Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
tree: 5d9fb8ffeb
Fetching contributors…

Cannot retrieve contributors at this time

file 2659 lines (2486 sloc) 53.278 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991 by AT&T.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/

/* Please send bug reports to
David M. Gay
AT&T Bell Laboratories, Room 2C-463
600 Mountain Avenue
Murray Hill, NJ 07974-2070
U.S.A.
dmg@research.att.com or research!dmg
*/

/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
*
* This strtod returns a nearest machine number to the input decimal
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
* broken by the IEEE round-even rule. Otherwise ties are broken by
* biased rounding (add half and chop).
*
* Inspired loosely by William D. Clinger's paper "How to Read Floating
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
*
* Modifications:
*
* 1. We only require IEEE, IBM, or VAX double-precision
* arithmetic (not IEEE double-extended).
* 2. We get by with floating-point arithmetic in a case that
* Clinger missed -- when we're computing d * 10^n
* for a small integer d and the integer n is not too
* much larger than 22 (the maximum integer k for which
* we can represent 10^k exactly), we may be able to
* compute (d*10^k) * 10^(e-k) with just one roundoff.
* 3. Rather than a bit-at-a-time adjustment of the binary
* result in the hard case, we use floating-point
* arithmetic to determine the adjustment to within
* one bit; only in really hard cases do we need to
* compute a second residual.
* 4. Because of 3., we don't need a large table of powers of 10
* for ten-to-e (just some small tables, e.g. of 10^k
* for 0 <= k <= 22).
*/

/*
* #define IEEE_LITTLE_ENDIAN for IEEE-arithmetic machines where the least
* significant byte has the lowest address.
* #define IEEE_BIG_ENDIAN for IEEE-arithmetic machines where the most
* significant byte has the lowest address.
* #define Long int on machines with 32-bit ints and 64-bit longs.
* #define Sudden_Underflow for IEEE-format machines without gradual
* underflow (i.e., that flush to zero on underflow).
* #define IBM for IBM mainframe-style floating-point arithmetic.
* #define VAX for VAX-style floating-point arithmetic.
* #define Unsigned_Shifts if >> does treats its left operand as unsigned.
* #define No_leftright to omit left-right logic in fast floating-point
* computation of dtoa.
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
* that use extended-precision instructions to compute rounded
* products and quotients) with IBM.
* #define ROUND_BIASED for IEEE-format with biased rounding.
* #define Inaccurate_Divide for IEEE-format with correctly rounded
* products but inaccurate quotients, e.g., for Intel i860.
* #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
* integer arithmetic. Whether this speeds things up or slows things
* down depends on the machine and the number being converted.
* #define KR_headers for old-style C function headers.
* #define Bad_float_h if your system lacks a float.h or if it does not
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
* if memory is available and otherwise does something you deem
* appropriate. If MALLOC is undefined, malloc will be invoked
* directly -- and assumed always to succeed.
*/

/* $Id$ */

#include <zend_operators.h>
#include <zend_strtod.h>

#ifdef ZTS
#include <TSRM.h>
#endif

#include <stddef.h>
#include <stdio.h>
#include <ctype.h>
#include <stdarg.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#ifdef HAVE_LOCALE_H
#include <locale.h>
#endif

#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif

#if defined(HAVE_INTTYPES_H)
#include <inttypes.h>
#elif defined(HAVE_STDINT_H)
#include <stdint.h>
#endif

#ifndef HAVE_INT32_T
# if SIZEOF_INT == 4
typedef int int32_t;
# elif SIZEOF_LONG == 4
typedef long int int32_t;
# endif
#endif

#ifndef HAVE_UINT32_T
# if SIZEOF_INT == 4
typedef unsigned int uint32_t;
# elif SIZEOF_LONG == 4
typedef unsigned long int uint32_t;
# endif
#endif

#if (defined(__APPLE__) || defined(__APPLE_CC__)) && (defined(__BIG_ENDIAN__) || defined(__LITTLE_ENDIAN__))
# if defined(__LITTLE_ENDIAN__)
# undef WORDS_BIGENDIAN
# else
# if defined(__BIG_ENDIAN__)
# define WORDS_BIGENDIAN
# endif
# endif
#endif

#ifdef WORDS_BIGENDIAN
#define IEEE_BIG_ENDIAN
#else
#define IEEE_LITTLE_ENDIAN
#endif

#if defined(__arm__) && !defined(__VFP_FP__)
/*
* * Although the CPU is little endian the FP has different
* * byte and word endianness. The byte order is still little endian
* * but the word order is big endian.
* */
#define IEEE_BIG_ENDIAN
#undef IEEE_LITTLE_ENDIAN
#endif

#ifdef __vax__
#define VAX
#undef IEEE_LITTLE_ENDIAN
#endif

#if defined(_MSC_VER)
#define int32_t __int32
#define uint32_t unsigned __int32
#define IEEE_LITTLE_ENDIAN
#endif

#define Long int32_t
#define ULong uint32_t

#ifdef __cplusplus
#include "malloc.h"
#include "memory.h"
#else
#ifndef KR_headers
#include "stdlib.h"
#include "string.h"
#include "locale.h"
#else
#include "malloc.h"
#include "memory.h"
#endif
#endif

#ifdef MALLOC
#ifdef KR_headers
extern char *MALLOC();
#else
extern void *MALLOC(size_t);
#endif
#else
#define MALLOC malloc
#endif

#include "ctype.h"
#include "errno.h"

#ifdef Bad_float_h
#ifdef IEEE_BIG_ENDIAN
#define IEEE_ARITHMETIC
#endif
#ifdef IEEE_LITTLE_ENDIAN
#define IEEE_ARITHMETIC
#endif

#ifdef IEEE_ARITHMETIC
#define DBL_DIG 15
#define DBL_MAX_10_EXP 308
#define DBL_MAX_EXP 1024
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7976931348623157e+308
#endif

#ifdef IBM
#define DBL_DIG 16
#define DBL_MAX_10_EXP 75
#define DBL_MAX_EXP 63
#define FLT_RADIX 16
#define FLT_ROUNDS 0
#define DBL_MAX 7.2370055773322621e+75
#endif

#ifdef VAX
#define DBL_DIG 16
#define DBL_MAX_10_EXP 38
#define DBL_MAX_EXP 127
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7014118346046923e+38
#endif


#ifndef LONG_MAX
#define LONG_MAX 2147483647
#endif
#else
#include "float.h"
#endif
#ifndef __MATH_H__
#include "math.h"
#endif

BEGIN_EXTERN_C()

#ifndef CONST
#ifdef KR_headers
#define CONST /* blank */
#else
#define CONST const
#endif
#endif

#ifdef Unsigned_Shifts
#define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
#else
#define Sign_Extend(a,b) /*no-op*/
#endif

#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
defined(IBM) != 1
Exactly one of IEEE_LITTLE_ENDIAN IEEE_BIG_ENDIAN, VAX, or
IBM should be defined.
#endif

typedef union {
double d;
ULong ul[2];
} _double;
#define value(x) ((x).d)
#ifdef IEEE_LITTLE_ENDIAN
#define word0(x) ((x).ul[1])
#define word1(x) ((x).ul[0])
#else
#define word0(x) ((x).ul[0])
#define word1(x) ((x).ul[1])
#endif

/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
*/
#if defined(IEEE_LITTLE_ENDIAN) + defined(VAX) + defined(__arm__)
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
((unsigned short *)a)[0] = (unsigned short)c, a++)
#else
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
((unsigned short *)a)[1] = (unsigned short)c, a++)
#endif

/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */

#if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
#define Exp_shift 20
#define Exp_shift1 20
#define Exp_msk1 0x100000
#define Exp_msk11 0x100000
#define Exp_mask 0x7ff00000
#define P 53
#define Bias 1023
#define IEEE_Arith
#define Emin (-1022)
#define Exp_1 0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask 0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask 0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
#else
#undef Sudden_Underflow
#define Sudden_Underflow
#ifdef IBM
#define Exp_shift 24
#define Exp_shift1 24
#define Exp_msk1 0x1000000
#define Exp_msk11 0x1000000
#define Exp_mask 0x7f000000
#define P 14
#define Bias 65
#define Exp_1 0x41000000
#define Exp_11 0x41000000
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
#define Frac_mask 0xffffff
#define Frac_mask1 0xffffff
#define Bletch 4
#define Ten_pmax 22
#define Bndry_mask 0xefffff
#define Bndry_mask1 0xffffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 4
#define Tiny0 0x100000
#define Tiny1 0
#define Quick_max 14
#define Int_max 15
#else /* VAX */
#define Exp_shift 23
#define Exp_shift1 7
#define Exp_msk1 0x80
#define Exp_msk11 0x800000
#define Exp_mask 0x7f80
#define P 56
#define Bias 129
#define Exp_1 0x40800000
#define Exp_11 0x4080
#define Ebits 8
#define Frac_mask 0x7fffff
#define Frac_mask1 0xffff007f
#define Ten_pmax 24
#define Bletch 2
#define Bndry_mask 0xffff007f
#define Bndry_mask1 0xffff007f
#define LSB 0x10000
#define Sign_bit 0x8000
#define Log2P 1
#define Tiny0 0x80
#define Tiny1 0
#define Quick_max 15
#define Int_max 15
#endif
#endif

#ifndef IEEE_Arith
#define ROUND_BIASED
#endif

#ifdef RND_PRODQUOT
#define rounded_product(a,b) a = rnd_prod(a, b)
#define rounded_quotient(a,b) a = rnd_quot(a, b)
#ifdef KR_headers
extern double rnd_prod(), rnd_quot();
#else
extern double rnd_prod(double, double), rnd_quot(double, double);
#endif
#else
#define rounded_product(a,b) a *= b
#define rounded_quotient(a,b) a /= b
#endif

#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff

#ifndef Just_16
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
* * This makes some inner loops simpler and sometimes saves work
* * during multiplications, but it often seems to make things slightly
* * slower. Hence the default is now to store 32 bits per Long.
* */
#ifndef Pack_32
#define Pack_32
#endif
#endif

#define Kmax 15

struct Bigint {
struct Bigint *next;
int k, maxwds, sign, wds;
ULong x[1];
};

typedef struct Bigint Bigint;

/* static variables, multithreading fun! */
static Bigint *freelist[Kmax+1];
static Bigint *p5s;

static void destroy_freelist(void);

#ifdef ZTS

static MUTEX_T dtoa_mutex;
static MUTEX_T pow5mult_mutex;

#define _THREAD_PRIVATE_MUTEX_LOCK(x) tsrm_mutex_lock(x);
#define _THREAD_PRIVATE_MUTEX_UNLOCK(x) tsrm_mutex_unlock(x);

#else

#define _THREAD_PRIVATE_MUTEX_LOCK(x)
#define _THREAD_PRIVATE_MUTEX_UNLOCK(x)

#endif /* ZTS */

#ifdef DEBUG
static void Bug(const char *message) {
fprintf(stderr, "%s\n", message);
}
#endif

ZEND_API int zend_startup_strtod(void) /* {{{ */
{
#ifdef ZTS
dtoa_mutex = tsrm_mutex_alloc();
pow5mult_mutex = tsrm_mutex_alloc();
#endif
return 1;
}
/* }}} */
ZEND_API int zend_shutdown_strtod(void) /* {{{ */
{
destroy_freelist();
#ifdef ZTS
tsrm_mutex_free(dtoa_mutex);
dtoa_mutex = NULL;

tsrm_mutex_free(pow5mult_mutex);
pow5mult_mutex = NULL;
#endif
return 1;
}
/* }}} */

static Bigint * Balloc(int k)
{
int x;
Bigint *rv;

if (k > Kmax) {
zend_error(E_ERROR, "Balloc() allocation exceeds list boundary");
}

_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
if ((rv = freelist[k])) {
freelist[k] = rv->next;
} else {
x = 1 << k;
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(Long));
if (!rv) {
_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
zend_error(E_ERROR, "Balloc() failed to allocate memory");
}
rv->k = k;
rv->maxwds = x;
}
_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
rv->sign = rv->wds = 0;
return rv;
}

static void Bfree(Bigint *v)
{
if (v) {
_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
v->next = freelist[v->k];
freelist[v->k] = v;
_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);
}
}

#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
y->wds*sizeof(Long) + 2*sizeof(int))

/* return value is only used as a simple string, so mis-aligned parts
* inside the Bigint are not at risk on strict align architectures
*/
static char * rv_alloc(int i) {
int j, k, *r;

j = sizeof(ULong);
for(k = 0;
sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
j <<= 1) {
k++;
}
r = (int*)Balloc(k);
*r = k;
return (char *)(r+1);
}


static char * nrv_alloc(char *s, char **rve, int n)
{
char *rv, *t;

t = rv = rv_alloc(n);
while((*t = *s++) !=0) {
t++;
}
if (rve) {
*rve = t;
}
return rv;
}

static Bigint * multadd(Bigint *b, int m, int a) /* multiply by m and add a */
{
int i, wds;
ULong *x, y;
#ifdef Pack_32
ULong xi, z;
#endif
Bigint *b1;

wds = b->wds;
x = b->x;
i = 0;
do {
#ifdef Pack_32
xi = *x;
y = (xi & 0xffff) * m + a;
z = (xi >> 16) * m + (y >> 16);
a = (int)(z >> 16);
*x++ = (z << 16) + (y & 0xffff);
#else
y = *x * m + a;
a = (int)(y >> 16);
*x++ = y & 0xffff;
#endif
}
while(++i < wds);
if (a) {
if (wds >= b->maxwds) {
b1 = Balloc(b->k+1);
Bcopy(b1, b);
Bfree(b);
b = b1;
}
b->x[wds++] = a;
b->wds = wds;
}
return b;
}

static int hi0bits(ULong x)
{
int k = 0;

if (!(x & 0xffff0000)) {
k = 16;
x <<= 16;
}
if (!(x & 0xff000000)) {
k += 8;
x <<= 8;
}
if (!(x & 0xf0000000)) {
k += 4;
x <<= 4;
}
if (!(x & 0xc0000000)) {
k += 2;
x <<= 2;
}
if (!(x & 0x80000000)) {
k++;
if (!(x & 0x40000000)) {
return 32;
}
}
return k;
}

static int lo0bits(ULong *y)
{
int k;
ULong x = *y;

if (x & 7) {
if (x & 1) {
return 0;
}
if (x & 2) {
*y = x >> 1;
return 1;
}
*y = x >> 2;
return 2;
}
k = 0;
if (!(x & 0xffff)) {
k = 16;
x >>= 16;
}
if (!(x & 0xff)) {
k += 8;
x >>= 8;
}
if (!(x & 0xf)) {
k += 4;
x >>= 4;
}
if (!(x & 0x3)) {
k += 2;
x >>= 2;
}
if (!(x & 1)) {
k++;
x >>= 1;
if (!(x & 1)) {
return 32;
}
}
*y = x;
return k;
}

static Bigint * i2b(int i)
{
Bigint *b;

b = Balloc(1);
b->x[0] = i;
b->wds = 1;
return b;
}

static Bigint * mult(Bigint *a, Bigint *b)
{
Bigint *c;
int k, wa, wb, wc;
ULong carry, y, z;
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
#ifdef Pack_32
ULong z2;
#endif

if (a->wds < b->wds) {
c = a;
a = b;
b = c;
}
k = a->k;
wa = a->wds;
wb = b->wds;
wc = wa + wb;
if (wc > a->maxwds) {
k++;
}
c = Balloc(k);
for(x = c->x, xa = x + wc; x < xa; x++) {
*x = 0;
}
xa = a->x;
xae = xa + wa;
xb = b->x;
xbe = xb + wb;
xc0 = c->x;
#ifdef Pack_32
for(; xb < xbe; xb++, xc0++) {
if ((y = *xb & 0xffff)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
carry = z >> 16;
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
carry = z2 >> 16;
Storeinc(xc, z2, z);
}
while(x < xae);
*xc = carry;
}
if ((y = *xb >> 16)) {
x = xa;
xc = xc0;
carry = 0;
z2 = *xc;
do {
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
carry = z >> 16;
Storeinc(xc, z, z2);
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
carry = z2 >> 16;
}
while(x < xae);
*xc = z2;
}
}
#else
for(; xb < xbe; xc0++) {
if (y = *xb++) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * y + *xc + carry;
carry = z >> 16;
*xc++ = z & 0xffff;
}
while(x < xae);
*xc = carry;
}
}
#endif
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
c->wds = wc;
return c;
}

static Bigint * s2b (CONST char *s, int nd0, int nd, ULong y9)
{
Bigint *b;
int i, k;
Long x, y;

x = (nd + 8) / 9;
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
b = Balloc(k);
b->x[0] = y9;
b->wds = 1;
#else
b = Balloc(k+1);
b->x[0] = y9 & 0xffff;
b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif

i = 9;
if (9 < nd0) {
s += 9;
do b = multadd(b, 10, *s++ - '0');
while(++i < nd0);
s++;
} else {
s += 10;
}
for(; i < nd; i++) {
b = multadd(b, 10, *s++ - '0');
}
return b;
}

static Bigint * pow5mult(Bigint *b, int k)
{
Bigint *b1, *p5, *p51;
int i;
static int p05[3] = { 5, 25, 125 };

_THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
if ((i = k & 3)) {
b = multadd(b, p05[i-1], 0);
}

if (!(k >>= 2)) {
_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
return b;
}
if (!(p5 = p5s)) {
/* first time */
p5 = p5s = i2b(625);
p5->next = 0;
}
for(;;) {
if (k & 1) {
b1 = mult(b, p5);
Bfree(b);
b = b1;
}
if (!(k >>= 1)) {
break;
}
if (!(p51 = p5->next)) {
if (!(p51 = p5->next)) {
p51 = p5->next = mult(p5,p5);
p51->next = 0;
}
}
p5 = p51;
}
_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);
return b;
}


static Bigint *lshift(Bigint *b, int k)
{
int i, k1, n, n1;
Bigint *b1;
ULong *x, *x1, *xe, z;

#ifdef Pack_32
n = k >> 5;
#else
n = k >> 4;
#endif
k1 = b->k;
n1 = n + b->wds + 1;
for(i = b->maxwds; n1 > i; i <<= 1) {
k1++;
}
b1 = Balloc(k1);
x1 = b1->x;
for(i = 0; i < n; i++) {
*x1++ = 0;
}
x = b->x;
xe = x + b->wds;
#ifdef Pack_32
if (k &= 0x1f) {
k1 = 32 - k;
z = 0;
do {
*x1++ = *x << k | z;
z = *x++ >> k1;
}
while(x < xe);
if ((*x1 = z)) {
++n1;
}
}
#else
if (k &= 0xf) {
k1 = 16 - k;
z = 0;
do {
*x1++ = *x << k & 0xffff | z;
z = *x++ >> k1;
}
while(x < xe);
if (*x1 = z) {
++n1;
}
}
#endif
else do
*x1++ = *x++;
while(x < xe);
b1->wds = n1 - 1;
Bfree(b);
return b1;
}

static int cmp(Bigint *a, Bigint *b)
{
ULong *xa, *xa0, *xb, *xb0;
int i, j;

i = a->wds;
j = b->wds;
#ifdef DEBUG
if (i > 1 && !a->x[i-1])
Bug("cmp called with a->x[a->wds-1] == 0");
if (j > 1 && !b->x[j-1])
Bug("cmp called with b->x[b->wds-1] == 0");
#endif
if (i -= j)
return i;
xa0 = a->x;
xa = xa0 + j;
xb0 = b->x;
xb = xb0 + j;
for(;;) {
if (*--xa != *--xb)
return *xa < *xb ? -1 : 1;
if (xa <= xa0)
break;
}
return 0;
}


static Bigint * diff(Bigint *a, Bigint *b)
{
Bigint *c;
int i, wa, wb;
Long borrow, y; /* We need signed shifts here. */
ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef Pack_32
Long z;
#endif

i = cmp(a,b);
if (!i) {
c = Balloc(0);
c->wds = 1;
c->x[0] = 0;
return c;
}
if (i < 0) {
c = a;
a = b;
b = c;
i = 1;
} else {
i = 0;
}
c = Balloc(a->k);
c->sign = i;
wa = a->wds;
xa = a->x;
xae = xa + wa;
wb = b->wds;
xb = b->x;
xbe = xb + wb;
xc = c->x;
borrow = 0;
#ifdef Pack_32
do {
y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(xc, z, y);
} while(xb < xbe);
while(xa < xae) {
y = (*xa & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*xa++ >> 16) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(xc, z, y);
}
#else
do {
y = *xa++ - *xb++ + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*xc++ = y & 0xffff;
} while(xb < xbe);
while(xa < xae) {
y = *xa++ + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*xc++ = y & 0xffff;
}
#endif
while(!*--xc) {
wa--;
}
c->wds = wa;
return c;
}

static double ulp (double _x)
{
volatile _double x;
register Long L;
volatile _double a;

value(x) = _x;
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
if (L > 0) {
#endif
#ifdef IBM
L |= Exp_msk1 >> 4;
#endif
word0(a) = L;
word1(a) = 0;
#ifndef Sudden_Underflow
}
else {
L = -L >> Exp_shift;
if (L < Exp_shift) {
word0(a) = 0x80000 >> L;
word1(a) = 0;
}
else {
word0(a) = 0;
L -= Exp_shift;
word1(a) = L >= 31 ? 1 : 1 << (31 - L);
}
}
#endif
return value(a);
}

static double
b2d
#ifdef KR_headers
(a, e) Bigint *a; int *e;
#else
(Bigint *a, int *e)
#endif
{
ULong *xa, *xa0, w, y, z;
int k;
volatile _double d;
#ifdef VAX
ULong d0, d1;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

xa0 = a->x;
xa = xa0 + a->wds;
y = *--xa;
#ifdef DEBUG
if (!y) Bug("zero y in b2d");
#endif
k = hi0bits(y);
*e = 32 - k;
#ifdef Pack_32
if (k < Ebits) {
d0 = Exp_1 | y >> (Ebits - k);
w = xa > xa0 ? *--xa : 0;
d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
if (k -= Ebits) {
d0 = Exp_1 | y << k | z >> (32 - k);
y = xa > xa0 ? *--xa : 0;
d1 = z << k | y >> (32 - k);
}
else {
d0 = Exp_1 | y;
d1 = z;
}
#else
if (k < Ebits + 16) {
z = xa > xa0 ? *--xa : 0;
d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
w = xa > xa0 ? *--xa : 0;
y = xa > xa0 ? *--xa : 0;
d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
w = xa > xa0 ? *--xa : 0;
k -= Ebits + 16;
d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
y = xa > xa0 ? *--xa : 0;
d1 = w << k + 16 | y << k;
#endif
ret_d:
#ifdef VAX
word0(d) = d0 >> 16 | d0 << 16;
word1(d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
return value(d);
}


static Bigint * d2b(double _d, int *e, int *bits)
{
Bigint *b;
int de, i, k;
ULong *x, y, z;
volatile _double d;
#ifdef VAX
ULong d0, d1;
#endif

value(d) = _d;
#ifdef VAX
d0 = word0(d) >> 16 | word0(d) << 16;
d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif

#ifdef Pack_32
b = Balloc(1);
#else
b = Balloc(2);
#endif
x = b->x;

z = d0 & Frac_mask;
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
de = (int)(d0 >> Exp_shift);
#ifndef IBM
z |= Exp_msk11;
#endif
#else
if ((de = (int)(d0 >> Exp_shift)))
z |= Exp_msk1;
#endif
#ifdef Pack_32
if ((y = d1)) {
if ((k = lo0bits(&y))) {
x[0] = y | (z << (32 - k));
z >>= k;
} else {
x[0] = y;
}
i = b->wds = (x[1] = z) ? 2 : 1;
} else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
x[0] = z;
i = b->wds = 1;
k += 32;
}
#else
if (y = d1) {
if (k = lo0bits(&y)) {
if (k >= 16) {
x[0] = y | z << 32 - k & 0xffff;
x[1] = z >> k - 16 & 0xffff;
x[2] = z >> k;
i = 2;
} else {
x[0] = y & 0xffff;
x[1] = y >> 16 | z << 16 - k & 0xffff;
x[2] = z >> k & 0xffff;
x[3] = z >> k+16;
i = 3;
}
} else {
x[0] = y & 0xffff;
x[1] = y >> 16;
x[2] = z & 0xffff;
x[3] = z >> 16;
i = 3;
}
} else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
if (k >= 16) {
x[0] = z;
i = 0;
} else {
x[0] = z & 0xffff;
x[1] = z >> 16;
i = 1;
}
k += 32;
}
while(!x[i])
--i;
b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
if (de) {
#endif
#ifdef IBM
*e = (de - Bias - (P-1) << 2) + k;
*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
*e = de - Bias - (P-1) + k;
*bits = P - k;
#endif
#ifndef Sudden_Underflow
} else {
*e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
*bits = 32*i - hi0bits(x[i-1]);
#else
*bits = (i+2)*16 - hi0bits(x[i]);
#endif
}
#endif
return b;
}
#undef d0
#undef d1


static double ratio (Bigint *a, Bigint *b)
{
volatile _double da, db;
int k, ka, kb;

value(da) = b2d(a, &ka);
value(db) = b2d(b, &kb);
#ifdef Pack_32
k = ka - kb + 32*(a->wds - b->wds);
#else
k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
if (k > 0) {
word0(da) += (k >> 2)*Exp_msk1;
if (k &= 3) {
da *= 1 << k;
}
} else {
k = -k;
word0(db) += (k >> 2)*Exp_msk1;
if (k &= 3)
db *= 1 << k;
}
#else
if (k > 0) {
word0(da) += k*Exp_msk1;
} else {
k = -k;
word0(db) += k*Exp_msk1;
}
#endif
return value(da) / value(db);
}

static CONST double
tens[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
#ifdef VAX
, 1e23, 1e24
#endif
};

#ifdef IEEE_Arith
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
#define n_bigtens 5
#else
#ifdef IBM
static CONST double bigtens[] = { 1e16, 1e32, 1e64 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
#define n_bigtens 3
#else
static CONST double bigtens[] = { 1e16, 1e32 };
static CONST double tinytens[] = { 1e-16, 1e-32 };
#define n_bigtens 2
#endif
#endif


static int quorem(Bigint *b, Bigint *S)
{
int n;
Long borrow, y;
ULong carry, q, ys;
ULong *bx, *bxe, *sx, *sxe;
#ifdef Pack_32
Long z;
ULong si, zs;
#endif

n = S->wds;
#ifdef DEBUG
/*debug*/ if (b->wds > n)
/*debug*/ Bug("oversize b in quorem");
#endif
if (b->wds < n)
return 0;
sx = S->x;
sxe = sx + --n;
bx = b->x;
bxe = bx + n;
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
#ifdef DEBUG
/*debug*/ if (q > 9)
/*debug*/ Bug("oversized quotient in quorem");
#endif
if (q) {
borrow = 0;
carry = 0;
do {
#ifdef Pack_32
si = *sx++;
ys = (si & 0xffff) * q + carry;
zs = (si >> 16) * q + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*bx >> 16) - (zs & 0xffff) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(bx, z, y);
#else
ys = *sx++ * q + carry;
carry = ys >> 16;
y = *bx - (ys & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*bx++ = y & 0xffff;
#endif
}
while(sx <= sxe);
if (!*bxe) {
bx = b->x;
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
if (cmp(b, S) >= 0) {
q++;
borrow = 0;
carry = 0;
bx = b->x;
sx = S->x;
do {
#ifdef Pack_32
si = *sx++;
ys = (si & 0xffff) + carry;
zs = (si >> 16) + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
z = (*bx >> 16) - (zs & 0xffff) + borrow;
borrow = z >> 16;
Sign_Extend(borrow, z);
Storeinc(bx, z, y);
#else
ys = *sx++ + carry;
carry = ys >> 16;
y = *bx - (ys & 0xffff) + borrow;
borrow = y >> 16;
Sign_Extend(borrow, y);
*bx++ = y & 0xffff;
#endif
}
while(sx <= sxe);
bx = b->x;
bxe = bx + n;
if (!*bxe) {
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
return q;
}

static void destroy_freelist(void)
{
int i;
Bigint *tmp;

_THREAD_PRIVATE_MUTEX_LOCK(dtoa_mutex);
for (i = 0; i <= Kmax; i++) {
Bigint **listp = &freelist[i];
while ((tmp = *listp) != NULL) {
*listp = tmp->next;
free(tmp);
}
freelist[i] = NULL;
}
_THREAD_PRIVATE_MUTEX_UNLOCK(dtoa_mutex);

}


ZEND_API void zend_freedtoa(char *s)
{
Bigint *b = (Bigint *)((int *)s - 1);
b->maxwds = 1 << (b->k = *(int*)b);
Bfree(b);
}

/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
*
* Inspired by "How to Print Floating-Point Numbers Accurately" by
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
*
* Modifications:
* 1. Rather than iterating, we use a simple numeric overestimate
* to determine k = floor(log10(d)). We scale relevant
* quantities using O(log2(k)) rather than O(k) multiplications.
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
* try to generate digits strictly left to right. Instead, we
* compute with fewer bits and propagate the carry if necessary
* when rounding the final digit up. This is often faster.
* 3. Under the assumption that input will be rounded nearest,
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
* That is, we allow equality in stopping tests when the
* round-nearest rule will give the same floating-point value
* as would satisfaction of the stopping test with strict
* inequality.
* 4. We remove common factors of powers of 2 from relevant
* quantities.
* 5. When converting floating-point integers less than 1e16,
* we use floating-point arithmetic rather than resorting
* to multiple-precision integers.
* 6. When asked to produce fewer than 15 digits, we first try
* to get by with floating-point arithmetic; we resort to
* multiple-precision integer arithmetic only if we cannot
* guarantee that the floating-point calculation has given
* the correctly rounded result. For k requested digits and
* "uniformly" distributed input, the probability is
* something like 10^(k-15) that we must resort to the Long
* calculation.
*/

ZEND_API char * zend_dtoa(double _d, int mode, int ndigits, int *decpt, int *sign, char **rve)
{
 /* Arguments ndigits, decpt, sign are similar to those
of ecvt and fcvt; trailing zeros are suppressed from
the returned string. If not null, *rve is set to point
to the end of the return value. If d is +-Infinity or NaN,
then *decpt is set to 9999.

mode:
0 ==> shortest string that yields d when read in
and rounded to nearest.
1 ==> like 0, but with Steele & White stopping rule;
e.g. with IEEE P754 arithmetic , mode 0 gives
1e23 whereas mode 1 gives 9.999999999999999e22.
2 ==> max(1,ndigits) significant digits. This gives a
return value similar to that of ecvt, except
that trailing zeros are suppressed.
3 ==> through ndigits past the decimal point. This
gives a return value similar to that from fcvt,
except that trailing zeros are suppressed, and
ndigits can be negative.
4-9 should give the same return values as 2-3, i.e.,
4 <= mode <= 9 ==> same return as mode
2 + (mode & 1). These modes are mainly for
debugging; often they run slower but sometimes
faster than modes 2-3.
4,5,8,9 ==> left-to-right digit generation.
6-9 ==> don't try fast floating-point estimate
(if applicable).

Values of mode other than 0-9 are treated as mode 0.

Sufficient space is allocated to the return value
to hold the suppressed trailing zeros.
*/

int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1,
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
spec_case = 0, try_quick;
Long L;
#ifndef Sudden_Underflow
int denorm;
ULong x;
#endif
Bigint *b, *b1, *delta, *mlo, *mhi, *S, *tmp;
double ds;
char *s, *s0;
volatile _double d, d2, eps;

value(d) = _d;

if (word0(d) & Sign_bit) {
/* set sign for everything, including 0's and NaNs */
*sign = 1;
word0(d) &= ~Sign_bit; /* clear sign bit */
}
else
*sign = 0;

#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
if ((word0(d) & Exp_mask) == Exp_mask)
#else
if (word0(d) == 0x8000)
#endif
{
/* Infinity or NaN */
*decpt = 9999;
#ifdef IEEE_Arith
if (!word1(d) && !(word0(d) & 0xfffff))
return nrv_alloc("Infinity", rve, 8);
#endif
return nrv_alloc("NaN", rve, 3);
}
#endif
#ifdef IBM
value(d) += 0; /* normalize */
#endif
if (!value(d)) {
*decpt = 1;
return nrv_alloc("0", rve, 1);
}

b = d2b(value(d), &be, &bbits);
#ifdef Sudden_Underflow
i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
if ((i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
#endif
value(d2) = value(d);
word0(d2) &= Frac_mask1;
word0(d2) |= Exp_11;
#ifdef IBM
if (j = 11 - hi0bits(word0(d2) & Frac_mask))
value(d2) /= 1 << j;
#endif

/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
*
* This suggests computing an approximation k to log10(d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
*
* We want k to be too large rather than too small.
* The error in the first-order Taylor series approximation
* is in our favor, so we just round up the constant enough
* to compensate for any error in the multiplication of
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
* adding 1e-13 to the constant term more than suffices.
* Hence we adjust the constant term to 0.1760912590558.
* (We could get a more accurate k by invoking log10,
* but this is probably not worthwhile.)
*/

i -= Bias;
#ifdef IBM
i <<= 2;
i += j;
#endif
#ifndef Sudden_Underflow
denorm = 0;
}
else {
/* d is denormalized */

i = bbits + be + (Bias + (P-1) - 1);
x = i > 32 ? (word0(d) << (64 - i)) | (word1(d) >> (i - 32))
: (word1(d) << (32 - i));
value(d2) = x;
word0(d2) -= 31*Exp_msk1; /* adjust exponent */
i -= (Bias + (P-1) - 1) + 1;
denorm = 1;
}
#endif
ds = (value(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
k = (int)ds;
if (ds < 0. && ds != k)
k--; /* want k = floor(ds) */
k_check = 1;
if (k >= 0 && k <= Ten_pmax) {
if (value(d) < tens[k])
k--;
k_check = 0;
}
j = bbits - i - 1;
if (j >= 0) {
b2 = 0;
s2 = j;
}
else {
b2 = -j;
s2 = 0;
}
if (k >= 0) {
b5 = 0;
s5 = k;
s2 += k;
}
else {
b2 -= k;
b5 = -k;
s5 = 0;
}
if (mode < 0 || mode > 9)
mode = 0;
try_quick = 1;
if (mode > 5) {
mode -= 4;
try_quick = 0;
}
leftright = 1;
switch(mode) {
case 0:
case 1:
ilim = ilim1 = -1;
i = 18;
ndigits = 0;
break;
case 2:
leftright = 0;
/* no break */
case 4:
if (ndigits <= 0)
ndigits = 1;
ilim = ilim1 = i = ndigits;
break;
case 3:
leftright = 0;
/* no break */
case 5:
i = ndigits + k + 1;
ilim = i;
ilim1 = i - 1;
if (i <= 0)
i = 1;
}
s = s0 = rv_alloc(i);

if (ilim >= 0 && ilim <= Quick_max && try_quick) {

/* Try to get by with floating-point arithmetic. */

i = 0;
value(d2) = value(d);
k0 = k;
ilim0 = ilim;
ieps = 2; /* conservative */
if (k > 0) {
ds = tens[k&0xf];
j = k >> 4;
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
value(d) /= bigtens[n_bigtens-1];
ieps++;
}
for(; j; j >>= 1, i++)
if (j & 1) {
ieps++;
ds *= bigtens[i];
}
value(d) /= ds;
}
else if ((j1 = -k)) {
value(d) *= tens[j1 & 0xf];
for(j = j1 >> 4; j; j >>= 1, i++)
if (j & 1) {
ieps++;
value(d) *= bigtens[i];
}
}
if (k_check && value(d) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fast_failed;
ilim = ilim1;
k--;
value(d) *= 10.;
ieps++;
}
value(eps) = ieps*value(d) + 7.;
word0(eps) -= (P-1)*Exp_msk1;
if (ilim == 0) {
S = mhi = 0;
value(d) -= 5.;
if (value(d) > value(eps))
goto one_digit;
if (value(d) < -value(eps))
goto no_digits;
goto fast_failed;
}
#ifndef No_leftright
if (leftright) {
/* Use Steele & White method of only
* generating digits needed.
*/
value(eps) = 0.5/tens[ilim-1] - value(eps);
for(i = 0;;) {
L = value(d);
value(d) -= L;
*s++ = '0' + (int)L;
if (value(d) < value(eps))
goto ret1;
if (1. - value(d) < value(eps))
goto bump_up;
if (++i >= ilim)
break;
value(eps) *= 10.;
value(d) *= 10.;
}
}
else {
#endif
/* Generate ilim digits, then fix them up. */
value(eps) *= tens[ilim-1];
for(i = 1;; i++, value(d) *= 10.) {
L = value(d);
value(d) -= L;
*s++ = '0' + (int)L;
if (i == ilim) {
if (value(d) > 0.5 + value(eps))
goto bump_up;
else if (value(d) < 0.5 - value(eps)) {
while(*--s == '0');
s++;
goto ret1;
}
break;
}
}
#ifndef No_leftright
}
#endif
fast_failed:
s = s0;
value(d) = value(d2);
k = k0;
ilim = ilim0;
}

/* Do we have a "small" integer? */

if (be >= 0 && k <= Int_max) {
/* Yes. */
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S = mhi = 0;
if (ilim < 0 || value(d) <= 5*ds)
goto no_digits;
goto one_digit;
}
for(i = 1;; i++) {
L = value(d) / ds;
value(d) -= L*ds;
#ifdef Check_FLT_ROUNDS
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
if (value(d) < 0) {
L--;
value(d) += ds;
}
#endif
*s++ = '0' + (int)L;
if (i == ilim) {
value(d) += value(d);
if (value(d) > ds || (value(d) == ds && (L & 1))) {
bump_up:
while(*--s == '9')
if (s == s0) {
k++;
*s = '0';
break;
}
++*s++;
}
break;
}
if (!(value(d) *= 10.))
break;
}
goto ret1;
}

m2 = b2;
m5 = b5;
mhi = mlo = 0;
if (leftright) {
if (mode < 2) {
i =
#ifndef Sudden_Underflow
denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
1 + P - bbits;
#endif
}
else {
j = ilim - 1;
if (m5 >= j)
m5 -= j;
else {
s5 += j -= m5;
b5 += j;
m5 = 0;
}
if ((i = ilim) < 0) {
m2 -= i;
i = 0;
}
}
b2 += i;
s2 += i;
mhi = i2b(1);
}
if (m2 > 0 && s2 > 0) {
i = m2 < s2 ? m2 : s2;
b2 -= i;
m2 -= i;
s2 -= i;
}
if (b5 > 0) {
if (leftright) {
if (m5 > 0) {
mhi = pow5mult(mhi, m5);
b1 = mult(mhi, b);
Bfree(b);
b = b1;
}
if ((j = b5 - m5)) {
b = pow5mult(b, j);
}
} else {
b = pow5mult(b, b5);
}
}
S = i2b(1);
if (s5 > 0)
S = pow5mult(S, s5);
/* Check for special case that d is a normalized power of 2. */

if (mode < 2) {
if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
&& word0(d) & Exp_mask
#endif
) {
/* The special case */
b2 += Log2P;
s2 += Log2P;
spec_case = 1;
} else {
spec_case = 0;
}
}

/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*
* Perhaps we should just compute leading 28 bits of S once
* and for all and pass them and a shift to quorem, so it
* can do shifts and ors to compute the numerator for q.
*/
#ifdef Pack_32
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
i = 32 - i;
#else
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf))
i = 16 - i;
#endif
if (i > 4) {
i -= 4;
b2 += i;
m2 += i;
s2 += i;
}
else if (i < 4) {
i += 28;
b2 += i;
m2 += i;
s2 += i;
}
if (b2 > 0)
b = lshift(b, b2);
if (s2 > 0)
S = lshift(S, s2);
if (k_check) {
if (cmp(b,S) < 0) {
k--;
b = multadd(b, 10, 0); /* we botched the k estimate */
if (leftright)
mhi = multadd(mhi, 10, 0);
ilim = ilim1;
}
}
if (ilim <= 0 && mode > 2) {
if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
/* no digits, fcvt style */
no_digits:
k = -1 - ndigits;
goto ret;
}
one_digit:
*s++ = '1';
k++;
goto ret;
}
if (leftright) {
if (m2 > 0)
mhi = lshift(mhi, m2);

/* Compute mlo -- check for special case
* that d is a normalized power of 2.
*/

mlo = mhi;
if (spec_case) {
mhi = Balloc(mhi->k);
Bcopy(mhi, mlo);
mhi = lshift(mhi, Log2P);
}

for(i = 1;;i++) {
dig = quorem(b,S) + '0';
/* Do we yet have the shortest decimal string
* that will round to d?
*/
j = cmp(b, mlo);
delta = diff(S, mhi);
j1 = delta->sign ? 1 : cmp(b, delta);
Bfree(delta);
#ifndef ROUND_BIASED
if (j1 == 0 && !mode && !(word1(d) & 1)) {
if (dig == '9')
goto round_9_up;
if (j > 0)
dig++;
*s++ = dig;
goto ret;
}
#endif
if (j < 0 || (j == 0 && !mode
#ifndef ROUND_BIASED
&& !(word1(d) & 1)
#endif
)) {
if (j1 > 0) {
b = lshift(b, 1);
j1 = cmp(b, S);
if ((j1 > 0 || (j1 == 0 && (dig & 1)))
&& dig++ == '9')
goto round_9_up;
}
*s++ = dig;
goto ret;
}
if (j1 > 0) {
if (dig == '9') { /* possible if i == 1 */
round_9_up:
*s++ = '9';
goto roundoff;
}
*s++ = dig + 1;
goto ret;
}
*s++ = dig;
if (i == ilim)
break;
b = multadd(b, 10, 0);
if (mlo == mhi)
mlo = mhi = multadd(mhi, 10, 0);
else {
mlo = multadd(mlo, 10, 0);
mhi = multadd(mhi, 10, 0);
}
}
}
else
for(i = 1;; i++) {
*s++ = dig = quorem(b,S) + '0';
if (i >= ilim)
break;
b = multadd(b, 10, 0);
}

/* Round off last digit */

b = lshift(b, 1);
j = cmp(b, S);
if (j > 0 || (j == 0 && (dig & 1))) {
roundoff:
while(*--s == '9')
if (s == s0) {
k++;
*s++ = '1';
goto ret;
}
++*s++;
}
else {
while(*--s == '0');
s++;
}
ret:
Bfree(S);
if (mhi) {
if (mlo && mlo != mhi)
Bfree(mlo);
Bfree(mhi);
}
ret1:

_THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
while (p5s) {
tmp = p5s;
p5s = p5s->next;
free(tmp);
}
_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

Bfree(b);

if (s == s0) { /* don't return empty string */
*s++ = '0';
k = 0;
}
*s = 0;
*decpt = k + 1;
if (rve)
*rve = s;
return s0;
}

/* F* VC6 */
#if _MSC_VER <= 1300
# pragma optimize( "", off )
#endif
ZEND_API double zend_strtod (CONST char *s00, char **se)
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
CONST char *s, *s0, *s1;
volatile double aadj, aadj1, adj;
volatile _double rv, rv0;
Long L;
ULong y, z;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta, *tmp;
double result;

CONST char decimal_point = '.';

sign = nz0 = nz = 0;
value(rv) = 0.;


for(s = s00; isspace((unsigned char) *s); s++)
;

if (*s == '-') {
sign = 1;
s++;
} else if (*s == '+') {
s++;
}

if (*s == '\0') {
s = s00;
goto ret;
}

if (*s == '0') {
nz0 = 1;
while(*++s == '0') ;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
if (nd < 9)
y = 10*y + c - '0';
else if (nd < 16)
z = 10*z + c - '0';
nd0 = nd;
if (c == decimal_point) {
c = *++s;
if (!nd) {
for(; c == '0'; c = *++s)
nz++;
if (c > '0' && c <= '9') {
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
nz++;
if (c -= '0') {
nf += nz;
for(i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10*y + c;
else if (nd <= DBL_DIG + 1)
z = 10*z + c;
nz = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E') {
if (!nd && !nz && !nz0) {
s = s00;
goto ret;
}
s00 = s;
esign = 0;
switch(c = *++s) {
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9') {
while(c == '0')
c = *++s;
if (c > '0' && c <= '9') {
L = c - '0';
s1 = s;
while((c = *++s) >= '0' && c <= '9')
L = 10*L + c - '0';
if (s - s1 > 8 || L > 19999)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 19999; /* safe for 16 bit ints */
else
e = (int)L;
if (esign)
e = -e;
}
else
e = 0;
}
else
s = s00;
}
if (!nd) {
if (!nz && !nz0)
s = s00;
goto ret;
}
e1 = e -= nf;

/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */

if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
value(rv) = y;
if (k > 9)
value(rv) = tens[k - 9] * value(rv) + z;
bd0 = 0;
if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
&& FLT_ROUNDS == 1
#endif
) {
if (!e)
goto ret;
if (e > 0) {
if (e <= Ten_pmax) {
#ifdef VAX
goto vax_ovfl_check;
#else
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
goto ret;
#endif
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i) {
/* A fancier test would sometimes let us do
* this for larger i values.
*/
e -= i;
value(rv) *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0(rv) -= P*Exp_msk1;
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
if ((word0(rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
goto ovfl;
word0(rv) += P*Exp_msk1;
#else
/* value(rv) = */ rounded_product(value(rv),
tens[e]);
#endif
goto ret;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax) {
/* value(rv) = */ rounded_quotient(value(rv),
tens[-e]);
goto ret;
}
#endif
}
e1 += nd - k;

/* Get starting approximation = rv * 10**e1 */

if (e1 > 0) {
if ((i = e1 & 15))
value(rv) *= tens[i];
if (e1 &= ~15) {
if (e1 > DBL_MAX_10_EXP) {
ovfl:
errno = ERANGE;
#ifndef Bad_float_h
value(rv) = HUGE_VAL;
#else
/* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
word0(rv) = Exp_mask;
word1(rv) = 0;
#else
word0(rv) = Big0;
word1(rv) = Big1;
#endif
#endif
if (bd0)
goto retfree;
goto ret;
}
if (e1 >>= 4) {
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
value(rv) *= bigtens[j];
/* The last multiplication could overflow. */
word0(rv) -= P*Exp_msk1;
value(rv) *= bigtens[j];
if ((z = word0(rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
goto ovfl;
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0(rv) = Big0;
word1(rv) = Big1;
}
else
word0(rv) += P*Exp_msk1;
}

}
}
else if (e1 < 0) {
e1 = -e1;
if ((i = e1 & 15))
value(rv) /= tens[i];
if (e1 &= ~15) {
e1 >>= 4;
if (e1 >= 1 << n_bigtens)
goto undfl;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
value(rv) *= tinytens[j];
/* The last multiplication could underflow. */
value(rv0) = value(rv);
value(rv) *= tinytens[j];
if (!value(rv)) {
value(rv) = 2.*value(rv0);
value(rv) *= tinytens[j];
if (!value(rv)) {
undfl:
value(rv) = 0.;
errno = ERANGE;
if (bd0)
goto retfree;
goto ret;
}
word0(rv) = Tiny0;
word1(rv) = Tiny1;
/* The refinement below will clean
* this approximation up.
*/
}
}
}

/* Now the hard part -- adjusting rv to the correct value.*/

/* Put digits into bd: true value = bd * 10^e */

bd0 = s2b(s0, nd0, nd, y);

for(;;) {
bd = Balloc(bd0->k);
Bcopy(bd, bd0);
bb = d2b(value(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */
bs = i2b(1);

if (e >= 0) {
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else {
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
#ifdef Sudden_Underflow
#ifdef IBM
j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
j = P + 1 - bbbits;
#endif
#else
i = bbe + bbbits - 1; /* logb(rv) */
if (i < Emin) /* denormal */
j = bbe + (P-Emin);
else
j = P + 1 - bbbits;
#endif
bb2 += j;
bd2 += j;
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0) {
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
bb1 = mult(bs, bb);
Bfree(bb);
bb = bb1;
}
if (bb2 > 0)
bb = lshift(bb, bb2);
if (bd5 > 0)
bd = pow5mult(bd, bd5);
if (bd2 > 0)
bd = lshift(bd, bd2);
if (bs2 > 0)
bs = lshift(bs, bs2);
delta = diff(bb, bd);
dsign = delta->sign;
delta->sign = 0;
i = cmp(delta, bs);
if (i < 0) {
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (dsign || word1(rv) || word0(rv) & Bndry_mask)
break;
delta = lshift(delta,Log2P);
if (cmp(delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0) {
/* exactly half-way between */
if (dsign) {
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
&& word1(rv) == 0xffffffff) {
/*boundary case -- increment exponent*/
word0(rv) = (word0(rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
word1(rv) = 0;
break;
}
}
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
L = word0(rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
if (L <= Exp_msk1)
#endif
goto undfl;
L -= Exp_msk1;
#else
L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif
word0(rv) = L | Bndry_mask1;
word1(rv) = 0xffffffff;
#ifdef IBM
goto cont;
#else
break;
#endif
}
#ifndef ROUND_BIASED
if (!(word1(rv) & LSB))
break;
#endif
if (dsign)
value(rv) += ulp(value(rv));
#ifndef ROUND_BIASED
else {
value(rv) -= ulp(value(rv));
#ifndef Sudden_Underflow
if (!value(rv))
goto undfl;
#endif
}
#endif
break;
}
if ((aadj = ratio(delta, bs)) <= 2.) {
if (dsign)
aadj = aadj1 = 1.;
else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
if (word1(rv) == Tiny1 && !word0(rv))
goto undfl;
#endif
aadj = 1.;
aadj1 = -1.;
}
else {
/* special case -- power of FLT_RADIX to be */
/* rounded down... */

if (aadj < 2./FLT_RADIX)
aadj = 1./FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else {
aadj *= 0.5;
aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch(FLT_ROUNDS) {
case 2: /* towards +infinity */
aadj1 -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
}
#else
if (FLT_ROUNDS == 0)
aadj1 += 0.5;
#endif
}
y = word0(rv) & Exp_mask;

/* Check for overflow */

if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
value(rv0) = value(rv);
word0(rv) -= P*Exp_msk1;
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
if ((word0(rv) & Exp_mask) >=
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
if (word0(rv0) == Big0 && word1(rv0) == Big1)
goto ovfl;
word0(rv) = Big0;
word1(rv) = Big1;
goto cont;
}
else
word0(rv) += P*Exp_msk1;
}
else {
#ifdef Sudden_Underflow
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
value(rv0) = value(rv);
word0(rv) += P*Exp_msk1;
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
#ifdef IBM
if ((word0(rv) & Exp_mask) < P*Exp_msk1)
#else
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
#endif
{
if (word0(rv0) == Tiny0
&& word1(rv0) == Tiny1)
goto undfl;
word0(rv) = Tiny0;
word1(rv) = Tiny1;
goto cont;
}
else
word0(rv) -= P*Exp_msk1;
}
else {
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
}
#else
/* Compute adj so that the IEEE rounding rules will
* correctly round rv + adj in some half-way cases.
* If rv * ulp(rv) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
aadj1 = (double)(int)(aadj + 0.5);
if (!dsign)
aadj1 = -aadj1;
}
adj = aadj1 * ulp(value(rv));
value(rv) += adj;
#endif
}
z = word0(rv) & Exp_mask;
if (y == z) {
/* Can we stop now? */
L = aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999/FLT_RADIX)
break;
}
cont:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(delta);
}
retfree:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
ret:
if (se)
*se = (char *)s;
result = sign ? -value(rv) : value(rv);

_THREAD_PRIVATE_MUTEX_LOCK(pow5mult_mutex);
while (p5s) {
tmp = p5s;
p5s = p5s->next;
free(tmp);
}
_THREAD_PRIVATE_MUTEX_UNLOCK(pow5mult_mutex);

return result;
}

ZEND_API double zend_hex_strtod(const char *str, char **endptr)
{
const char *s = str;
char c;
int any = 0;
double value = 0;

if (*s == '0' && (s[1] == 'x' || s[1] == 'X')) {
s += 2;
}

while ((c = *s++)) {
if (c >= '0' && c <= '9') {
c -= '0';
} else if (c >= 'A' && c <= 'F') {
c -= 'A' - 10;
} else if (c >= 'a' && c <= 'f') {
c -= 'a' - 10;
} else {
break;
}

any = 1;
value = value * 16 + c;
}

if (endptr != NULL) {
*endptr = (char *)(any ? s - 1 : str);
}

return value;
}

ZEND_API double zend_oct_strtod(const char *str, char **endptr)
{
const char *s = str;
char c;
double value = 0;
int any = 0;

/* skip leading zero */
s++;

while ((c = *s++)) {
if (c < '0' || c > '7') {
/* break and return the current value if the number is not well-formed
* that's what Linux strtol() does
*/
break;
}
value = value * 8 + c - '0';
any = 1;
}

if (endptr != NULL) {
*endptr = (char *)(any ? s - 1 : str);
}

return value;
}

/*
* Local variables:
* tab-width: 4
* c-basic-offset: 4
* End:
* vim600: sw=4 ts=4 fdm=marker
* vim<600: sw=4 ts=4
*/
Something went wrong with that request. Please try again.