) seconds. The returned samples_t
// is valid until the next call of plm_audio_decode() or until the audio
// decoder is destroyed.
plm_samples_t *plm_audio_decode(plm_audio_t *self);
#ifdef __cplusplus
}
#endif
#endif // PL_MPEG_H
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// IMPLEMENTATION
#ifdef PL_MPEG_IMPLEMENTATION
#include <string.h>
#include <stdlib.h>
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
// -----------------------------------------------------------------------------
// plm (high-level interface) implementation
typedef struct plm_t {
plm_demux_t *demux;
double time;
int has_ended;
int loop;
int video_packet_type;
plm_buffer_t *video_buffer;
plm_video_t *video_decoder;
int audio_packet_type;
double audio_lead_time;
plm_buffer_t *audio_buffer;
plm_audio_t *audio_decoder;
plm_video_decode_callback video_decode_callback;
void *video_decode_callback_user_data;
plm_audio_decode_callback audio_decode_callback;
void *audio_decode_callback_user_data;
} plm_t;
void plm_handle_end(plm_t *self);
void plm_read_video_packet(plm_buffer_t *buffer, void *user);
void plm_read_audio_packet(plm_buffer_t *buffer, void *user);
void plm_read_packets(plm_t *self, int requested_type);
plm_t *plm_create_with_filename(const char *filename) {
plm_buffer_t *buffer = plm_buffer_create_with_filename(filename);
if (!buffer) {
return NULL;
}
return plm_create_with_buffer(buffer, TRUE);
}
plm_t *plm_create_with_file(FILE *fh, int close_when_done) {
plm_buffer_t *buffer = plm_buffer_create_with_file(fh, close_when_done);
return plm_create_with_buffer(buffer, TRUE);
}
plm_t *plm_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) {
plm_buffer_t *buffer = plm_buffer_create_with_memory(bytes, length, free_when_done);
return plm_create_with_buffer(buffer, TRUE);
}
plm_t *plm_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
plm_t *self = (plm_t *)malloc(sizeof(plm_t));
memset(self, 0, sizeof(plm_t));
self->demux = plm_demux_create(buffer, destroy_when_done);
// In theory we should check plm_demux_get_num_video_streams() and
// plm_demux_get_num_audio_streams() here, but older files typically
// do not specify these correcly. So we just assume we have a video and
// audio stream and create the decoders.
self->video_packet_type = PLM_DEMUX_PACKET_VIDEO_1;
self->video_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
plm_buffer_set_load_callback(self->video_buffer, plm_read_video_packet, self);
self->audio_packet_type = PLM_DEMUX_PACKET_AUDIO_1;
self->audio_buffer = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
plm_buffer_set_load_callback(self->audio_buffer, plm_read_audio_packet, self);
self->video_decoder = plm_video_create_with_buffer(self->video_buffer, TRUE);
self->audio_decoder = plm_audio_create_with_buffer(self->audio_buffer, TRUE);
return self;
}
void plm_destroy(plm_t *self) {
plm_video_destroy(self->video_decoder);
plm_audio_destroy(self->audio_decoder);
plm_demux_destroy(self->demux);
free(self);
}
int plm_get_audio_enabled(plm_t *self) {
return (self->audio_packet_type != 0);
}
void plm_set_audio_enabled(plm_t *self, int enabled, int stream_index) {
int num_streams = plm_demux_get_num_audio_streams(self->demux);
self->audio_packet_type = (enabled && stream_index >= 0 && stream_index < 4)
? PLM_DEMUX_PACKET_AUDIO_1 + stream_index
: 0;
}
int plm_get_video_enabled(plm_t *self) {
return (self->video_packet_type != 0);
}
void plm_set_video_enabled(plm_t *self, int enabled) {
self->video_packet_type = (enabled)
? PLM_DEMUX_PACKET_VIDEO_1
: 0;
}
int plm_get_width(plm_t *self) {
return plm_video_get_width(self->video_decoder);
}
int plm_get_height(plm_t *self) {
return plm_video_get_height(self->video_decoder);
}
double plm_get_framerate(plm_t *self) {
return plm_video_get_framerate(self->video_decoder);
}
int plm_get_num_audio_streams(plm_t *self) {
// Some files do not specify the number of audio streams in the system header.
// If the reported number of streams is 0, we check if we have a samplerate,
// indicating at least one audio stream.
int num_streams = plm_demux_get_num_audio_streams(self->demux);
return num_streams == 0 && plm_get_samplerate(self) ? 1 : num_streams;
}
int plm_get_samplerate(plm_t *self) {
return plm_audio_get_samplerate(self->audio_decoder);
}
double plm_get_audio_lead_time(plm_t *self) {
return self->audio_lead_time;
}
void plm_set_audio_lead_time(plm_t *self, double lead_time) {
self->audio_lead_time = lead_time;
}
double plm_get_time(plm_t *self) {
return self->time;
}
void plm_rewind(plm_t *self) {
plm_video_rewind(self->video_decoder);
plm_audio_rewind(self->audio_decoder);
plm_demux_rewind(self->demux);
self->time = 0;
}
int plm_get_loop(plm_t *self) {
return self->loop;
}
void plm_set_loop(plm_t *self, int loop) {
self->loop = loop;
}
int plm_has_ended(plm_t *self) {
return self->has_ended;
}
void plm_set_video_decode_callback(plm_t *self, plm_video_decode_callback fp, void *user) {
self->video_decode_callback = fp;
self->video_decode_callback_user_data = user;
}
void plm_set_audio_decode_callback(plm_t *self, plm_audio_decode_callback fp, void *user) {
self->audio_decode_callback = fp;
self->audio_decode_callback_user_data = user;
}
int plm_decode(plm_t *self, double tick) {
int decode_video = (self->video_decode_callback && self->video_packet_type);
int decode_audio = (self->audio_decode_callback && self->audio_packet_type);
if (!decode_video && !decode_audio) {
// Nothing to do here
return FALSE;
}
int did_decode = FALSE;
int video_ended = FALSE;
int audio_ended = FALSE;
double video_target_time = self->time + tick;
double audio_target_time = self->time + tick;
if (self->audio_lead_time > 0 && decode_audio) {
video_target_time -= self->audio_lead_time;
}
else {
audio_target_time -= self->audio_lead_time;
}
do {
did_decode = FALSE;
if (decode_video && plm_video_get_time(self->video_decoder) < video_target_time) {
plm_frame_t *frame = plm_video_decode(self->video_decoder);
if (frame) {
self->video_decode_callback(self, frame, self->video_decode_callback_user_data);
did_decode = TRUE;
}
else {
video_ended = TRUE;
}
}
if (decode_audio && plm_audio_get_time(self->audio_decoder) < audio_target_time) {
plm_samples_t *samples = plm_audio_decode(self->audio_decoder);
if (samples) {
self->audio_decode_callback(self, samples, self->audio_decode_callback_user_data);
did_decode = TRUE;
}
else {
audio_ended = TRUE;
}
}
} while (did_decode);
// We wanted to decode something but failed -> the source must have ended
if ((!decode_video || video_ended) && (!decode_audio || audio_ended)) {
plm_handle_end(self);
}
else {
self->time += tick;
}
return did_decode ? TRUE : FALSE;
}
plm_frame_t *plm_decode_video(plm_t *self) {
if (!self->video_packet_type) {
return NULL;
}
plm_frame_t *frame = plm_video_decode(self->video_decoder);
if (frame) {
self->time = frame->time;
}
else {
plm_handle_end(self);
}
return frame;
}
plm_samples_t *plm_decode_audio(plm_t *self) {
if (!self->audio_packet_type) {
return NULL;
}
plm_samples_t *samples = plm_audio_decode(self->audio_decoder);
if (samples) {
self->time = samples->time;
}
else {
plm_handle_end(self);
}
return samples;
}
void plm_handle_end(plm_t *self) {
if (self->loop) {
plm_rewind(self);
}
else {
self->has_ended = TRUE;
}
}
void plm_read_video_packet(plm_buffer_t *buffer, void *user) {
plm_t *self = (plm_t *)user;
plm_read_packets(self, self->video_packet_type);
}
void plm_read_audio_packet(plm_buffer_t *buffer, void *user) {
plm_t *self = (plm_t *)user;
plm_read_packets(self, self->audio_packet_type);
}
void plm_read_packets(plm_t *self, int requested_type) {
plm_packet_t *packet;
while ((packet = plm_demux_decode(self->demux))) {
if (packet->type == self->video_packet_type) {
plm_buffer_write(self->video_buffer, packet->data, packet->length);
}
else if (packet->type == self->audio_packet_type) {
plm_buffer_write(self->audio_buffer, packet->data, packet->length);
}
if (packet->type == requested_type) {
return;
}
}
}
// -----------------------------------------------------------------------------
// plm_buffer implementation
enum plm_buffer_mode {
PLM_BUFFER_MODE_FILE,
PLM_BUFFER_MODE_FIXED_MEM,
PLM_BUFFER_MODE_DYNAMIC_MEM
};
typedef struct plm_buffer_t {
size_t bit_index;
size_t capacity;
size_t length;
int free_when_done;
int close_when_done;
FILE *fh;
plm_buffer_load_callback load_callback;
void *load_callback_user_data;
uint8_t *bytes;
enum plm_buffer_mode mode;
} plm_buffer_t;
typedef struct {
int16_t index;
int16_t value;
} plm_vlc_t;
typedef struct {
int16_t index;
uint16_t value;
} plm_vlc_uint_t;
void plm_buffer_discard_read_bytes(plm_buffer_t *self);
void plm_buffer_load_file_callback(plm_buffer_t *self, void *user);
int plm_buffer_has(plm_buffer_t *self, size_t count);
int plm_buffer_read(plm_buffer_t *self, int count);
void plm_buffer_align(plm_buffer_t *self);
void plm_buffer_skip(plm_buffer_t *self, size_t count);
int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v);
int plm_buffer_next_start_code(plm_buffer_t *self);
int plm_buffer_find_start_code(plm_buffer_t *self, int code);
int plm_buffer_no_start_code(plm_buffer_t *self);
int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table);
uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table);
plm_buffer_t *plm_buffer_create_with_filename(const char *filename) {
FILE *fh = fopen(filename, "rb");
if (!fh) {
return NULL;
}
return plm_buffer_create_with_file(fh, TRUE);
}
plm_buffer_t *plm_buffer_create_with_file(FILE *fh, int close_when_done) {
plm_buffer_t *self = plm_buffer_create_with_capacity(PLM_BUFFER_DEFAULT_SIZE);
self->fh = fh;
self->close_when_done = close_when_done;
self->mode = PLM_BUFFER_MODE_FILE;
plm_buffer_set_load_callback(self, plm_buffer_load_file_callback, NULL);
return self;
}
plm_buffer_t *plm_buffer_create_with_memory(uint8_t *bytes, size_t length, int free_when_done) {
plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t));
memset(self, 0, sizeof(plm_buffer_t));
self->capacity = length;
self->length = length;
self->free_when_done = free_when_done;
self->bytes = bytes;
self->mode = PLM_BUFFER_MODE_FIXED_MEM;
return self;
}
plm_buffer_t * plm_buffer_create_with_capacity(size_t capacity) {
plm_buffer_t *self = (plm_buffer_t *)malloc(sizeof(plm_buffer_t));
memset(self, 0, sizeof(plm_buffer_t));
self->capacity = capacity;
self->free_when_done = TRUE;
self->bytes = (uint8_t *)malloc(capacity);
self->mode = PLM_BUFFER_MODE_DYNAMIC_MEM;
return self;
}
void plm_buffer_destroy(plm_buffer_t *self) {
if (self->fh && self->close_when_done) {
fclose(self->fh);
}
if (self->free_when_done) {
free(self->bytes);
}
free(self);
}
size_t plm_buffer_write(plm_buffer_t *self, uint8_t *bytes, size_t length) {
if (self->mode == PLM_BUFFER_MODE_FIXED_MEM) {
return 0;
}
// This should be a ring buffer, but instead it just shifts all unread data
// to the beginning of the buffer and appends new data at the end. Seems
// to be good enough.
plm_buffer_discard_read_bytes(self);
// Do we have to resize to fit the new data?
size_t bytes_available = self->capacity - self->length;
if (bytes_available < length) {
size_t new_size = self->capacity;
do {
new_size *= 2;
} while (new_size - self->length < length);
self->bytes = (uint8_t *)realloc(self->bytes, new_size);
self->capacity = new_size;
}
memcpy(self->bytes + self->length, bytes, length);
self->length += length;
return length;
}
void plm_buffer_set_load_callback(plm_buffer_t *self, plm_buffer_load_callback fp, void *user) {
self->load_callback = fp;
self->load_callback_user_data = user;
}
void plm_buffer_rewind(plm_buffer_t *self) {
if (self->fh) {
fseek(self->fh, 0, SEEK_SET);
self->length = 0;
}
if (self->mode != PLM_BUFFER_MODE_FIXED_MEM) {
self->length = 0;
}
self->bit_index = 0;
}
void plm_buffer_discard_read_bytes(plm_buffer_t *self) {
size_t byte_pos = self->bit_index >> 3;
if (byte_pos == self->length) {
self->bit_index = 0;
self->length = 0;
}
else if (byte_pos > 0) {
memmove(self->bytes, self->bytes + byte_pos, self->length - byte_pos);
self->bit_index -= byte_pos << 3;
self->length -= byte_pos;
}
}
void plm_buffer_load_file_callback(plm_buffer_t *self, void *user) {
plm_buffer_discard_read_bytes(self);
size_t bytes_available = self->capacity - self->length;
size_t bytes_read = fread(self->bytes + self->length, 1, bytes_available, self->fh);
self->length += bytes_read;
}
int plm_buffer_has(plm_buffer_t *self, size_t count) {
size_t remaining = ((self->length << 3) - self->bit_index);
if (remaining >= count) {
return TRUE;
}
if (self->load_callback) {
self->load_callback(self, self->load_callback_user_data);
return ((self->length << 3) - self->bit_index) >= count;
}
else {
return FALSE;
}
}
int plm_buffer_read(plm_buffer_t *self, int count) {
if (!plm_buffer_has(self, count)) {
return 0;
}
int value = 0;
while (count) {
int current_byte = self->bytes[self->bit_index >> 3];
int remaining = 8 - (self->bit_index & 7); // Remaining bits in byte
int read = remaining < count ? remaining : count; // Bits in self run
int shift = remaining - read;
int mask = (0xff >> (8 - read));
value = (value << read) | ((current_byte & (mask << shift)) >> shift);
self->bit_index += read;
count -= read;
}
return value;
}
void plm_buffer_align(plm_buffer_t *self) {
self->bit_index = ((self->bit_index + 7) >> 3) << 3; // Align to next byte
}
void plm_buffer_skip(plm_buffer_t *self, size_t count) {
if (plm_buffer_has(self, count)) {
self->bit_index += count;
}
}
int plm_buffer_skip_bytes(plm_buffer_t *self, uint8_t v) {
plm_buffer_align(self);
int skipped = 0;
while (plm_buffer_has(self, 8) && self->bytes[self->bit_index >> 3] == v) {
self->bit_index += 8;
skipped++;
}
return skipped;
}
int plm_buffer_next_start_code(plm_buffer_t *self) {
plm_buffer_align(self);
while (plm_buffer_has(self, (5 << 3))) {
size_t byte_index = (self->bit_index) >> 3;
if (
self->bytes[byte_index] == 0x00 &&
self->bytes[byte_index + 1] == 0x00 &&
self->bytes[byte_index + 2] == 0x01
) {
self->bit_index = (byte_index + 4) << 3;
return self->bytes[byte_index + 3];
}
self->bit_index += 8;
}
self->bit_index = (self->length << 3);
return -1;
}
int plm_buffer_find_start_code(plm_buffer_t *self, int code) {
int current = 0;
while (TRUE) {
current = plm_buffer_next_start_code(self);
if (current == code || current == -1) {
return current;
}
}
return -1;
}
int plm_buffer_no_start_code(plm_buffer_t *self) {
if (!plm_buffer_has(self, (5 << 3))) {
return FALSE;
}
size_t byte_index = ((self->bit_index + 7) >> 3);
return !(
self->bytes[byte_index] == 0x00 &&
self->bytes[byte_index + 1] == 0x00 &&
self->bytes[byte_index + 2] == 0x01
);
}
int16_t plm_buffer_read_vlc(plm_buffer_t *self, const plm_vlc_t *table) {
plm_vlc_t state = {0, 0};
do {
state = table[state.index + plm_buffer_read(self, 1)];
} while (state.index > 0);
return state.value;
}
uint16_t plm_buffer_read_vlc_uint(plm_buffer_t *self, const plm_vlc_uint_t *table) {
return (uint16_t)plm_buffer_read_vlc(self, (plm_vlc_t *)table);
}
// ----------------------------------------------------------------------------
// plm_demux implementation
static const int START_PACK = 0xBA;
static const int START_END = 0xB9;
static const int START_SYSTEM = 0xBB;
typedef struct plm_demux_t {
plm_buffer_t *buffer;
int destroy_buffer_when_done;
double system_clock_ref;
int has_pack_header;
int has_system_header;
int num_audio_streams;
int num_video_streams;
plm_packet_t current_packet;
plm_packet_t next_packet;
} plm_demux_t;
double plm_demux_read_time(plm_demux_t *self);
void plm_demux_decode_pack_header(plm_demux_t *self);
void plm_demux_decode_system_header(plm_demux_t *self) ;
plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int start_code);
plm_packet_t *plm_demux_get_packet(plm_demux_t *self);
plm_demux_t *plm_demux_create(plm_buffer_t *buffer, int destroy_when_done) {
plm_demux_t *self = (plm_demux_t *)malloc(sizeof(plm_demux_t));
memset(self, 0, sizeof(plm_demux_t));
self->buffer = buffer;
self->destroy_buffer_when_done = destroy_when_done;
if (plm_buffer_find_start_code(self->buffer, START_PACK) != -1) {
plm_demux_decode_pack_header(self);
}
if (plm_buffer_find_start_code(self->buffer, START_SYSTEM) != -1) {
plm_demux_decode_system_header(self);
}
return self;
}
void plm_demux_destroy(plm_demux_t *self) {
if (self->destroy_buffer_when_done) {
plm_buffer_destroy(self->buffer);
}
free(self);
}
int plm_demux_get_num_video_streams(plm_demux_t *self) {
return self->num_video_streams;
}
int plm_demux_get_num_audio_streams(plm_demux_t *self) {
return self->num_audio_streams;
}
void plm_demux_rewind(plm_demux_t *self) {
plm_buffer_rewind(self->buffer);
}
plm_packet_t *plm_demux_decode(plm_demux_t *self) {
if (self->current_packet.length) {
size_t bits_till_next_packet = self->current_packet.length << 3;
if (!plm_buffer_has(self->buffer, bits_till_next_packet)) {
return NULL;
}
plm_buffer_skip(self->buffer, bits_till_next_packet);
self->current_packet.length = 0;
}
if (!self->has_pack_header) {
if (plm_buffer_find_start_code(self->buffer, START_PACK) != -1) {
plm_demux_decode_pack_header(self);
}
else {
return NULL;
}
}
if (!self->has_system_header) {
if (plm_buffer_find_start_code(self->buffer, START_SYSTEM) != -1) {
plm_demux_decode_system_header(self);
}
else {
return NULL;
}
}
// pending packet just waiting for data?
if (self->next_packet.length) {
return plm_demux_get_packet(self);
}
int code;
do {
code = plm_buffer_next_start_code(self->buffer);
if (
code == PLM_DEMUX_PACKET_VIDEO_1 ||
code == PLM_DEMUX_PACKET_PRIVATE ||
(code >= PLM_DEMUX_PACKET_AUDIO_1 && code <= PLM_DEMUX_PACKET_AUDIO_4)
) {
return plm_demux_decode_packet(self, code);
}
} while (code != -1);
return NULL;
}
double plm_demux_read_time(plm_demux_t *self) {
int64_t clock = plm_buffer_read(self->buffer, 3) << 30;
plm_buffer_skip(self->buffer, 1);
clock |= plm_buffer_read(self->buffer, 15) << 15;
plm_buffer_skip(self->buffer, 1);
clock |= plm_buffer_read(self->buffer, 15);
plm_buffer_skip(self->buffer, 1);
return (double)clock / 90000.0;
}
void plm_demux_decode_pack_header(plm_demux_t *self) {
if (plm_buffer_read(self->buffer, 4) != 0x02) {
return; // invalid
}
self->system_clock_ref = plm_demux_read_time(self);
plm_buffer_skip(self->buffer, 1);
plm_buffer_skip(self->buffer, 22); // mux_rate * 50
plm_buffer_skip(self->buffer, 1);
self->has_pack_header = TRUE;
}
void plm_demux_decode_system_header(plm_demux_t *self) {
plm_buffer_skip(self->buffer, 16); // header_length
plm_buffer_skip(self->buffer, 24); // rate bound
self->num_audio_streams = plm_buffer_read(self->buffer, 6);
plm_buffer_skip(self->buffer, 5); // misc flags
self->num_video_streams = plm_buffer_read(self->buffer, 5);
self->has_system_header = TRUE;
}
plm_packet_t *plm_demux_decode_packet(plm_demux_t *self, int start_code) {
if (!plm_buffer_has(self->buffer, 8 << 3)) {
return NULL;
}
self->next_packet.type = start_code;
self->next_packet.length = plm_buffer_read(self->buffer, 16);
self->next_packet.length -= plm_buffer_skip_bytes(self->buffer, 0xff); // stuffing
// skip P-STD
if (plm_buffer_read(self->buffer, 2) == 0x01) {
plm_buffer_skip(self->buffer, 16);
self->next_packet.length -= 2;
}
int pts_dts_marker = plm_buffer_read(self->buffer, 2);
if (pts_dts_marker == 0x03) {
self->next_packet.pts = plm_demux_read_time(self);
plm_buffer_skip(self->buffer, 40); // skip dts
self->next_packet.length -= 10;
}
else if (pts_dts_marker == 0x02) {
self->next_packet.pts = plm_demux_read_time(self);
self->next_packet.length -= 5;
}
else if (pts_dts_marker == 0x00) {
self->next_packet.pts = 0;
plm_buffer_skip(self->buffer, 4);
self->next_packet.length -= 1;
}
else {
return NULL; // invalid
}
return plm_demux_get_packet(self);
}
plm_packet_t *plm_demux_get_packet(plm_demux_t *self) {
if (!plm_buffer_has(self->buffer, self->next_packet.length << 3)) {
return NULL;
}
self->current_packet.data = self->buffer->bytes + (self->buffer->bit_index >> 3);
self->current_packet.length = self->next_packet.length;
self->current_packet.type = self->next_packet.type;
self->current_packet.pts = self->next_packet.pts;
self->next_packet.length = 0;
return &self->current_packet;
}
// -----------------------------------------------------------------------------
// plm_video implementation
// Inspired by Java MPEG-1 Video Decoder and Player by Zoltan Korandi
// https://sourceforge.net/projects/javampeg1video/
static const int PLM_VIDEO_PICTURE_TYPE_INTRA = 1;
static const int PLM_VIDEO_PICTURE_TYPE_PREDICTIVE = 2;
static const int PLM_VIDEO_PICTURE_TYPE_B = 3;
static const int PLM_START_SEQUENCE = 0xB3;
static const int PLM_START_SLICE_FIRST = 0x01;
static const int PLM_START_SLICE_LAST = 0xAF;
static const int PLM_START_PICTURE = 0x00;
static const int PLM_START_EXTENSION = 0xB5;
static const int PLM_START_USER_DATA = 0xB2;
static const double PLM_VIDEO_PICTURE_RATE[] = {
0.000, 23.976, 24.000, 25.000, 29.970, 30.000, 50.000, 59.940,
60.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
};
static const uint8_t PLM_VIDEO_ZIG_ZAG[] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63
};
static const uint8_t PLM_VIDEO_INTRA_QUANT_MATRIX[] = {
8, 16, 19, 22, 26, 27, 29, 34,
16, 16, 22, 24, 27, 29, 34, 37,
19, 22, 26, 27, 29, 34, 34, 38,
22, 22, 26, 27, 29, 34, 37, 40,
22, 26, 27, 29, 32, 35, 40, 48,
26, 27, 29, 32, 35, 40, 48, 58,
26, 27, 29, 34, 38, 46, 56, 69,
27, 29, 35, 38, 46, 56, 69, 83
};
static const uint8_t PLM_VIDEO_NON_INTRA_QUANT_MATRIX[] = {
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16
};
static const uint8_t PLM_VIDEO_PREMULTIPLIER_MATRIX[] = {
32, 44, 42, 38, 32, 25, 17, 9,
44, 62, 58, 52, 44, 35, 24, 12,
42, 58, 55, 49, 42, 33, 23, 12,
38, 52, 49, 44, 38, 30, 20, 10,
32, 44, 42, 38, 32, 25, 17, 9,
25, 35, 33, 30, 25, 20, 14, 7,
17, 24, 23, 20, 17, 14, 9, 5,
9, 12, 12, 10, 9, 7, 5, 2
};
static const plm_vlc_t PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT[] = {
{ 1 << 1, 0}, { 0, 1}, // 0: x
{ 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x
{ 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x
{ 0, 3}, { 0, 2}, // 3: 01x
{ 6 << 1, 0}, { 7 << 1, 0}, // 4: 000x
{ 0, 5}, { 0, 4}, // 5: 001x
{ 8 << 1, 0}, { 9 << 1, 0}, // 6: 0000x
{ 0, 7}, { 0, 6}, // 7: 0001x
{ 10 << 1, 0}, { 11 << 1, 0}, // 8: 0000 0x
{ 12 << 1, 0}, { 13 << 1, 0}, // 9: 0000 1x
{ 14 << 1, 0}, { 15 << 1, 0}, // 10: 0000 00x
{ 16 << 1, 0}, { 17 << 1, 0}, // 11: 0000 01x
{ 18 << 1, 0}, { 19 << 1, 0}, // 12: 0000 10x
{ 0, 9}, { 0, 8}, // 13: 0000 11x
{ -1, 0}, { 20 << 1, 0}, // 14: 0000 000x
{ -1, 0}, { 21 << 1, 0}, // 15: 0000 001x
{ 22 << 1, 0}, { 23 << 1, 0}, // 16: 0000 010x
{ 0, 15}, { 0, 14}, // 17: 0000 011x
{ 0, 13}, { 0, 12}, // 18: 0000 100x
{ 0, 11}, { 0, 10}, // 19: 0000 101x
{ 24 << 1, 0}, { 25 << 1, 0}, // 20: 0000 0001x
{ 26 << 1, 0}, { 27 << 1, 0}, // 21: 0000 0011x
{ 28 << 1, 0}, { 29 << 1, 0}, // 22: 0000 0100x
{ 30 << 1, 0}, { 31 << 1, 0}, // 23: 0000 0101x
{ 32 << 1, 0}, { -1, 0}, // 24: 0000 0001 0x
{ -1, 0}, { 33 << 1, 0}, // 25: 0000 0001 1x
{ 34 << 1, 0}, { 35 << 1, 0}, // 26: 0000 0011 0x
{ 36 << 1, 0}, { 37 << 1, 0}, // 27: 0000 0011 1x
{ 38 << 1, 0}, { 39 << 1, 0}, // 28: 0000 0100 0x
{ 0, 21}, { 0, 20}, // 29: 0000 0100 1x
{ 0, 19}, { 0, 18}, // 30: 0000 0101 0x
{ 0, 17}, { 0, 16}, // 31: 0000 0101 1x
{ 0, 35}, { -1, 0}, // 32: 0000 0001 00x
{ -1, 0}, { 0, 34}, // 33: 0000 0001 11x
{ 0, 33}, { 0, 32}, // 34: 0000 0011 00x
{ 0, 31}, { 0, 30}, // 35: 0000 0011 01x
{ 0, 29}, { 0, 28}, // 36: 0000 0011 10x
{ 0, 27}, { 0, 26}, // 37: 0000 0011 11x
{ 0, 25}, { 0, 24}, // 38: 0000 0100 00x
{ 0, 23}, { 0, 22}, // 39: 0000 0100 01x
};
static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_INTRA[] = {
{ 1 << 1, 0}, { 0, 0x01}, // 0: x
{ -1, 0}, { 0, 0x11}, // 1: 0x
};
static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE[] = {
{ 1 << 1, 0}, { 0, 0x0a}, // 0: x
{ 2 << 1, 0}, { 0, 0x02}, // 1: 0x
{ 3 << 1, 0}, { 0, 0x08}, // 2: 00x
{ 4 << 1, 0}, { 5 << 1, 0}, // 3: 000x
{ 6 << 1, 0}, { 0, 0x12}, // 4: 0000x
{ 0, 0x1a}, { 0, 0x01}, // 5: 0001x
{ -1, 0}, { 0, 0x11}, // 6: 0000 0x
};
static const plm_vlc_t PLM_VIDEO_MACROBLOCK_TYPE_B[] = {
{ 1 << 1, 0}, { 2 << 1, 0}, // 0: x
{ 3 << 1, 0}, { 4 << 1, 0}, // 1: 0x
{ 0, 0x0c}, { 0, 0x0e}, // 2: 1x
{ 5 << 1, 0}, { 6 << 1, 0}, // 3: 00x
{ 0, 0x04}, { 0, 0x06}, // 4: 01x
{ 7 << 1, 0}, { 8 << 1, 0}, // 5: 000x
{ 0, 0x08}, { 0, 0x0a}, // 6: 001x
{ 9 << 1, 0}, { 10 << 1, 0}, // 7: 0000x
{ 0, 0x1e}, { 0, 0x01}, // 8: 0001x
{ -1, 0}, { 0, 0x11}, // 9: 0000 0x
{ 0, 0x16}, { 0, 0x1a}, // 10: 0000 1x
};
static const plm_vlc_t *PLM_VIDEO_MACROBLOCK_TYPE[] = {
NULL,
PLM_VIDEO_MACROBLOCK_TYPE_INTRA,
PLM_VIDEO_MACROBLOCK_TYPE_PREDICTIVE,
PLM_VIDEO_MACROBLOCK_TYPE_B
};
static const plm_vlc_t PLM_VIDEO_CODE_BLOCK_PATTERN[] = {
{ 1 << 1, 0}, { 2 << 1, 0}, // 0: x
{ 3 << 1, 0}, { 4 << 1, 0}, // 1: 0x
{ 5 << 1, 0}, { 6 << 1, 0}, // 2: 1x
{ 7 << 1, 0}, { 8 << 1, 0}, // 3: 00x
{ 9 << 1, 0}, { 10 << 1, 0}, // 4: 01x
{ 11 << 1, 0}, { 12 << 1, 0}, // 5: 10x
{ 13 << 1, 0}, { 0, 60}, // 6: 11x
{ 14 << 1, 0}, { 15 << 1, 0}, // 7: 000x
{ 16 << 1, 0}, { 17 << 1, 0}, // 8: 001x
{ 18 << 1, 0}, { 19 << 1, 0}, // 9: 010x
{ 20 << 1, 0}, { 21 << 1, 0}, // 10: 011x
{ 22 << 1, 0}, { 23 << 1, 0}, // 11: 100x
{ 0, 32}, { 0, 16}, // 12: 101x
{ 0, 8}, { 0, 4}, // 13: 110x
{ 24 << 1, 0}, { 25 << 1, 0}, // 14: 0000x
{ 26 << 1, 0}, { 27 << 1, 0}, // 15: 0001x
{ 28 << 1, 0}, { 29 << 1, 0}, // 16: 0010x
{ 30 << 1, 0}, { 31 << 1, 0}, // 17: 0011x
{ 0, 62}, { 0, 2}, // 18: 0100x
{ 0, 61}, { 0, 1}, // 19: 0101x
{ 0, 56}, { 0, 52}, // 20: 0110x
{ 0, 44}, { 0, 28}, // 21: 0111x
{ 0, 40}, { 0, 20}, // 22: 1000x
{ 0, 48}, { 0, 12}, // 23: 1001x
{ 32 << 1, 0}, { 33 << 1, 0}, // 24: 0000 0x
{ 34 << 1, 0}, { 35 << 1, 0}, // 25: 0000 1x
{ 36 << 1, 0}, { 37 << 1, 0}, // 26: 0001 0x
{ 38 << 1, 0}, { 39 << 1, 0}, // 27: 0001 1x
{ 40 << 1, 0}, { 41 << 1, 0}, // 28: 0010 0x
{ 42 << 1, 0}, { 43 << 1, 0}, // 29: 0010 1x
{ 0, 63}, { 0, 3}, // 30: 0011 0x
{ 0, 36}, { 0, 24}, // 31: 0011 1x
{ 44 << 1, 0}, { 45 << 1, 0}, // 32: 0000 00x
{ 46 << 1, 0}, { 47 << 1, 0}, // 33: 0000 01x
{ 48 << 1, 0}, { 49 << 1, 0}, // 34: 0000 10x
{ 50 << 1, 0}, { 51 << 1, 0}, // 35: 0000 11x
{ 52 << 1, 0}, { 53 << 1, 0}, // 36: 0001 00x
{ 54 << 1, 0}, { 55 << 1, 0}, // 37: 0001 01x
{ 56 << 1, 0}, { 57 << 1, 0}, // 38: 0001 10x
{ 58 << 1, 0}, { 59 << 1, 0}, // 39: 0001 11x
{ 0, 34}, { 0, 18}, // 40: 0010 00x
{ 0, 10}, { 0, 6}, // 41: 0010 01x
{ 0, 33}, { 0, 17}, // 42: 0010 10x
{ 0, 9}, { 0, 5}, // 43: 0010 11x
{ -1, 0}, { 60 << 1, 0}, // 44: 0000 000x
{ 61 << 1, 0}, { 62 << 1, 0}, // 45: 0000 001x
{ 0, 58}, { 0, 54}, // 46: 0000 010x
{ 0, 46}, { 0, 30}, // 47: 0000 011x
{ 0, 57}, { 0, 53}, // 48: 0000 100x
{ 0, 45}, { 0, 29}, // 49: 0000 101x
{ 0, 38}, { 0, 26}, // 50: 0000 110x
{ 0, 37}, { 0, 25}, // 51: 0000 111x
{ 0, 43}, { 0, 23}, // 52: 0001 000x
{ 0, 51}, { 0, 15}, // 53: 0001 001x
{ 0, 42}, { 0, 22}, // 54: 0001 010x
{ 0, 50}, { 0, 14}, // 55: 0001 011x
{ 0, 41}, { 0, 21}, // 56: 0001 100x
{ 0, 49}, { 0, 13}, // 57: 0001 101x
{ 0, 35}, { 0, 19}, // 58: 0001 110x
{ 0, 11}, { 0, 7}, // 59: 0001 111x
{ 0, 39}, { 0, 27}, // 60: 0000 0001x
{ 0, 59}, { 0, 55}, // 61: 0000 0010x
{ 0, 47}, { 0, 31}, // 62: 0000 0011x
};
static const plm_vlc_t PLM_VIDEO_MOTION[] = {
{ 1 << 1, 0}, { 0, 0}, // 0: x
{ 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x
{ 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x
{ 0, 1}, { 0, -1}, // 3: 01x
{ 6 << 1, 0}, { 7 << 1, 0}, // 4: 000x
{ 0, 2}, { 0, -2}, // 5: 001x
{ 8 << 1, 0}, { 9 << 1, 0}, // 6: 0000x
{ 0, 3}, { 0, -3}, // 7: 0001x
{ 10 << 1, 0}, { 11 << 1, 0}, // 8: 0000 0x
{ 12 << 1, 0}, { 13 << 1, 0}, // 9: 0000 1x
{ -1, 0}, { 14 << 1, 0}, // 10: 0000 00x
{ 15 << 1, 0}, { 16 << 1, 0}, // 11: 0000 01x
{ 17 << 1, 0}, { 18 << 1, 0}, // 12: 0000 10x
{ 0, 4}, { 0, -4}, // 13: 0000 11x
{ -1, 0}, { 19 << 1, 0}, // 14: 0000 001x
{ 20 << 1, 0}, { 21 << 1, 0}, // 15: 0000 010x
{ 0, 7}, { 0, -7}, // 16: 0000 011x
{ 0, 6}, { 0, -6}, // 17: 0000 100x
{ 0, 5}, { 0, -5}, // 18: 0000 101x
{ 22 << 1, 0}, { 23 << 1, 0}, // 19: 0000 0011x
{ 24 << 1, 0}, { 25 << 1, 0}, // 20: 0000 0100x
{ 26 << 1, 0}, { 27 << 1, 0}, // 21: 0000 0101x
{ 28 << 1, 0}, { 29 << 1, 0}, // 22: 0000 0011 0x
{ 30 << 1, 0}, { 31 << 1, 0}, // 23: 0000 0011 1x
{ 32 << 1, 0}, { 33 << 1, 0}, // 24: 0000 0100 0x
{ 0, 10}, { 0, -10}, // 25: 0000 0100 1x
{ 0, 9}, { 0, -9}, // 26: 0000 0101 0x
{ 0, 8}, { 0, -8}, // 27: 0000 0101 1x
{ 0, 16}, { 0, -16}, // 28: 0000 0011 00x
{ 0, 15}, { 0, -15}, // 29: 0000 0011 01x
{ 0, 14}, { 0, -14}, // 30: 0000 0011 10x
{ 0, 13}, { 0, -13}, // 31: 0000 0011 11x
{ 0, 12}, { 0, -12}, // 32: 0000 0100 00x
{ 0, 11}, { 0, -11}, // 33: 0000 0100 01x
};
static const plm_vlc_t PLM_VIDEO_DCT_SIZE_LUMINANCE[] = {
{ 1 << 1, 0}, { 2 << 1, 0}, // 0: x
{ 0, 1}, { 0, 2}, // 1: 0x
{ 3 << 1, 0}, { 4 << 1, 0}, // 2: 1x
{ 0, 0}, { 0, 3}, // 3: 10x
{ 0, 4}, { 5 << 1, 0}, // 4: 11x
{ 0, 5}, { 6 << 1, 0}, // 5: 111x
{ 0, 6}, { 7 << 1, 0}, // 6: 1111x
{ 0, 7}, { 8 << 1, 0}, // 7: 1111 1x
{ 0, 8}, { -1, 0}, // 8: 1111 11x
};
static const plm_vlc_t PLM_VIDEO_DCT_SIZE_CHROMINANCE[] = {
{ 1 << 1, 0}, { 2 << 1, 0}, // 0: x
{ 0, 0}, { 0, 1}, // 1: 0x
{ 0, 2}, { 3 << 1, 0}, // 2: 1x
{ 0, 3}, { 4 << 1, 0}, // 3: 11x
{ 0, 4}, { 5 << 1, 0}, // 4: 111x
{ 0, 5}, { 6 << 1, 0}, // 5: 1111x
{ 0, 6}, { 7 << 1, 0}, // 6: 1111 1x
{ 0, 7}, { 8 << 1, 0}, // 7: 1111 11x
{ 0, 8}, { -1, 0}, // 8: 1111 111x
};
static const plm_vlc_t *PLM_VIDEO_DCT_SIZE[] = {
PLM_VIDEO_DCT_SIZE_LUMINANCE,
PLM_VIDEO_DCT_SIZE_CHROMINANCE,
PLM_VIDEO_DCT_SIZE_CHROMINANCE
};
// dct_coeff bitmap:
// 0xff00 run
// 0x00ff level
// Decoded values are unsigned. Sign bit follows in the stream.
static const plm_vlc_uint_t PLM_VIDEO_DCT_COEFF[] = {
{ 1 << 1, 0}, { 0, 0x0001}, // 0: x
{ 2 << 1, 0}, { 3 << 1, 0}, // 1: 0x
{ 4 << 1, 0}, { 5 << 1, 0}, // 2: 00x
{ 6 << 1, 0}, { 0, 0x0101}, // 3: 01x
{ 7 << 1, 0}, { 8 << 1, 0}, // 4: 000x
{ 9 << 1, 0}, { 10 << 1, 0}, // 5: 001x
{ 0, 0x0002}, { 0, 0x0201}, // 6: 010x
{ 11 << 1, 0}, { 12 << 1, 0}, // 7: 0000x
{ 13 << 1, 0}, { 14 << 1, 0}, // 8: 0001x
{ 15 << 1, 0}, { 0, 0x0003}, // 9: 0010x
{ 0, 0x0401}, { 0, 0x0301}, // 10: 0011x
{ 16 << 1, 0}, { 0, 0xffff}, // 11: 0000 0x
{ 17 << 1, 0}, { 18 << 1, 0}, // 12: 0000 1x
{ 0, 0x0701}, { 0, 0x0601}, // 13: 0001 0x
{ 0, 0x0102}, { 0, 0x0501}, // 14: 0001 1x
{ 19 << 1, 0}, { 20 << 1, 0}, // 15: 0010 0x
{ 21 << 1, 0}, { 22 << 1, 0}, // 16: 0000 00x
{ 0, 0x0202}, { 0, 0x0901}, // 17: 0000 10x
{ 0, 0x0004}, { 0, 0x0801}, // 18: 0000 11x
{ 23 << 1, 0}, { 24 << 1, 0}, // 19: 0010 00x
{ 25 << 1, 0}, { 26 << 1, 0}, // 20: 0010 01x
{ 27 << 1, 0}, { 28 << 1, 0}, // 21: 0000 000x
{ 29 << 1, 0}, { 30 << 1, 0}, // 22: 0000 001x
{ 0, 0x0d01}, { 0, 0x0006}, // 23: 0010 000x
{ 0, 0x0c01}, { 0, 0x0b01}, // 24: 0010 001x
{ 0, 0x0302}, { 0, 0x0103}, // 25: 0010 010x
{ 0, 0x0005}, { 0, 0x0a01}, // 26: 0010 011x
{ 31 << 1, 0}, { 32 << 1, 0}, // 27: 0000 0000x
{ 33 << 1, 0}, { 34 << 1, 0}, // 28: 0000 0001x
{ 35 << 1, 0}, { 36 << 1, 0}, // 29: 0000 0010x
{ 37 << 1, 0}, { 38 << 1, 0}, // 30: 0000 0011x
{ 39 << 1, 0}, { 40 << 1, 0}, // 31: 0000 0000 0x
{ 41 << 1, 0}, { 42 << 1, 0}, // 32: 0000 0000 1x
{ 43 << 1, 0}, { 44 << 1, 0}, // 33: 0000 0001 0x
{ 45 << 1, 0}, { 46 << 1, 0}, // 34: 0000 0001 1x
{ 0, 0x1001}, { 0, 0x0502}, // 35: 0000 0010 0x
{ 0, 0x0007}, { 0, 0x0203}, // 36: 0000 0010 1x
{ 0, 0x0104}, { 0, 0x0f01}, // 37: 0000 0011 0x
{ 0, 0x0e01}, { 0, 0x0402}, // 38: 0000 0011 1x
{ 47 << 1, 0}, { 48 << 1, 0}, // 39: 0000 0000 00x
{ 49 << 1, 0}, { 50 << 1, 0}, // 40: 0000 0000 01x
{ 51 << 1, 0}, { 52 << 1, 0}, // 41: 0000 0000 10x
{ 53 << 1, 0}, { 54 << 1, 0}, // 42: 0000 0000 11x
{ 55 << 1, 0}, { 56 << 1, 0}, // 43: 0000 0001 00x
{ 57 << 1, 0}, { 58 << 1, 0}, // 44: 0000 0001 01x
{ 59 << 1, 0}, { 60 << 1, 0}, // 45: 0000 0001 10x
{ 61 << 1, 0}, { 62 << 1, 0}, // 46: 0000 0001 11x
{ -1, 0}, { 63 << 1, 0}, // 47: 0000 0000 000x
{ 64 << 1, 0}, { 65 << 1, 0}, // 48: 0000 0000 001x
{ 66 << 1, 0}, { 67 << 1, 0}, // 49: 0000 0000 010x
{ 68 << 1, 0}, { 69 << 1, 0}, // 50: 0000 0000 011x
{ 70 << 1, 0}, { 71 << 1, 0}, // 51: 0000 0000 100x
{ 72 << 1, 0}, { 73 << 1, 0}, // 52: 0000 0000 101x
{ 74 << 1, 0}, { 75 << 1, 0}, // 53: 0000 0000 110x
{ 76 << 1, 0}, { 77 << 1, 0}, // 54: 0000 0000 111x
{ 0, 0x000b}, { 0, 0x0802}, // 55: 0000 0001 000x
{ 0, 0x0403}, { 0, 0x000a}, // 56: 0000 0001 001x
{ 0, 0x0204}, { 0, 0x0702}, // 57: 0000 0001 010x
{ 0, 0x1501}, { 0, 0x1401}, // 58: 0000 0001 011x
{ 0, 0x0009}, { 0, 0x1301}, // 59: 0000 0001 100x
{ 0, 0x1201}, { 0, 0x0105}, // 60: 0000 0001 101x
{ 0, 0x0303}, { 0, 0x0008}, // 61: 0000 0001 110x
{ 0, 0x0602}, { 0, 0x1101}, // 62: 0000 0001 111x
{ 78 << 1, 0}, { 79 << 1, 0}, // 63: 0000 0000 0001x
{ 80 << 1, 0}, { 81 << 1, 0}, // 64: 0000 0000 0010x
{ 82 << 1, 0}, { 83 << 1, 0}, // 65: 0000 0000 0011x
{ 84 << 1, 0}, { 85 << 1, 0}, // 66: 0000 0000 0100x
{ 86 << 1, 0}, { 87 << 1, 0}, // 67: 0000 0000 0101x
{ 88 << 1, 0}, { 89 << 1, 0}, // 68: 0000 0000 0110x
{ 90 << 1, 0}, { 91 << 1, 0}, // 69: 0000 0000 0111x
{ 0, 0x0a02}, { 0, 0x0902}, // 70: 0000 0000 1000x
{ 0, 0x0503}, { 0, 0x0304}, // 71: 0000 0000 1001x
{ 0, 0x0205}, { 0, 0x0107}, // 72: 0000 0000 1010x
{ 0, 0x0106}, { 0, 0x000f}, // 73: 0000 0000 1011x
{ 0, 0x000e}, { 0, 0x000d}, // 74: 0000 0000 1100x
{ 0, 0x000c}, { 0, 0x1a01}, // 75: 0000 0000 1101x
{ 0, 0x1901}, { 0, 0x1801}, // 76: 0000 0000 1110x
{ 0, 0x1701}, { 0, 0x1601}, // 77: 0000 0000 1111x
{ 92 << 1, 0}, { 93 << 1, 0}, // 78: 0000 0000 0001 0x
{ 94 << 1, 0}, { 95 << 1, 0}, // 79: 0000 0000 0001 1x
{ 96 << 1, 0}, { 97 << 1, 0}, // 80: 0000 0000 0010 0x
{ 98 << 1, 0}, { 99 << 1, 0}, // 81: 0000 0000 0010 1x
{100 << 1, 0}, {101 << 1, 0}, // 82: 0000 0000 0011 0x
{102 << 1, 0}, {103 << 1, 0}, // 83: 0000 0000 0011 1x
{ 0, 0x001f}, { 0, 0x001e}, // 84: 0000 0000 0100 0x
{ 0, 0x001d}, { 0, 0x001c}, // 85: 0000 0000 0100 1x
{ 0, 0x001b}, { 0, 0x001a}, // 86: 0000 0000 0101 0x
{ 0, 0x0019}, { 0, 0x0018}, // 87: 0000 0000 0101 1x
{ 0, 0x0017}, { 0, 0x0016}, // 88: 0000 0000 0110 0x
{ 0, 0x0015}, { 0, 0x0014}, // 89: 0000 0000 0110 1x
{ 0, 0x0013}, { 0, 0x0012}, // 90: 0000 0000 0111 0x
{ 0, 0x0011}, { 0, 0x0010}, // 91: 0000 0000 0111 1x
{104 << 1, 0}, {105 << 1, 0}, // 92: 0000 0000 0001 00x
{106 << 1, 0}, {107 << 1, 0}, // 93: 0000 0000 0001 01x
{108 << 1, 0}, {109 << 1, 0}, // 94: 0000 0000 0001 10x
{110 << 1, 0}, {111 << 1, 0}, // 95: 0000 0000 0001 11x
{ 0, 0x0028}, { 0, 0x0027}, // 96: 0000 0000 0010 00x
{ 0, 0x0026}, { 0, 0x0025}, // 97: 0000 0000 0010 01x
{ 0, 0x0024}, { 0, 0x0023}, // 98: 0000 0000 0010 10x
{ 0, 0x0022}, { 0, 0x0021}, // 99: 0000 0000 0010 11x
{ 0, 0x0020}, { 0, 0x010e}, // 100: 0000 0000 0011 00x
{ 0, 0x010d}, { 0, 0x010c}, // 101: 0000 0000 0011 01x
{ 0, 0x010b}, { 0, 0x010a}, // 102: 0000 0000 0011 10x
{ 0, 0x0109}, { 0, 0x0108}, // 103: 0000 0000 0011 11x
{ 0, 0x0112}, { 0, 0x0111}, // 104: 0000 0000 0001 000x
{ 0, 0x0110}, { 0, 0x010f}, // 105: 0000 0000 0001 001x
{ 0, 0x0603}, { 0, 0x1002}, // 106: 0000 0000 0001 010x
{ 0, 0x0f02}, { 0, 0x0e02}, // 107: 0000 0000 0001 011x
{ 0, 0x0d02}, { 0, 0x0c02}, // 108: 0000 0000 0001 100x
{ 0, 0x0b02}, { 0, 0x1f01}, // 109: 0000 0000 0001 101x
{ 0, 0x1e01}, { 0, 0x1d01}, // 110: 0000 0000 0001 110x
{ 0, 0x1c01}, { 0, 0x1b01}, // 111: 0000 0000 0001 111x
};
typedef struct {
int full_px;
int is_set;
int r_size;
int h;
int v;
} plm_video_motion_t;
typedef struct plm_video_t {
double framerate;
double time;
int frames_decoded;
int width;
int height;
int mb_width;
int mb_height;
int mb_size;
int luma_width;
int luma_height;
int chroma_width;
int chroma_height;
int start_code;
int picture_type;
plm_video_motion_t motion_forward;
plm_video_motion_t motion_backward;
int has_sequence_header;
int quantizer_scale;
int slice_begin;
int macroblock_address;
int mb_row;
int mb_col;
int macroblock_type;
int macroblock_intra;
int dc_predictor[3];
plm_buffer_t *buffer;
int destroy_buffer_when_done;
plm_frame_t frame_current;
plm_frame_t frame_forward;
plm_frame_t frame_backward;
uint8_t *frames_data;
int block_data[64];
uint8_t intra_quant_matrix[64];
uint8_t non_intra_quant_matrix[64];
int has_reference_frame;
int assume_no_b_frames;
} plm_video_t;
static inline uint8_t plm_clamp(int n) {
return n > 255
? 255
: (n < 0 ? 0 : n);
}
void plm_video_decode_sequence_header(plm_video_t *self);
void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base);
void plm_video_decode_picture(plm_video_t *self);
void plm_video_decode_slice(plm_video_t *self, int slice);
void plm_video_decode_macroblock(plm_video_t *self);
void plm_video_decode_motion_vectors(plm_video_t *self);
int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion);
void plm_video_predict_macroblock(plm_video_t *self);
void plm_video_copy_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d);
void plm_video_interpolate_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d);
void plm_video_process_macroblock(plm_video_t *self, uint8_t *d, uint8_t *s, int mh, int mb, int bs, int interp);
void plm_video_decode_block(plm_video_t *self, int block);
void plm_video_idct(int *block);
plm_video_t * plm_video_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
plm_video_t *self = (plm_video_t *)malloc(sizeof(plm_video_t));
memset(self, 0, sizeof(plm_video_t));
self->buffer = buffer;
self->destroy_buffer_when_done = destroy_when_done;
self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE);
if (self->start_code != -1) {
plm_video_decode_sequence_header(self);
}
return self;
}
void plm_video_destroy(plm_video_t *self) {
if (self->destroy_buffer_when_done) {
plm_buffer_destroy(self->buffer);
}
if (self->has_sequence_header) {
free(self->frames_data);
}
free(self);
}
double plm_video_get_framerate(plm_video_t *self) {
return self->framerate;
}
int plm_video_get_width(plm_video_t *self) {
return self->width;
}
int plm_video_get_height(plm_video_t *self) {
return self->height;
}
void plm_video_set_no_delay(plm_video_t *self, int no_delay) {
self->assume_no_b_frames = no_delay;
}
double plm_video_get_time(plm_video_t *self) {
return self->time;
}
void plm_video_rewind(plm_video_t *self) {
plm_buffer_rewind(self->buffer);
self->time = 0;
self->frames_decoded = 0;
self->has_reference_frame = FALSE;
}
plm_frame_t *plm_video_decode(plm_video_t *self) {
if (!self->has_sequence_header) {
self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_SEQUENCE);
if (self->start_code == -1) {
return NULL;
}
plm_video_decode_sequence_header(self);
}
plm_frame_t *frame = NULL;
do {
if (self->start_code != PLM_START_PICTURE) {
self->start_code = plm_buffer_find_start_code(self->buffer, PLM_START_PICTURE);
}
if (self->start_code == -1) {
return NULL;
}
plm_video_decode_picture(self);
if (self->assume_no_b_frames) {
frame = &self->frame_backward;
}
else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
frame = &self->frame_current;
}
else if (self->has_reference_frame) {
frame = &self->frame_forward;
}
else {
self->has_reference_frame = TRUE;
}
} while (!frame);
frame->time = self->time;
self->frames_decoded++;
self->time = (double)self->frames_decoded / self->framerate;
return frame;
}
void plm_video_decode_sequence_header(plm_video_t *self) {
int previous_width = self->width;
int previous_height = self->height;
self->width = plm_buffer_read(self->buffer, 12);
self->height = plm_buffer_read(self->buffer, 12);
// skip pixel aspect ratio
plm_buffer_skip(self->buffer, 4);
self->framerate = PLM_VIDEO_PICTURE_RATE[plm_buffer_read(self->buffer, 4)];
// skip bitRate, marker, bufferSize and constrained bit
plm_buffer_skip(self->buffer, 18 + 1 + 10 + 1);
if (plm_buffer_read(self->buffer, 1)) { // load custom intra quant matrix?
for (int i = 0; i < 64; i++) {
int idx = PLM_VIDEO_ZIG_ZAG[i];
self->intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8);
}
}
else {
memcpy(self->intra_quant_matrix, PLM_VIDEO_INTRA_QUANT_MATRIX, 64);
}
if (plm_buffer_read(self->buffer, 1)) { // load custom non intra quant matrix?
for (int i = 0; i < 64; i++) {
int idx = PLM_VIDEO_ZIG_ZAG[i];
self->non_intra_quant_matrix[idx] = plm_buffer_read(self->buffer, 8);
}
}
else {
memcpy(self->non_intra_quant_matrix, PLM_VIDEO_NON_INTRA_QUANT_MATRIX, 64);
}
if (self->has_sequence_header) {
if (self->width == previous_width && self->height == previous_height) {
// We already had a sequence header with the same width/height;
// nothing else to do here.
return;
}
// We had a sequence header but with different dimensions;
// delete the previous planes and allocate new.
free(self->frames_data);
}
self->mb_width = (self->width + 15) >> 4;
self->mb_height = (self->height + 15) >> 4;
self->mb_size = self->mb_width * self->mb_height;
self->luma_width = self->mb_width << 4;
self->luma_height = self->mb_height << 4;
self->chroma_width = self->mb_width << 3;
self->chroma_height = self->mb_height << 3;
// Allocate one big chunk of data for all 3 frames = 9 planes
size_t luma_plane_size = self->luma_width * self->luma_height;
size_t chroma_plane_size = self->chroma_width * self->chroma_height;
size_t frame_data_size = (luma_plane_size + 2 * chroma_plane_size);
self->frames_data = (uint8_t*)malloc(frame_data_size * 3);
plm_video_init_frame(self, &self->frame_current, self->frames_data + frame_data_size * 0);
plm_video_init_frame(self, &self->frame_forward, self->frames_data + frame_data_size * 1);
plm_video_init_frame(self, &self->frame_backward, self->frames_data + frame_data_size * 2);
self->has_sequence_header = TRUE;
}
void plm_video_init_frame(plm_video_t *self, plm_frame_t *frame, uint8_t *base) {
size_t luma_plane_size = self->luma_width * self->luma_height;
size_t chroma_plane_size = self->chroma_width * self->chroma_height;
frame->width = self->width;
frame->height = self->height;
frame->y.width = self->luma_width;
frame->y.height = self->luma_height;
frame->y.data = base;
frame->cr.width = self->chroma_width;
frame->cr.height = self->chroma_height;
frame->cr.data = base + luma_plane_size;
frame->cb.width = self->chroma_width;
frame->cb.height = self->chroma_height;
frame->cb.data = base + luma_plane_size + chroma_plane_size;
}
void plm_video_decode_picture(plm_video_t *self) {
plm_buffer_skip(self->buffer, 10); // skip temporalReference
self->picture_type = plm_buffer_read(self->buffer, 3);
plm_buffer_skip(self->buffer, 16); // skip vbv_delay
// D frames or unknown coding type
if (self->picture_type <= 0 || self->picture_type > PLM_VIDEO_PICTURE_TYPE_B) {
return;
}
// forward full_px, f_code
if (
self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE ||
self->picture_type == PLM_VIDEO_PICTURE_TYPE_B
) {
self->motion_forward.full_px = plm_buffer_read(self->buffer, 1);
int f_code = plm_buffer_read(self->buffer, 3);
if (f_code == 0) {
// Ignore picture with zero f_code
return;
}
self->motion_forward.r_size = f_code - 1;
}
// backward full_px, f_code
if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
self->motion_backward.full_px = plm_buffer_read(self->buffer, 1);
int f_code = plm_buffer_read(self->buffer, 3);
if (f_code == 0) {
// Ignore picture with zero f_code
return;
}
self->motion_backward.r_size = f_code - 1;
}
plm_frame_t frame_temp = self->frame_forward;
if (
self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA ||
self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE
) {
self->frame_forward = self->frame_backward;
}
// Skip extensions, user data
do {
self->start_code = plm_buffer_next_start_code(self->buffer);
} while (self->start_code == PLM_START_EXTENSION || self->start_code == PLM_START_USER_DATA);
while (self->start_code >= PLM_START_SLICE_FIRST && self->start_code <= PLM_START_SLICE_LAST) {
plm_video_decode_slice(self, self->start_code & 0x000000FF);
if (self->macroblock_address == self->mb_size - 1) {
break;
}
self->start_code = plm_buffer_next_start_code(self->buffer);
}
// If this is a reference picutre rotate the prediction pointers
if (
self->picture_type == PLM_VIDEO_PICTURE_TYPE_INTRA ||
self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE
) {
self->frame_backward = self->frame_current;
self->frame_current = frame_temp;
}
}
void plm_video_decode_slice(plm_video_t *self, int slice) {
self->slice_begin = TRUE;
self->macroblock_address = (slice - 1) * self->mb_width - 1;
// Reset motion vectors and DC predictors
self->motion_backward.h = self->motion_forward.h = 0;
self->motion_backward.v = self->motion_forward.v = 0;
self->dc_predictor[0] = 128;
self->dc_predictor[1] = 128;
self->dc_predictor[2] = 128;
self->quantizer_scale = plm_buffer_read(self->buffer, 5);
// Skip extra
while (plm_buffer_read(self->buffer, 1)) {
plm_buffer_skip(self->buffer, 8);
}
do {
plm_video_decode_macroblock(self);
} while (
self->macroblock_address < self->mb_size - 1 &&
plm_buffer_no_start_code(self->buffer)
);
}
void plm_video_decode_macroblock(plm_video_t *self) {
// Decode self->macroblock_address_increment
int increment = 0;
int t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);
while (t == 34) {
// macroblock_stuffing
t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);
}
while (t == 35) {
// macroblock_escape
increment += 33;
t = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MACROBLOCK_ADDRESS_INCREMENT);
}
increment += t;
// Process any skipped macroblocks
if (self->slice_begin) {
// The first self->macroblock_address_increment of each slice is relative
// to beginning of the preverious row, not the preverious macroblock
self->slice_begin = FALSE;
self->macroblock_address += increment;
}
else {
if (self->macroblock_address + increment >= self->mb_size) {
return; // invalid
}
if (increment > 1) {
// Skipped macroblocks reset DC predictors
self->dc_predictor[0] = 128;
self->dc_predictor[1] = 128;
self->dc_predictor[2] = 128;
// Skipped macroblocks in P-pictures reset motion vectors
if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) {
self->motion_forward.h = 0;
self->motion_forward.v = 0;
}
}
// Predict skipped macroblocks
while (increment > 1) {
self->macroblock_address++;
self->mb_row = self->macroblock_address / self->mb_width;
self->mb_col = self->macroblock_address % self->mb_width;
plm_video_predict_macroblock(self);
increment--;
}
self->macroblock_address++;
}
self->mb_row = self->macroblock_address / self->mb_width;
self->mb_col = self->macroblock_address % self->mb_width;
if (self->mb_col >= self->mb_width || self->mb_row >= self->mb_height) {
return; // corrupt stream;
}
// Process the current macroblock
// static const s16 *mbTable = MACROBLOCK_TYPE[self->picture_type];
// macroblock_type = read_huffman(self->bits, mbTable);
const plm_vlc_t *table = PLM_VIDEO_MACROBLOCK_TYPE[self->picture_type];
self->macroblock_type = plm_buffer_read_vlc(self->buffer, table);
self->macroblock_intra = (self->macroblock_type & 0x01);
self->motion_forward.is_set = (self->macroblock_type & 0x08);
self->motion_backward.is_set = (self->macroblock_type & 0x04);
// Quantizer scale
if ((self->macroblock_type & 0x10) != 0) {
self->quantizer_scale = plm_buffer_read(self->buffer, 5);
}
if (self->macroblock_intra) {
// Intra-coded macroblocks reset motion vectors
self->motion_backward.h = self->motion_forward.h = 0;
self->motion_backward.v = self->motion_forward.v = 0;
}
else {
// Non-intra macroblocks reset DC predictors
self->dc_predictor[0] = 128;
self->dc_predictor[1] = 128;
self->dc_predictor[2] = 128;
plm_video_decode_motion_vectors(self);
plm_video_predict_macroblock(self);
}
// Decode blocks
int cbp = ((self->macroblock_type & 0x02) != 0)
? plm_buffer_read_vlc(self->buffer, PLM_VIDEO_CODE_BLOCK_PATTERN)
: (self->macroblock_intra ? 0x3f : 0);
for (int block = 0, mask = 0x20; block < 6; block++) {
if ((cbp & mask) != 0) {
plm_video_decode_block(self, block);
}
mask >>= 1;
}
}
void plm_video_decode_motion_vectors(plm_video_t *self) {
// Forward
if (self->motion_forward.is_set) {
int r_size = self->motion_forward.r_size;
self->motion_forward.h = plm_video_decode_motion_vector(self, r_size, self->motion_forward.h);
self->motion_forward.v = plm_video_decode_motion_vector(self, r_size, self->motion_forward.v);
}
else if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_PREDICTIVE) {
// No motion information in P-picture, reset vectors
self->motion_forward.h = 0;
self->motion_forward.v = 0;
}
if (self->motion_backward.is_set) {
int r_size = self->motion_backward.r_size;
self->motion_backward.h = plm_video_decode_motion_vector(self, r_size, self->motion_backward.h);
self->motion_backward.v = plm_video_decode_motion_vector(self, r_size, self->motion_backward.v);
}
}
int plm_video_decode_motion_vector(plm_video_t *self, int r_size, int motion) {
int fscale = 1 << r_size;
int m_code = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_MOTION);
int r = 0;
int d;
if ((m_code != 0) && (fscale != 1)) {
r = plm_buffer_read(self->buffer, r_size);
d = ((abs(m_code) - 1) << r_size) + r + 1;
if (m_code < 0) {
d = -d;
}
}
else {
d = m_code;
}
motion += d;
if (motion >(fscale << 4) - 1) {
motion -= fscale << 5;
}
else if (motion < ((-fscale) << 4)) {
motion += fscale << 5;
}
return motion;
}
void plm_video_predict_macroblock(plm_video_t *self) {
int fw_h = self->motion_forward.h;
int fw_v = self->motion_forward.v;
if (self->motion_forward.full_px) {
fw_h <<= 1;
fw_v <<= 1;
}
if (self->picture_type == PLM_VIDEO_PICTURE_TYPE_B) {
int bw_h = self->motion_backward.h;
int bw_v = self->motion_backward.v;
if (self->motion_backward.full_px) {
bw_h <<= 1;
bw_v <<= 1;
}
if (self->motion_forward.is_set) {
plm_video_copy_macroblock(self, fw_h, fw_v, &self->frame_forward);
if (self->motion_backward.is_set) {
plm_video_interpolate_macroblock(self, bw_h, bw_v, &self->frame_backward);
}
}
else {
plm_video_copy_macroblock(self, bw_h, bw_v, &self->frame_backward);
}
}
else {
plm_video_copy_macroblock(self, fw_h, fw_v, &self->frame_forward);
}
}
void plm_video_copy_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d) {
plm_frame_t *s = &self->frame_current;
plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, FALSE);
plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, FALSE);
plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, FALSE);
}
void plm_video_interpolate_macroblock(plm_video_t *self, int motion_h, int motion_v, plm_frame_t *d) {
plm_frame_t *s = &self->frame_current;
plm_video_process_macroblock(self, s->y.data, d->y.data, motion_h, motion_v, 16, TRUE);
plm_video_process_macroblock(self, s->cr.data, d->cr.data, motion_h / 2, motion_v / 2, 8, TRUE);
plm_video_process_macroblock(self, s->cb.data, d->cb.data, motion_h / 2, motion_v / 2, 8, TRUE);
}
#define PLM_BLOCK_SET(DEST, DEST_INDEX, DEST_WIDTH, SOURCE_INDEX, SOURCE_WIDTH, BLOCK_SIZE, OP) do { \
int dest_scan = DEST_WIDTH - BLOCK_SIZE; \
int source_scan = SOURCE_WIDTH - BLOCK_SIZE; \
for (int y = 0; y < BLOCK_SIZE; y++) { \
for (int x = 0; x < BLOCK_SIZE; x++) { \
DEST[DEST_INDEX] = OP; \
SOURCE_INDEX++; DEST_INDEX++; \
} \
SOURCE_INDEX += source_scan; \
DEST_INDEX += dest_scan; \
}} while(FALSE)
void plm_video_process_macroblock(
plm_video_t *self, uint8_t *d, uint8_t *s,
int motion_h, int motion_v, int block_size, int interpolate
) {
int dw = self->mb_width * block_size;
int hp = motion_h >> 1;
int vp = motion_v >> 1;
int odd_h = (motion_h & 1) == 1;
int odd_v = (motion_v & 1) == 1;
unsigned int si = ((self->mb_row * block_size) + vp) * dw + (self->mb_col * block_size) + hp;
unsigned int di = (self->mb_row * dw + self->mb_col) * block_size;
unsigned int max_address = (dw * (self->mb_height * block_size - block_size + 1) - block_size);
if (si > max_address || di > max_address) {
return; // corrupt video
}
#define PLM_MB_CASE(INTERPOLATE, ODD_H, ODD_V, OP) \
case ((INTERPOLATE << 2) | (ODD_H << 1) | (ODD_V)): \
PLM_BLOCK_SET(d, di, dw, si, dw, block_size, OP); \
break
switch ((interpolate << 2) | (odd_h << 1) | (odd_v)) {
PLM_MB_CASE(0, 0, 0, (s[si]));
PLM_MB_CASE(0, 0, 1, (s[si] + s[si + dw] + 1) >> 1);
PLM_MB_CASE(0, 1, 0, (s[si] + s[si + 1] + 1) >> 1);
PLM_MB_CASE(0, 1, 1, (s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2);
PLM_MB_CASE(1, 0, 0, (d[di] + (s[si]) + 1) >> 1);
PLM_MB_CASE(1, 0, 1, (d[di] + ((s[si] + s[si + dw] + 1) >> 1) + 1) >> 1);
PLM_MB_CASE(1, 1, 0, (d[di] + ((s[si] + s[si + 1] + 1) >> 1) + 1) >> 1);
PLM_MB_CASE(1, 1, 1, (d[di] + ((s[si] + s[si + 1] + s[si + dw] + s[si + dw + 1] + 2) >> 2) + 1) >> 1);
}
#undef PLM_MB_CASE
}
void plm_video_decode_block(plm_video_t *self, int block) {
int n = 0;
uint8_t *quant_matrix;
// Decode DC coefficient of intra-coded blocks
if (self->macroblock_intra) {
int predictor;
int dct_size;
// DC prediction
int plane_index = block > 3 ? block - 3 : 0;
predictor = self->dc_predictor[plane_index];
dct_size = plm_buffer_read_vlc(self->buffer, PLM_VIDEO_DCT_SIZE[plane_index]);
// Read DC coeff
if (dct_size > 0) {
int differential = plm_buffer_read(self->buffer, dct_size);
if ((differential & (1 << (dct_size - 1))) != 0) {
self->block_data[0] = predictor + differential;
}
else {
self->block_data[0] = predictor + ((-1 << dct_size) | (differential + 1));
}
}
else {
self->block_data[0] = predictor;
}
// Save predictor value
self->dc_predictor[plane_index] = self->block_data[0];
// Dequantize + premultiply
self->block_data[0] <<= (3 + 5);
quant_matrix = self->intra_quant_matrix;
n = 1;
}
else {
quant_matrix = self->non_intra_quant_matrix;
}
// Decode AC coefficients (+DC for non-intra)
int level = 0;
while (TRUE) {
int run = 0;
uint16_t coeff = plm_buffer_read_vlc_uint(self->buffer, PLM_VIDEO_DCT_COEFF);
if ((coeff == 0x0001) && (n > 0) && (plm_buffer_read(self->buffer, 1) == 0)) {
// end_of_block
break;
}
if (coeff == 0xffff) {
// escape
run = plm_buffer_read(self->buffer, 6);
level = plm_buffer_read(self->buffer, 8);
if (level == 0) {
level = plm_buffer_read(self->buffer, 8);
}
else if (level == 128) {
level = plm_buffer_read(self->buffer, 8) - 256;
}
else if (level > 128) {
level = level - 256;
}
}
else {
run = coeff >> 8;
level = coeff & 0xff;
if (plm_buffer_read(self->buffer, 1)) {
level = -level;
}
}
n += run;
if (n < 0 || n >= 64) {
return; // invalid
}
int de_zig_zagged = PLM_VIDEO_ZIG_ZAG[n];
n++;
// Dequantize, oddify, clip
level <<= 1;
if (!self->macroblock_intra) {
level += (level < 0 ? -1 : 1);
}
level = (level * self->quantizer_scale * quant_matrix[de_zig_zagged]) >> 4;
if ((level & 1) == 0) {
level -= level > 0 ? 1 : -1;
}
if (level > 2047) {
level = 2047;
}
else if (level < -2048) {
level = -2048;
}
// Save premultiplied coefficient
self->block_data[de_zig_zagged] = level * PLM_VIDEO_PREMULTIPLIER_MATRIX[de_zig_zagged];
}
// Move block to its place
uint8_t *d;
int dw;
int di;
if (block < 4) {
d = self->frame_current.y.data;
dw = self->luma_width;
di = (self->mb_row * self->luma_width + self->mb_col) << 4;
if ((block & 1) != 0) {
di += 8;
}
if ((block & 2) != 0) {
di += self->luma_width << 3;
}
}
else {
d = (block == 4) ? self->frame_current.cb.data : self->frame_current.cr.data;
dw = self->chroma_width;
di = ((self->mb_row * self->luma_width) << 2) + (self->mb_col << 3);
}
int *s = self->block_data;
int si = 0;
if (self->macroblock_intra) {
// Overwrite (no prediction)
if (n == 1) {
int clamped = plm_clamp((s[0] + 128) >> 8);
PLM_BLOCK_SET(d, di, dw, si, 8, 8, clamped);
s[0] = 0;
}
else {
plm_video_idct(s);
PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(s[si]));
memset(self->block_data, 0, sizeof(self->block_data));
}
}
else {
// Add data to the predicted macroblock
if (n == 1) {
int value = (s[0] + 128) >> 8;
PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + value));
s[0] = 0;
}
else {
plm_video_idct(s);
PLM_BLOCK_SET(d, di, dw, si, 8, 8, plm_clamp(d[di] + s[si]));
memset(self->block_data, 0, sizeof(self->block_data));
}
}
}
void plm_video_idct(int *block) {
int
b1, b3, b4, b6, b7, tmp1, tmp2, m0,
x0, x1, x2, x3, x4, y3, y4, y5, y6, y7;
// Transform columns
for (int i = 0; i < 8; ++i) {
b1 = block[4 * 8 + i];
b3 = block[2 * 8 + i] + block[6 * 8 + i];
b4 = block[5 * 8 + i] - block[3 * 8 + i];
tmp1 = block[1 * 8 + i] + block[7 * 8 + i];
tmp2 = block[3 * 8 + i] + block[5 * 8 + i];
b6 = block[1 * 8 + i] - block[7 * 8 + i];
b7 = tmp1 + tmp2;
m0 = block[0 * 8 + i];
x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7;
x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8);
x1 = m0 - b1;
x2 = (((block[2 * 8 + i] - block[6 * 8 + i]) * 362 + 128) >> 8) - b3;
x3 = m0 + b1;
y3 = x1 + x2;
y4 = x3 + b3;
y5 = x1 - x2;
y6 = x3 - b3;
y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8);
block[0 * 8 + i] = b7 + y4;
block[1 * 8 + i] = x4 + y3;
block[2 * 8 + i] = y5 - x0;
block[3 * 8 + i] = y6 - y7;
block[4 * 8 + i] = y6 + y7;
block[5 * 8 + i] = x0 + y5;
block[6 * 8 + i] = y3 - x4;
block[7 * 8 + i] = y4 - b7;
}
// Transform rows
for (int i = 0; i < 64; i += 8) {
b1 = block[4 + i];
b3 = block[2 + i] + block[6 + i];
b4 = block[5 + i] - block[3 + i];
tmp1 = block[1 + i] + block[7 + i];
tmp2 = block[3 + i] + block[5 + i];
b6 = block[1 + i] - block[7 + i];
b7 = tmp1 + tmp2;
m0 = block[0 + i];
x4 = ((b6 * 473 - b4 * 196 + 128) >> 8) - b7;
x0 = x4 - (((tmp1 - tmp2) * 362 + 128) >> 8);
x1 = m0 - b1;
x2 = (((block[2 + i] - block[6 + i]) * 362 + 128) >> 8) - b3;
x3 = m0 + b1;
y3 = x1 + x2;
y4 = x3 + b3;
y5 = x1 - x2;
y6 = x3 - b3;
y7 = -x0 - ((b4 * 473 + b6 * 196 + 128) >> 8);
block[0 + i] = (b7 + y4 + 128) >> 8;
block[1 + i] = (x4 + y3 + 128) >> 8;
block[2 + i] = (y5 - x0 + 128) >> 8;
block[3 + i] = (y6 - y7 + 128) >> 8;
block[4 + i] = (y6 + y7 + 128) >> 8;
block[5 + i] = (x0 + y5 + 128) >> 8;
block[6 + i] = (y3 - x4 + 128) >> 8;
block[7 + i] = (y4 - b7 + 128) >> 8;
}
}
void plm_frame_to_rgb(plm_frame_t *frame, uint8_t *rgb) {
// Chroma values are the same for each block of 4 pixels, so we proccess
// 2 lines at a time, 2 neighboring pixels each.
int w = frame->y.width,
w2 = w >> 1;
int y_index1 = 0,
y_index2 = w,
y_next_2_lines = w + (w - frame->width);
int c_index = 0,
c_next_line = w2 - (frame->width >> 1);
int rgb_index1 = 0,
rgb_index2 = frame->width * 3,
rgb_next_2_lines = frame->width * 3;
int cols = frame->width >> 1,
rows = frame->height >> 1;
int ccb, ccr, r, g, b;
uint8_t
*y = frame->y.data,
*cb = frame->cb.data,
*cr = frame->cr.data;
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
ccb = cb[c_index];
ccr = cr[c_index];
c_index++;
r = (ccr + ((ccr * 103) >> 8)) - 179;
g = ((ccb * 88) >> 8) - 44 + ((ccr * 183) >> 8) - 91;
b = (ccb + ((ccb * 198) >> 8)) - 227;
// Line 1
int y1 = y[y_index1++];
int y2 = y[y_index1++];
rgb[rgb_index1 + 0] = plm_clamp(y1 + r);
rgb[rgb_index1 + 1] = plm_clamp(y1 - g);
rgb[rgb_index1 + 2] = plm_clamp(y1 + b);
rgb[rgb_index1 + 3] = plm_clamp(y2 + r);
rgb[rgb_index1 + 4] = plm_clamp(y2 - g);
rgb[rgb_index1 + 5] = plm_clamp(y2 + b);
rgb_index1 += 6;
// Line 2
int y3 = y[y_index2++];
int y4 = y[y_index2++];
rgb[rgb_index2 + 0] = plm_clamp(y3 + r);
rgb[rgb_index2 + 1] = plm_clamp(y3 - g);
rgb[rgb_index2 + 2] = plm_clamp(y3 + b);
rgb[rgb_index2 + 3] = plm_clamp(y4 + r);
rgb[rgb_index2 + 4] = plm_clamp(y4 - g);
rgb[rgb_index2 + 5] = plm_clamp(y4 + b);
rgb_index2 += 6;
}
y_index1 += y_next_2_lines;
y_index2 += y_next_2_lines;
rgb_index1 += rgb_next_2_lines;
rgb_index2 += rgb_next_2_lines;
c_index += c_next_line;
}
}
// -----------------------------------------------------------------------------
// plm_audio implementation
// Based on kjmp2 by Martin J. Fiedler
// http://keyj.emphy.de/kjmp2/
static const int PLM_AUDIO_FRAME_SYNC = 0x7ff;
static const int PLM_AUDIO_MPEG_2_5 = 0x0;
static const int PLM_AUDIO_MPEG_2 = 0x2;
static const int PLM_AUDIO_MPEG_1 = 0x3;
static const int PLM_AUDIO_LAYER_III = 0x1;
static const int PLM_AUDIO_LAYER_II = 0x2;
static const int PLM_AUDIO_LAYER_I = 0x3;
static const int PLM_AUDIO_MODE_STEREO = 0x0;
static const int PLM_AUDIO_MODE_JOINT_STEREO = 0x1;
static const int PLM_AUDIO_MODE_DUAL_CHANNEL = 0x2;
static const int PLM_AUDIO_MODE_MONO = 0x3;
static const unsigned short PLM_AUDIO_SAMPLE_RATE[] = {
44100, 48000, 32000, 0, // MPEG-1
22050, 24000, 16000, 0 // MPEG-2
};
static const short PLM_AUDIO_BIT_RATE[] = {
32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, // MPEG-1
8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160 // MPEG-2
};
static const int PLM_AUDIO_SCALEFACTOR_BASE[] = {
0x02000000, 0x01965FEA, 0x01428A30
};
static const float PLM_AUDIO_SYNTHESIS_WINDOW[] = {
0.0, -0.5, -0.5, -0.5, -0.5, -0.5,
-0.5, -1.0, -1.0, -1.0, -1.0, -1.5,
-1.5, -2.0, -2.0, -2.5, -2.5, -3.0,
-3.5, -3.5, -4.0, -4.5, -5.0, -5.5,
-6.5, -7.0, -8.0, -8.5, -9.5, -10.5,
-12.0, -13.0, -14.5, -15.5, -17.5, -19.0,
-20.5, -22.5, -24.5, -26.5, -29.0, -31.5,
-34.0, -36.5, -39.5, -42.5, -45.5, -48.5,
-52.0, -55.5, -58.5, -62.5, -66.0, -69.5,
-73.5, -77.0, -80.5, -84.5, -88.0, -91.5,
-95.0, -98.0, -101.0, -104.0, 106.5, 109.0,
111.0, 112.5, 113.5, 114.0, 114.0, 113.5,
112.0, 110.5, 107.5, 104.0, 100.0, 94.5,
88.5, 81.5, 73.0, 63.5, 53.0, 41.5,
28.5, 14.5, -1.0, -18.0, -36.0, -55.5,
-76.5, -98.5, -122.0, -147.0, -173.5, -200.5,
-229.5, -259.5, -290.5, -322.5, -355.5, -389.5,
-424.0, -459.5, -495.5, -532.0, -568.5, -605.0,
-641.5, -678.0, -714.0, -749.0, -783.5, -817.0,
-849.0, -879.5, -908.5, -935.0, -959.5, -981.0,
-1000.5, -1016.0, -1028.5, -1037.5, -1042.5, -1043.5,
-1040.0, -1031.5, 1018.5, 1000.0, 976.0, 946.5,
911.0, 869.5, 822.0, 767.5, 707.0, 640.0,
565.5, 485.0, 397.0, 302.5, 201.0, 92.5,
-22.5, -144.0, -272.5, -407.0, -547.5, -694.0,
-846.0, -1003.0, -1165.0, -1331.5, -1502.0, -1675.5,
-1852.5, -2031.5, -2212.5, -2394.0, -2576.5, -2758.5,
-2939.5, -3118.5, -3294.5, -3467.5, -3635.5, -3798.5,
-3955.0, -4104.5, -4245.5, -4377.5, -4499.0, -4609.5,
-4708.0, -4792.5, -4863.5, -4919.0, -4958.0, -4979.5,
-4983.0, -4967.5, -4931.5, -4875.0, -4796.0, -4694.5,
-4569.5, -4420.0, -4246.0, -4046.0, -3820.0, -3567.0,
3287.0, 2979.5, 2644.0, 2280.5, 1888.0, 1467.5,
1018.5, 541.0, 35.0, -499.0, -1061.0, -1650.0,
-2266.5, -2909.0, -3577.0, -4270.0, -4987.5, -5727.5,
-6490.0, -7274.0, -8077.5, -8899.5, -9739.0, -10594.5,
-11464.5, -12347.0, -13241.0, -14144.5, -15056.0, -15973.5,
-16895.5, -17820.0, -18744.5, -19668.0, -20588.0, -21503.0,
-22410.5, -23308.5, -24195.0, -25068.5, -25926.5, -26767.0,
-27589.0, -28389.0, -29166.5, -29919.0, -30644.5, -31342.0,
-32009.5, -32645.0, -33247.0, -33814.5, -34346.0, -34839.5,
-35295.0, -35710.0, -36084.5, -36417.5, -36707.5, -36954.0,
-37156.5, -37315.0, -37428.0, -37496.0, 37519.0, 37496.0,
37428.0, 37315.0, 37156.5, 36954.0, 36707.5, 36417.5,
36084.5, 35710.0, 35295.0, 34839.5, 34346.0, 33814.5,
33247.0, 32645.0, 32009.5, 31342.0, 30644.5, 29919.0,
29166.5, 28389.0, 27589.0, 26767.0, 25926.5, 25068.5,
24195.0, 23308.5, 22410.5, 21503.0, 20588.0, 19668.0,
18744.5, 17820.0, 16895.5, 15973.5, 15056.0, 14144.5,
13241.0, 12347.0, 11464.5, 10594.5, 9739.0, 8899.5,
8077.5, 7274.0, 6490.0, 5727.5, 4987.5, 4270.0,
3577.0, 2909.0, 2266.5, 1650.0, 1061.0, 499.0,
-35.0, -541.0, -1018.5, -1467.5, -1888.0, -2280.5,
-2644.0, -2979.5, 3287.0, 3567.0, 3820.0, 4046.0,
4246.0, 4420.0, 4569.5, 4694.5, 4796.0, 4875.0,
4931.5, 4967.5, 4983.0, 4979.5, 4958.0, 4919.0,
4863.5, 4792.5, 4708.0, 4609.5, 4499.0, 4377.5,
4245.5, 4104.5, 3955.0, 3798.5, 3635.5, 3467.5,
3294.5, 3118.5, 2939.5, 2758.5, 2576.5, 2394.0,
2212.5, 2031.5, 1852.5, 1675.5, 1502.0, 1331.5,
1165.0, 1003.0, 846.0, 694.0, 547.5, 407.0,
272.5, 144.0, 22.5, -92.5, -201.0, -302.5,
-397.0, -485.0, -565.5, -640.0, -707.0, -767.5,
-822.0, -869.5, -911.0, -946.5, -976.0, -1000.0,
1018.5, 1031.5, 1040.0, 1043.5, 1042.5, 1037.5,
1028.5, 1016.0, 1000.5, 981.0, 959.5, 935.0,
908.5, 879.5, 849.0, 817.0, 783.5, 749.0,
714.0, 678.0, 641.5, 605.0, 568.5, 532.0,
495.5, 459.5, 424.0, 389.5, 355.5, 322.5,
290.5, 259.5, 229.5, 200.5, 173.5, 147.0,
122.0, 98.5, 76.5, 55.5, 36.0, 18.0,
1.0, -14.5, -28.5, -41.5, -53.0, -63.5,
-73.0, -81.5, -88.5, -94.5, -100.0, -104.0,
-107.5, -110.5, -112.0, -113.5, -114.0, -114.0,
-113.5, -112.5, -111.0, -109.0, 106.5, 104.0,
101.0, 98.0, 95.0, 91.5, 88.0, 84.5,
80.5, 77.0, 73.5, 69.5, 66.0, 62.5,
58.5, 55.5, 52.0, 48.5, 45.5, 42.5,
39.5, 36.5, 34.0, 31.5, 29.0, 26.5,
24.5, 22.5, 20.5, 19.0, 17.5, 15.5,
14.5, 13.0, 12.0, 10.5, 9.5, 8.5,
8.0, 7.0, 6.5, 5.5, 5.0, 4.5,
4.0, 3.5, 3.5, 3.0, 2.5, 2.5,
2.0, 2.0, 1.5, 1.5, 1.0, 1.0,
1.0, 1.0, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5
};
// Quantizer lookup, step 1: bitrate classes
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_1[2][16] = {
// 32, 48, 56, 64, 80, 96,112,128,160,192,224,256,320,384 <- bitrate
{ 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, // mono
// 16, 24, 28, 32, 40, 48, 56, 64, 80, 96,112,128,160,192 <- bitrate / chan
{ 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2 } // stereo
};
// Quantizer lookup, step 2: bitrate class, sample rate -> B2 table idx, sblimit
static const uint8_t PLM_AUDIO_QUANT_TAB_A = (27 | 64); // Table 3-B.2a: high-rate, sblimit = 27
static const uint8_t PLM_AUDIO_QUANT_TAB_B = (30 | 64); // Table 3-B.2b: high-rate, sblimit = 30
static const uint8_t PLM_AUDIO_QUANT_TAB_C = 8; // Table 3-B.2c: low-rate, sblimit = 8
static const uint8_t PLM_AUDIO_QUANT_TAB_D = 12; // Table 3-B.2d: low-rate, sblimit = 12
static const uint8_t QUANT_LUT_STEP_2[3][3] = {
// 44.1 kHz, 48 kHz, 32 kHz
{ PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_C, PLM_AUDIO_QUANT_TAB_D }, // 32 - 48 kbit/sec/ch
{ PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_A }, // 56 - 80 kbit/sec/ch
{ PLM_AUDIO_QUANT_TAB_B, PLM_AUDIO_QUANT_TAB_A, PLM_AUDIO_QUANT_TAB_B } // 96+ kbit/sec/ch
};
// Quantizer lookup, step 3: B2 table, subband -> nbal, row index
// (upper 4 bits: nbal, lower 4 bits: row index)
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP_3[3][32] = {
// Low-rate table (3-B.2c and 3-B.2d)
{
0x44,0x44,
0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34,0x34
},
// High-rate table (3-B.2a and 3-B.2b)
{
0x43,0x43,0x43,
0x42,0x42,0x42,0x42,0x42,0x42,0x42,0x42,
0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,0x31,
0x20,0x20,0x20,0x20,0x20,0x20,0x20
},
// MPEG-2 LSR table (B.2 in ISO 13818-3)
{
0x45,0x45,0x45,0x45,
0x34,0x34,0x34,0x34,0x34,0x34,0x34,
0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,
0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24,0x24
}
};
// Quantizer lookup, step 4: table row, allocation[] value -> quant table index
static const uint8_t PLM_AUDIO_QUANT_LUT_STEP4[6][16] = {
{ 0, 1, 2, 17 },
{ 0, 1, 2, 3, 4, 5, 6, 17 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17 },
{ 0, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 },
{ 0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
};
typedef struct plm_quantizer_spec_t {
unsigned short levels;
unsigned char group;
unsigned char bits;
} plm_quantizer_spec_t;
static const plm_quantizer_spec_t PLM_AUDIO_QUANT_TAB[] = {
{ 3, 1, 5 }, // 1
{ 5, 1, 7 }, // 2
{ 7, 0, 3 }, // 3
{ 9, 1, 10 }, // 4
{ 15, 0, 4 }, // 5
{ 31, 0, 5 }, // 6
{ 63, 0, 6 }, // 7
{ 127, 0, 7 }, // 8
{ 255, 0, 8 }, // 9
{ 511, 0, 9 }, // 10
{ 1023, 0, 10 }, // 11
{ 2047, 0, 11 }, // 12
{ 4095, 0, 12 }, // 13
{ 8191, 0, 13 }, // 14
{ 16383, 0, 14 }, // 15
{ 32767, 0, 15 }, // 16
{ 65535, 0, 16 } // 17
};
typedef struct plm_audio_t {
double time;
int samples_decoded;
int samplerate_index;
int bitrate_index;
int version;
int layer;
int mode;
int bound;
int v_pos;
int next_frame_data_size;
plm_buffer_t *buffer;
int destroy_buffer_when_done;
const plm_quantizer_spec_t *allocation[2][32];
uint8_t scale_factor_info[2][32];
int scale_factor[2][32][3];
int sample[2][32][3];
plm_samples_t samples;
float D[1024];
float V[1024];
float U[32];
} plm_audio_t;
int plm_audio_decode_header(plm_audio_t *self);
void plm_audio_decode_frame(plm_audio_t *self);
const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3);
void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part);
void plm_audio_matrix_transform(int s[32][3], int ss, float *d, int dp);
plm_audio_t *plm_audio_create_with_buffer(plm_buffer_t *buffer, int destroy_when_done) {
plm_audio_t *self = (plm_audio_t *)malloc(sizeof(plm_audio_t));
memset(self, 0, sizeof(plm_audio_t));
self->samples.count = PLM_AUDIO_SAMPLES_PER_FRAME;
self->buffer = buffer;
self->destroy_buffer_when_done = destroy_when_done;
self->samplerate_index = 3; // indicates 0 samplerate
memcpy(self->D, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float));
memcpy(self->D + 512, PLM_AUDIO_SYNTHESIS_WINDOW, 512 * sizeof(float));
// Decode first header
if (plm_buffer_has(self->buffer, 48)) {
self->next_frame_data_size = plm_audio_decode_header(self);
}
return self;
}
void plm_audio_destroy(plm_audio_t *self) {
if (self->destroy_buffer_when_done) {
plm_buffer_destroy(self->buffer);
}
free(self);
}
int plm_audio_get_samplerate(plm_audio_t *self) {
return PLM_AUDIO_SAMPLE_RATE[self->samplerate_index];
}
double plm_audio_get_time(plm_audio_t *self) {
return self->time;
}
void plm_audio_rewind(plm_audio_t *self) {
plm_buffer_rewind(self->buffer);
self->time = 0;
self->samples_decoded = 0;
self->next_frame_data_size = 0;
// TODO: needed?
memset(self->V, 0, sizeof(self->V));
memset(self->U, 0, sizeof(self->U));
}
plm_samples_t *plm_audio_decode(plm_audio_t *self) {
// Do we have at least enough information to decode the frame header?
if (!self->next_frame_data_size) {
if (!plm_buffer_has(self->buffer, 48)) {
return NULL;
}
self->next_frame_data_size = plm_audio_decode_header(self);
}
if (
self->next_frame_data_size == 0 ||
!plm_buffer_has(self->buffer, self->next_frame_data_size << 3)
) {
return NULL;
}
plm_audio_decode_frame(self);
self->next_frame_data_size = 0;
self->samples.time = self->time;
self->samples_decoded += PLM_AUDIO_SAMPLES_PER_FRAME;
self->time = (double)self->samples_decoded /
(double)PLM_AUDIO_SAMPLE_RATE[self->samplerate_index];
return &self->samples;
}
int plm_audio_decode_header(plm_audio_t *self) {
// Check for valid header: syncword OK, MPEG-Audio Layer 2
plm_buffer_skip_bytes(self->buffer, 0x00);
int sync = plm_buffer_read(self->buffer, 11);
self->version = plm_buffer_read(self->buffer, 2);
self->layer = plm_buffer_read(self->buffer, 2);
int hasCRC = !plm_buffer_read(self->buffer, 1);
if (
sync != PLM_AUDIO_FRAME_SYNC ||
self->version != PLM_AUDIO_MPEG_1 ||
self->layer != PLM_AUDIO_LAYER_II
) {
return FALSE; // Invalid header or unsupported version
}
self->bitrate_index = plm_buffer_read(self->buffer, 4) - 1;
if (self->bitrate_index > 13) {
return FALSE; // Invalid bit rate or 'free format'
}
self->samplerate_index = plm_buffer_read(self->buffer, 2);
if (self->samplerate_index == 3) {
return FALSE; // Invalid sample rate
}
if (self->version == PLM_AUDIO_MPEG_2) {
self->samplerate_index += 4;
self->bitrate_index += 14;
}
int padding = plm_buffer_read(self->buffer, 1);
plm_buffer_skip(self->buffer, 1); // f_private
self->mode = plm_buffer_read(self->buffer, 2);
// Parse the mode_extension, set up the stereo bound
self->bound = 0;
if (self->mode == PLM_AUDIO_MODE_JOINT_STEREO) {
self->bound = (plm_buffer_read(self->buffer, 2) + 1) << 2;
}
else {
plm_buffer_skip(self->buffer, 2);
self->bound = (self->mode == PLM_AUDIO_MODE_MONO) ? 0 : 32;
}
// Discard the last 4 bits of the header and the CRC value, if present
plm_buffer_skip(self->buffer, 4);
if (hasCRC) {
plm_buffer_skip(self->buffer, 16);
}
// Compute frame size, check if we have enough data to decode the whole
// frame.
int bitrate = PLM_AUDIO_BIT_RATE[self->bitrate_index];
int samplerate = PLM_AUDIO_SAMPLE_RATE[self->samplerate_index];
int frame_size = (144000 * bitrate / samplerate) + padding;
return frame_size - (hasCRC ? 6 : 4);
}
void plm_audio_decode_frame(plm_audio_t *self) {
// Prepare the quantizer table lookups
int tab3 = 0;
int sblimit = 0;
if (self->version == PLM_AUDIO_MPEG_2) {
// MPEG-2 (LSR)
tab3 = 2;
sblimit = 30;
}
else {
// MPEG-1
int tab1 = (self->mode == PLM_AUDIO_MODE_MONO) ? 0 : 1;
int tab2 = PLM_AUDIO_QUANT_LUT_STEP_1[tab1][self->bitrate_index];
tab3 = QUANT_LUT_STEP_2[tab2][self->samplerate_index];
sblimit = tab3 & 63;
tab3 >>= 6;
}
if (self->bound > sblimit) {
self->bound = sblimit;
}
// Read the allocation information
for (int sb = 0; sb < self->bound; sb++) {
self->allocation[0][sb] = plm_audio_read_allocation(self, sb, tab3);
self->allocation[1][sb] = plm_audio_read_allocation(self, sb, tab3);
}
for (int sb = self->bound; sb < sblimit; sb++) {
self->allocation[0][sb] =
self->allocation[1][sb] =
plm_audio_read_allocation(self, sb, tab3);
}
// Read scale factor selector information
int channels = (self->mode == PLM_AUDIO_MODE_MONO) ? 1 : 2;
for (int sb = 0; sb < sblimit; sb++) {
for (int ch = 0; ch < channels; ch++) {
if (self->allocation[ch][sb]) {
self->scale_factor_info[ch][sb] = plm_buffer_read(self->buffer, 2);
}
}
if (self->mode == PLM_AUDIO_MODE_MONO) {
self->scale_factor_info[1][sb] = self->scale_factor_info[0][sb];
}
}
// Read scale factors
for (int sb = 0; sb < sblimit; sb++) {
for (int ch = 0; ch < channels; ch++) {
if (self->allocation[ch][sb]) {
int *sf = self->scale_factor[ch][sb];
switch (self->scale_factor_info[ch][sb]) {
case 0:
sf[0] = plm_buffer_read(self->buffer, 6);
sf[1] = plm_buffer_read(self->buffer, 6);
sf[2] = plm_buffer_read(self->buffer, 6);
break;
case 1:
sf[0] =
sf[1] = plm_buffer_read(self->buffer, 6);
sf[2] = plm_buffer_read(self->buffer, 6);
break;
case 2:
sf[0] =
sf[1] =
sf[2] = plm_buffer_read(self->buffer, 6);
break;
case 3:
sf[0] = plm_buffer_read(self->buffer, 6);
sf[1] =
sf[2] = plm_buffer_read(self->buffer, 6);
break;
}
}
}
if (self->mode == PLM_AUDIO_MODE_MONO) {
self->scale_factor[1][sb][0] = self->scale_factor[0][sb][0];
self->scale_factor[1][sb][1] = self->scale_factor[0][sb][1];
self->scale_factor[1][sb][2] = self->scale_factor[0][sb][2];
}
}
// Coefficient input and reconstruction
int out_pos = 0;
for (int part = 0; part < 3; part++) {
for (int granule = 0; granule < 4; granule++) {
// Read the samples
for (int sb = 0; sb < self->bound; sb++) {
plm_audio_read_samples(self, 0, sb, part);
plm_audio_read_samples(self, 1, sb, part);
}
for (int sb = self->bound; sb < sblimit; sb++) {
plm_audio_read_samples(self, 0, sb, part);
self->sample[1][sb][0] = self->sample[0][sb][0];
self->sample[1][sb][1] = self->sample[0][sb][1];
self->sample[1][sb][2] = self->sample[0][sb][2];
}
for (int sb = sblimit; sb < 32; sb++) {
self->sample[0][sb][0] = 0;
self->sample[0][sb][1] = 0;
self->sample[0][sb][2] = 0;
self->sample[1][sb][0] = 0;
self->sample[1][sb][1] = 0;
self->sample[1][sb][2] = 0;
}
// Synthesis loop
for (int p = 0; p < 3; p++) {
// Shifting step
self->v_pos = (self->v_pos - 64) & 1023;
for (int ch = 0; ch < 2; ch++) {
plm_audio_matrix_transform(self->sample[ch], p, self->V, self->v_pos);
// Build U, windowing, calculate output
memset(self->U, 0, sizeof(self->U));
int d_index = 512 - (self->v_pos >> 1);
int v_index = (self->v_pos % 128) >> 1;
while (v_index < 1024) {
for (int i = 0; i < 32; ++i) {
self->U[i] += self->D[d_index++] * self->V[v_index++];
}
v_index += 128 - 32;
d_index += 64 - 32;
}
d_index -= (512 - 32);
v_index = (128 - 32 + 1024) - v_index;
while (v_index < 1024) {
for (int i = 0; i < 32; ++i) {
self->U[i] += self->D[d_index++] * self->V[v_index++];
}
v_index += 128 - 32;
d_index += 64 - 32;
}
// Output samples
#ifdef PLM_AUDIO_SEPARATE_CHANNELS
float *out_channel = ch == 0
? self->samples.left
: self->samples.right;
for (int j = 0; j < 32; j++) {
out_channel[out_pos + j] = self->U[j] / 2147418112.0f;
}
#else
for (int j = 0; j < 32; j++) {
self->samples.interleaved[((out_pos + j) << 1) + ch] =
self->U[j] / 2147418112.0f;
}
#endif
} // End of synthesis channel loop
out_pos += 32;
} // End of synthesis sub-block loop
} // Decoding of the granule finished
}
plm_buffer_align(self->buffer);
}
const plm_quantizer_spec_t *plm_audio_read_allocation(plm_audio_t *self, int sb, int tab3) {
int tab4 = PLM_AUDIO_QUANT_LUT_STEP_3[tab3][sb];
int qtab = PLM_AUDIO_QUANT_LUT_STEP4[tab4 & 15][plm_buffer_read(self->buffer, tab4 >> 4)];
return qtab ? (&PLM_AUDIO_QUANT_TAB[qtab - 1]) : 0;
}
void plm_audio_read_samples(plm_audio_t *self, int ch, int sb, int part) {
const plm_quantizer_spec_t *q = self->allocation[ch][sb];
int sf = self->scale_factor[ch][sb][part];
int *sample = self->sample[ch][sb];
int val = 0;
if (!q) {
// No bits allocated for this subband
sample[0] = sample[1] = sample[2] = 0;
return;
}
// Resolve scalefactor
if (sf == 63) {
sf = 0;
}
else {
int shift = (sf / 3) | 0;
sf = (PLM_AUDIO_SCALEFACTOR_BASE[sf % 3] + ((1 << shift) >> 1)) >> shift;
}
// Decode samples
int adj = q->levels;
if (q->group) {
// Decode grouped samples
val = plm_buffer_read(self->buffer, q->bits);
sample[0] = val % adj;
val /= adj;
sample[1] = val % adj;
sample[2] = val / adj;
}
else {
// Decode direct samples
sample[0] = plm_buffer_read(self->buffer, q->bits);
sample[1] = plm_buffer_read(self->buffer, q->bits);
sample[2] = plm_buffer_read(self->buffer, q->bits);
}
// Postmultiply samples
int scale = 65536 / (adj + 1);
adj = ((adj + 1) >> 1) - 1;
val = (adj - sample[0]) * scale;
sample[0] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;
val = (adj - sample[1]) * scale;
sample[1] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;
val = (adj - sample[2]) * scale;
sample[2] = (val * (sf >> 12) + ((val * (sf & 4095) + 2048) >> 12)) >> 12;
}
void plm_audio_matrix_transform(int s[32][3], int ss, float *d, int dp) {
float t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12,
t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24,
t25, t26, t27, t28, t29, t30, t31, t32, t33;
t01 = (float)(s[0][ss] + s[31][ss]); t02 = (float)(s[0][ss] - s[31][ss]) * 0.500602998235f;
t03 = (float)(s[1][ss] + s[30][ss]); t04 = (float)(s[1][ss] - s[30][ss]) * 0.505470959898f;
t05 = (float)(s[2][ss] + s[29][ss]); t06 = (float)(s[2][ss] - s[29][ss]) * 0.515447309923f;
t07 = (float)(s[3][ss] + s[28][ss]); t08 = (float)(s[3][ss] - s[28][ss]) * 0.53104259109f;
t09 = (float)(s[4][ss] + s[27][ss]); t10 = (float)(s[4][ss] - s[27][ss]) * 0.553103896034f;
t11 = (float)(s[5][ss] + s[26][ss]); t12 = (float)(s[5][ss] - s[26][ss]) * 0.582934968206f;
t13 = (float)(s[6][ss] + s[25][ss]); t14 = (float)(s[6][ss] - s[25][ss]) * 0.622504123036f;
t15 = (float)(s[7][ss] + s[24][ss]); t16 = (float)(s[7][ss] - s[24][ss]) * 0.674808341455f;
t17 = (float)(s[8][ss] + s[23][ss]); t18 = (float)(s[8][ss] - s[23][ss]) * 0.744536271002f;
t19 = (float)(s[9][ss] + s[22][ss]); t20 = (float)(s[9][ss] - s[22][ss]) * 0.839349645416f;
t21 = (float)(s[10][ss] + s[21][ss]); t22 = (float)(s[10][ss] - s[21][ss]) * 0.972568237862f;
t23 = (float)(s[11][ss] + s[20][ss]); t24 = (float)(s[11][ss] - s[20][ss]) * 1.16943993343f;
t25 = (float)(s[12][ss] + s[19][ss]); t26 = (float)(s[12][ss] - s[19][ss]) * 1.48416461631f;
t27 = (float)(s[13][ss] + s[18][ss]); t28 = (float)(s[13][ss] - s[18][ss]) * 2.05778100995f;
t29 = (float)(s[14][ss] + s[17][ss]); t30 = (float)(s[14][ss] - s[17][ss]) * 3.40760841847f;
t31 = (float)(s[15][ss] + s[16][ss]); t32 = (float)(s[15][ss] - s[16][ss]) * 10.1900081235f;
t33 = t01 + t31; t31 = (t01 - t31) * 0.502419286188f;
t01 = t03 + t29; t29 = (t03 - t29) * 0.52249861494f;
t03 = t05 + t27; t27 = (t05 - t27) * 0.566944034816f;
t05 = t07 + t25; t25 = (t07 - t25) * 0.64682178336f;
t07 = t09 + t23; t23 = (t09 - t23) * 0.788154623451f;
t09 = t11 + t21; t21 = (t11 - t21) * 1.06067768599f;
t11 = t13 + t19; t19 = (t13 - t19) * 1.72244709824f;
t13 = t15 + t17; t17 = (t15 - t17) * 5.10114861869f;
t15 = t33 + t13; t13 = (t33 - t13) * 0.509795579104f;
t33 = t01 + t11; t01 = (t01 - t11) * 0.601344886935f;
t11 = t03 + t09; t09 = (t03 - t09) * 0.899976223136f;
t03 = t05 + t07; t07 = (t05 - t07) * 2.56291544774f;
t05 = t15 + t03; t15 = (t15 - t03) * 0.541196100146f;
t03 = t33 + t11; t11 = (t33 - t11) * 1.30656296488f;
t33 = t05 + t03; t05 = (t05 - t03) * 0.707106781187f;
t03 = t15 + t11; t15 = (t15 - t11) * 0.707106781187f;
t03 += t15;
t11 = t13 + t07; t13 = (t13 - t07) * 0.541196100146f;
t07 = t01 + t09; t09 = (t01 - t09) * 1.30656296488f;
t01 = t11 + t07; t07 = (t11 - t07) * 0.707106781187f;
t11 = t13 + t09; t13 = (t13 - t09) * 0.707106781187f;
t11 += t13; t01 += t11;
t11 += t07; t07 += t13;
t09 = t31 + t17; t31 = (t31 - t17) * 0.509795579104f;
t17 = t29 + t19; t29 = (t29 - t19) * 0.601344886935f;
t19 = t27 + t21; t21 = (t27 - t21) * 0.899976223136f;
t27 = t25 + t23; t23 = (t25 - t23) * 2.56291544774f;
t25 = t09 + t27; t09 = (t09 - t27) * 0.541196100146f;
t27 = t17 + t19; t19 = (t17 - t19) * 1.30656296488f;
t17 = t25 + t27; t27 = (t25 - t27) * 0.707106781187f;
t25 = t09 + t19; t19 = (t09 - t19) * 0.707106781187f;
t25 += t19;
t09 = t31 + t23; t31 = (t31 - t23) * 0.541196100146f;
t23 = t29 + t21; t21 = (t29 - t21) * 1.30656296488f;
t29 = t09 + t23; t23 = (t09 - t23) * 0.707106781187f;
t09 = t31 + t21; t31 = (t31 - t21) * 0.707106781187f;
t09 += t31; t29 += t09; t09 += t23; t23 += t31;
t17 += t29; t29 += t25; t25 += t09; t09 += t27;
t27 += t23; t23 += t19; t19 += t31;
t21 = t02 + t32; t02 = (t02 - t32) * 0.502419286188f;
t32 = t04 + t30; t04 = (t04 - t30) * 0.52249861494f;
t30 = t06 + t28; t28 = (t06 - t28) * 0.566944034816f;
t06 = t08 + t26; t08 = (t08 - t26) * 0.64682178336f;
t26 = t10 + t24; t10 = (t10 - t24) * 0.788154623451f;
t24 = t12 + t22; t22 = (t12 - t22) * 1.06067768599f;
t12 = t14 + t20; t20 = (t14 - t20) * 1.72244709824f;
t14 = t16 + t18; t16 = (t16 - t18) * 5.10114861869f;
t18 = t21 + t14; t14 = (t21 - t14) * 0.509795579104f;
t21 = t32 + t12; t32 = (t32 - t12) * 0.601344886935f;
t12 = t30 + t24; t24 = (t30 - t24) * 0.899976223136f;
t30 = t06 + t26; t26 = (t06 - t26) * 2.56291544774f;
t06 = t18 + t30; t18 = (t18 - t30) * 0.541196100146f;
t30 = t21 + t12; t12 = (t21 - t12) * 1.30656296488f;
t21 = t06 + t30; t30 = (t06 - t30) * 0.707106781187f;
t06 = t18 + t12; t12 = (t18 - t12) * 0.707106781187f;
t06 += t12;
t18 = t14 + t26; t26 = (t14 - t26) * 0.541196100146f;
t14 = t32 + t24; t24 = (t32 - t24) * 1.30656296488f;
t32 = t18 + t14; t14 = (t18 - t14) * 0.707106781187f;
t18 = t26 + t24; t24 = (t26 - t24) * 0.707106781187f;
t18 += t24; t32 += t18;
t18 += t14; t26 = t14 + t24;
t14 = t02 + t16; t02 = (t02 - t16) * 0.509795579104f;
t16 = t04 + t20; t04 = (t04 - t20) * 0.601344886935f;
t20 = t28 + t22; t22 = (t28 - t22) * 0.899976223136f;
t28 = t08 + t10; t10 = (t08 - t10) * 2.56291544774f;
t08 = t14 + t28; t14 = (t14 - t28) * 0.541196100146f;
t28 = t16 + t20; t20 = (t16 - t20) * 1.30656296488f;
t16 = t08 + t28; t28 = (t08 - t28) * 0.707106781187f;
t08 = t14 + t20; t20 = (t14 - t20) * 0.707106781187f;
t08 += t20;
t14 = t02 + t10; t02 = (t02 - t10) * 0.541196100146f;
t10 = t04 + t22; t22 = (t04 - t22) * 1.30656296488f;
t04 = t14 + t10; t10 = (t14 - t10) * 0.707106781187f;
t14 = t02 + t22; t02 = (t02 - t22) * 0.707106781187f;
t14 += t02; t04 += t14; t14 += t10; t10 += t02;
t16 += t04; t04 += t08; t08 += t14; t14 += t28;
t28 += t10; t10 += t20; t20 += t02; t21 += t16;
t16 += t32; t32 += t04; t04 += t06; t06 += t08;
t08 += t18; t18 += t14; t14 += t30; t30 += t28;
t28 += t26; t26 += t10; t10 += t12; t12 += t20;
t20 += t24; t24 += t02;
d[dp + 48] = -t33;
d[dp + 49] = d[dp + 47] = -t21;
d[dp + 50] = d[dp + 46] = -t17;
d[dp + 51] = d[dp + 45] = -t16;
d[dp + 52] = d[dp + 44] = -t01;
d[dp + 53] = d[dp + 43] = -t32;
d[dp + 54] = d[dp + 42] = -t29;
d[dp + 55] = d[dp + 41] = -t04;
d[dp + 56] = d[dp + 40] = -t03;
d[dp + 57] = d[dp + 39] = -t06;
d[dp + 58] = d[dp + 38] = -t25;
d[dp + 59] = d[dp + 37] = -t08;
d[dp + 60] = d[dp + 36] = -t11;
d[dp + 61] = d[dp + 35] = -t18;
d[dp + 62] = d[dp + 34] = -t09;
d[dp + 63] = d[dp + 33] = -t14;
d[dp + 32] = -t05;
d[dp + 0] = t05; d[dp + 31] = -t30;
d[dp + 1] = t30; d[dp + 30] = -t27;
d[dp + 2] = t27; d[dp + 29] = -t28;
d[dp + 3] = t28; d[dp + 28] = -t07;
d[dp + 4] = t07; d[dp + 27] = -t26;
d[dp + 5] = t26; d[dp + 26] = -t23;
d[dp + 6] = t23; d[dp + 25] = -t10;
d[dp + 7] = t10; d[dp + 24] = -t15;
d[dp + 8] = t15; d[dp + 23] = -t12;
d[dp + 9] = t12; d[dp + 22] = -t19;
d[dp + 10] = t19; d[dp + 21] = -t20;
d[dp + 11] = t20; d[dp + 20] = -t13;
d[dp + 12] = t13; d[dp + 19] = -t24;
d[dp + 13] = t24; d[dp + 18] = -t31;
d[dp + 14] = t31; d[dp + 17] = -t02;
d[dp + 15] = t02; d[dp + 16] = 0.0;
};
#endif // PL_MPEG_IMPLEMENTATION
You can’t perform that action at this time.