piecepackr
is an R package designed to make configurable board game graphics. It can be used with the ggplot2, grid, rayrender, rayvertex, and rgl graphics packages to make board game diagrams, board game animations, and custom Print & Play layouts. By default it is configured to make piecepack game diagrams, animations, and "Print & Play" layouts but can be configured to make graphics for other board game systems as well.
The function game_systems()
returns configurations for multiple public domain game systems:
game_systems()
returns a checkers1
and checkers2
configuration which has checkered and lined "boards" with matching checker "bits" in various sizes and colors.
library("piecepackr")
library("tibble")
df_board <- tibble(piece_side = "board_face", suit = 3, rank = 8,
x = 4.5, y = 4.5)
df_w <- tibble(piece_side = "bit_face", suit = 6, rank = 1,
x = rep(1:8, 2), y = rep(1:2, each=8))
df_b <- tibble(piece_side = "bit_face", suit = 1, rank = 1,
x = rep(1:8, 2), y = rep(7:8, each=8))
df <- rbind(df_board, df_w, df_b)
df$cfg <- "checkers1"
pmap_piece(df, envir=game_systems(), default.units="in",
trans=op_transform, op_scale=0.5)
game_systems()
returns several configurations for dice:
- The
dice
configuration makes standard 6-sided dice with pips. - The
dominoes_chinese
anddominoes_chinese_black
configurations have Asian-style pipped dice. - The
dice_d4
,dice_numeral
,dice_d8
,dice_d10
,dice_d10_percentile
,dice_d12
, anddice_d20
configurations provide the seven polyhedral dice most commonly used by wargames, roleplaying games, and trading card games. - The
dice_fudge
configuration make the six-sided Fudge dice with two plus, two minus, and two blank faces most commonly used in the Fudge and Fate roleplaying games.
library("piecepackr")
envir <- game_systems()
dice <- c("d4", "numeral", "d8", "d10_percentile", "d10", "d12", "d20")
cfg <- paste0("dice_", dice)
grid.piece("die_face", suit = c(1:6, 1), rank = 1:7,
cfg = cfg, envir = envir, x = 1:7, y = 1,
default.units = "in", op_scale = 0.5)
game_systems()
returns seven different configurations for double-18 dominoes:
dominoes
dominoes_black
dominoes_blue
dominoes_green
dominoes_red
dominoes_white
(identical todominoes
)dominoes_yellow
The dominoes_chinese
and dominoes_chinese_black
configurations support Chinese dominoes.
library("piecepackr")
library("tibble")
envir <- game_systems("dejavu")
colors <- rep(c("black", "red", "green", "blue", "yellow", "white"), 2)
df_dominoes <- tibble(piece_side = "tile_face", suit=1:12, rank=7:18+1,
cfg = paste0("dominoes_", colors),
x=rep(4:1, 3), y=rep(2*3:1, each=4))
df_tiles <- tibble(piece_side = "tile_back", suit=1:3, rank=1:3,
cfg="piecepack", x=5.5, y=c(2,4,6))
df_dice <- tibble(piece_side = "die_face", suit=1:6, rank=1:6,
cfg="dice", x=6, y=0.5+1:6)
df_coins1 <- tibble(piece_side = "coin_back", suit=1:4, rank=1:4,
cfg="piecepack", x=5, y=0.5+1:4)
df_coins2 <- tibble(piece_side = "coin_face", suit=1:2, rank=1:2,
cfg="piecepack", x=5, y=0.5+5:6)
df <- rbind(df_dominoes, df_tiles, df_dice, df_coins1, df_coins2)
pmap_piece(df, default.units="in", envir=envir, op_scale=0.5, trans=op_transform)
game_systems()
returns a go
configuration for Go boards and stones in a variety of colors and sizes. Here are is an example diagram for a game of Multi-player go plotted using rgl:
game_systems()
returns three different piecepack configurations:
piecepack
playing_cards_expansion
dual_piecepacks_expansion
Plus a configuration for a subpack
aka "mini" piecepack and a hexpack
configuration.
The piecepack configurations also contain common piecepack accessories like piecepack pyramids, piecepack matchsticks, and piecepack saucers.
game_systems()
returns playing_cards
, playing_cards_colored
, and playing_cards_tarot
(French Tarot) configurations for making diagrams with various decks of playing cards.
library("piecepackr")
library("tibble")
envir <- game_systems("dejavu", round=TRUE)
df <- tibble(piece_side = "card_face",
x=1.25 + 2.5 * 0:3, y=2,
suit=1:4, rank=c(1,6,9,12),
cfg = "playing_cards")
pmap_piece(df, default.units="in", envir=envir)
- An
alquerque
configuration that produces "boards"/"bits" for Alquerque in a variety of colors. chess1
andchess2
configurations with checkered "boards" and matching chess "bits" (currently "disc" pieces instead of "Staunton" pieces).- A
meeples
configuration that produces "meeple" bits in a variety of colors. - A
morris
configuration that can produce Three/Six/Seven/Nine/Twelve men's morris "board"/"bits" in a variety of colors. - A
reversi
configuration that can produce "boards"/"bits" for Reversi in a variety of colors.
Configurations for the proprietary Looney Pyramids aka Icehouse Pieces game system by Andrew Looney can be found in the companion R package piecenikr
: https://github.com/piecepackr/piecenikr
grid.piece()
is the core function that can used to draw board game components (by default piecepack game components) using grid:
library("piecepackr")
g.p <- function(...) { grid.piece(..., default.units="in") }
g.p("tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1))
g.p("tile_back", x=0.5+3, y=0.5+1)
g.p("tile_back", x=0.5+3, y=0.5+1)
g.p("die_face", suit=3, rank=5, x=1, y=1)
g.p("pawn_face", x=1, y=4, angle=90)
g.p("coin_back", x=3, y=4, angle=180)
g.p("coin_back", suit=4, x=3, y=4, angle=180)
g.p("coin_back", suit=2, x=3, y=1, angle=90)
One can use lists to configure to quickly adjust the appearance of the game components drawn by grid.piece
:
library("piecepackr")
dark_colorscheme <- list(
suit_color="darkred,black,darkgreen,darkblue,black",
invert_colors.suited=TRUE, border_color="black", border_lex=2
)
piecepack_suits <- list(
suit_text="\U0001f31e,\U0001f31c,\U0001f451,\u269c,\uaa5c", # π,π,π,β,κ©
suit_fontfamily="Noto Emoji,Noto Sans Symbols2,Noto Emoji,Noto Sans Symbols,Noto Sans Cham",
suit_cex="0.6,0.7,0.75,0.9,0.9"
)
traditional_ranks <- list(use_suit_as_ace=TRUE, rank_text=",a,2,3,4,5")
cfg <- c(piecepack_suits, dark_colorscheme, traditional_ranks)
g.p <- function(...) {
grid.piece(..., default.units="in", cfg=pp_cfg(cfg))
}
g.p("tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1))
g.p("tile_back", x=0.5+3, y=0.5+1)
g.p("tile_back", x=0.5+3, y=0.5+1)
g.p("die_face", suit=3, rank=5, x=1, y=1)
g.p("pawn_face", x=1, y=4, angle=90)
g.p("coin_back", x=3, y=4, angle=180)
g.p("coin_back", suit=4, x=3, y=4, angle=180)
g.p("coin_back", suit=2, x=3, y=1, angle=90)
One can even specify custom grob functions to completely customize the appearance of one's game pieces. piecepackr comes with a variety of convenience functions such as pp_shape() to facilitate creating custom game pieces. Here is an example of creating "patterned" checkers using pp_shape()
objects' pattern()
method powered by the suggested package gridpattern:
library("grid")
library("gridpattern")
library("piecepackr")
tilings <- c("hexagonal", "snub_square", "pythagorean",
"truncated_square", "triangular", "trihexagonal")
patternedCheckerGrobFn <- function(piece_side, suit, rank, cfg) {
opt <- cfg$get_piece_opt(piece_side, suit, rank)
shape <- pp_shape(opt$shape, opt$shape_t, opt$shape_r, opt$back)
gp <- gpar(col=opt$suit_color, fill=c(opt$background_color, "white"))
pattern_grob <- shape$pattern("polygon_tiling", type = tilings[suit],
spacing = 0.3, name = "pattern",
gp = gp, angle = 0)
gp_border <- gpar(col=opt$border_color, fill=NA, lex=opt$border_lex)
border_grob <- shape$shape(gp=gp_border, name = "border")
grobTree(pattern_grob, border_grob)
}
checkers1 <- as.list(game_systems()$checkers1)
checkers1$grob_fn.bit <- patternedCheckerGrobFn
checkers1 <- pp_cfg(checkers1)
x1 <- c(1:3, 1:2, 1)
x2 <- c(6:8, 7:8, 8)
df <- tibble::tibble(piece_side = c("board_face", rep_len("bit_back", 24L)),
suit = c(6L, rep(c(1L, 3L, 4L, 5L), each = 6L)),
rank = 8L,
x = c(4.5, x1, rev(x1), x2, rev(x2)),
y = c(4.5, rep(c(1,1,1, 2,2, 3, 6, 7,7, 8,8,8), 2)))
pmap_piece(df, cfg=checkers1, default.units="in")
grid.piece
even has some support for drawing 3D diagrams with an oblique projection:
library("piecepackr")
cfg3d <- list(width.pawn=0.75, height.pawn=0.75, depth.pawn=1,
dm_text.pawn="", shape.pawn="convex6",
invert_colors.pawn=TRUE,
edge_color.coin="tan", edge_color.tile="tan")
cfg <- pp_cfg(c(cfg, cfg3d))
g.p <- function(...) {
grid.piece(..., op_scale=0.5, op_angle=45, cfg=cfg, default.units="in")
}
g.p("tile_back", x=0.5+c(3,1,3,1), y=0.5+c(3,3,1,1))
g.p("tile_back", x=0.5+3, y=0.5+1, z=1/4+1/8)
g.p("tile_back", x=0.5+3, y=0.5+1, z=2/4+1/8)
g.p("die_face", suit=3, rank=5, x=1, y=1, z=1/4+1/4)
g.p("pawn_face", x=1, y=4, z=1/4+1/2, angle=90)
g.p("coin_back", x=3, y=4, z=1/4+1/16, angle=180)
g.p("coin_back", suit=4, x=3, y=4, z=1/4+1/8+1/16, angle=180)
g.p("coin_back", suit=2, x=3, y=1, z=3/4+1/8, angle=90)
save_print_and_play()
makes a "Print & Play" pdf of a configured piecepack, save_piece_images()
makes individual images of each piecepack component:
save_print_and_play(cfg, "my_piecepack.pdf", size="letter")
save_piece_images(cfg)
If you are comfortable using R data frames there is also pmap_piece()
that processes data frame input. It accepts an optional trans
argument for a function to pre-process the data frames, in particular if desiring to draw a 3D oblique projection one can use the function op_transform()
to guess both the pieces' z-coordinates and an appropriate re-ordering of the data frame given the desired angle of the oblique projection.
library("dplyr", warn.conflicts=FALSE)
library("piecepackr")
library("tibble")
df_tiles <- tibble(piece_side="tile_back",
x=0.5+c(3,1,3,1,1,1),
y=0.5+c(3,3,1,1,1,1))
df_coins <- tibble(piece_side="coin_back",
x=rep(1:4, 4),
y=rep(c(4,1), each=8),
suit=1:16%%2+rep(c(1,3), each=8),
angle=rep(c(180,0), each=8))
df <- bind_rows(df_tiles, df_coins)
cfg <- game_systems("dejavu")$piecepack
pmap_piece(df, cfg=cfg, default.units="in", trans=op_transform,
op_scale=0.5, op_angle=135)
geom_piece()
creates ggplot2 "geom" objects.
library("ggplot2")
library("piecepackr")
envir <- game_systems("sans")
df_board <- tibble(piece_side = "board_face", suit = 3, rank = 12,
x = 4, y = 4)
df_b <- tibble(piece_side = "bit_face", suit = 2, rank = 1,
x = c(2, 3, 3, 4, 4), y = c(6, 5, 4, 5, 2))
df_w <- tibble(piece_side = "bit_face", suit = 1, rank = 1,
x = c(2, 2, 3, 4, 5, 5), y = c(4, 3, 6, 5, 4, 6))
df <- rbind(df_board, df_w, df_b)
ggplot(df, aes_piece(df)) +
geom_piece(cfg = "morris", envir = envir) +
coord_fixed() +
scale_x_piece(limits = c(0.5, 7.5)) +
scale_y_piece(limits = c(0.5, 7.5)) +
theme_minimal(32) +
theme(panel.grid = element_blank())
library("ggplot2")
library("piecepackr")
library("ppdf") # remotes::install_github("piecepackr/ppdf")
library("withr")
new <- list(piecepackr.cfg = "piecepack",
piecepackr.envir = game_systems("dejavu", pawn="joystick"),
piecepackr.op_angle = 90,
piecepackr.op_scale = 0.80)
dfc <- ppdf::piecepack_fujisan(seed = 42)
withr::with_options(new, {
dft <- op_transform(dfc, as_top = "pawn_face", cfg_class = "character")
ggplot(dft, aes_piece(dft)) +
geom_piece() +
coord_fixed() +
theme_void()
})
piece3d()
draws pieces using rgl graphics.
library("piecepackr")
library("piecenikr") # remotes::install_github("piecepackr/piecenikr")
library("rgl")
invisible(rgl::open3d())
rgl::view3d(phi=-45, zoom = 0.9)
df <- piecenikr::df_martian_chess()
envir <- c(piecenikr::looney_pyramids(), game_systems("sans3d"))
pmap_piece(df, piece3d, envir = envir, trans=op_transform,
scale = 0.98, res = 150)
piece()
creates rayrender objects.
library("piecepackr")
library("ppdf") # remotes::install_github("piecepackr/ppdf")
library("magrittr")
library("rayrender", warn.conflicts = FALSE)
df <- ppdf::piecepack_xiangqi()
envir <- game_systems("dejavu3d", round=TRUE, pawn="peg-doll")
l <- pmap_piece(df, piece, envir = envir, trans=op_transform,
scale = 0.98, res = 150, as_top="pawn_face")
light <- sphere(x=5,y=-4, z=30, material=light(intensity=420))
table <- sphere(z=-1e3, radius=1e3, material=diffuse(color="green")) %>%
add_object(light)
scene <- Reduce(rayrender::add_object, l, init=table)
rayrender::render_scene(scene,
lookat = c(5, 5, 0), lookfrom = c(5, -7, 25),
width = 500, height = 500,
samples=200, clamp_value=8)
piece_mesh()
creates rayvertex objects.
library("piecepackr")
library("ppdf") # remotes::install_github("piecepackr/ppdf")
library("rayvertex", warn.conflicts = FALSE) # masks `rayrender::r_obj`
df <- ppdf::piecepack_international_chess()
envir <- game_systems("dejavu3d", round=TRUE, pawn="joystick")
l <- pmap_piece(df, piece_mesh, envir = envir, trans=op_transform,
scale = 0.98, res = 150, as_top="pawn_face")
table <- sphere_mesh(c(0, 0, -1e3), radius=1e3,
material = material_list(diffuse="grey40"))
scene <- rayvertex::scene_from_list(l) |> add_shape(table)
light_info <- directional_light(c(5, -7, 7), intensity = 2.5)
rayvertex::rasterize_scene(scene,
lookat = c(4.5, 4, 0),
lookfrom=c(4.5, -16, 20),
light_info = light_info)
animate_piece()
creates animations.
library("gifski")
library("piecepackr")
library("ppn") # remotes::install_github("piecepackr/ppn")
library("tweenr")
envir <- game_systems("dejavu")
cfg <- as.list(envir$piecepack)
cfg$suit_color <- "black"
cfg$background_color.r1 <- "#E69F00"
cfg$background_color.r2 <- "#56B4E9"
cfg$background_color.r3 <- "#009E73"
cfg$background_color.r4 <- "#F0E442"
cfg$background_color.r5 <- "#D55E00"
cfg$background_color.r6 <- "#F079A7"
envir$piecepack <- pp_cfg(cfg)
ppn_file <- system.file("ppn/relativity.ppn", package = "ppn")
game <- read_ppn(ppn_file)[[1]]
animate_piece(game$dfs, file = "man/figures/README-relativity.gif",
annotate = FALSE,
envir = envir, trans = op_transform, op_scale = 0.5,
n_transitions = 3, n_pauses = 2, fps = 7)
A slightly longer intro to piecepackr's API plus several other piecepackr articles are available at piecepackr's companion website as well as some demos and pre-configured Print & Play PDFs. More API documentation is also available in the package's built-in man pages.
Here we'll show an example of configuring piecepackr to draw diagrams for the abstract board game Tak (designed by James Ernest and Patrick Rothfuss).
Since one often plays Tak on differently sized boards one common Tak board design is to have boards made with colored cells arranged in rings from the center plus extra symbols in rings placed at the points so it is easy to see smaller sub-boards. To start we'll write a function to draw the Tak board.
library("grid", warn.conflicts=FALSE)
library("piecepackr")
grobTakBoard <- function(...) {
g <- "darkgreen"
w <- "grey"
fill <- c(rep(g, 5),
rep(c(g, rep(w, 3), g),3),
rep(g, 5))
inner <- rectGrob(x = rep(1:5, 5), y = rep(5:1, each=5),
width=1, height=1, default.units="in",
gp=gpar(col="gold", fill=fill, lwd=3))
outer <- rectGrob(gp=gpar(col="black", fill="grey", gp=gpar(lex=2)))
circles <- circleGrob(x=0.5+rep(1:4, 4),
y=0.5+rep(4:1, each=4),
r=0.1, default.units="in",
gp=gpar(col=NA, fill="gold"))
rects <- rectGrob(x=0.5+c(0:5, rep(c(0,5), 4), 0:5),
y=0.5+c(rep(5,6), rep(c(4:1), each=2), rep(0, 6)),
width=0.2, height=0.2,
gp=gpar(col=NA, fill="orange"), default.units="in")
grobTree(outer, inner, circles, rects)
}
Then we'll configure a Tak set and write some helper functions to draw Tak pieces with it.
cfg <- pp_cfg(list(suit_text=",,,", suit_color="white,tan4,", invert_colors=TRUE,
ps_text="", dm_text="",
width.board=6, height.board=6,
depth.board=1/4, grob_fn.board=grobTakBoard,
width.r1.bit=0.6, height.r1.bit=0.6,
depth.r1.bit=1/4, shape.r1.bit="rect",
width.r2.bit=0.6, height.r2.bit=1/4,
depth.r2.bit=0.6, shape.r2.bit="rect",
width.pawn=0.5, height.pawn=0.5,
depth.pawn=0.8, shape.pawn="circle",
edge_color="white,tan4", border_lex=2,
edge_color.board="tan", border_color.board="black"))
g.p <- function(...) {
grid.piece(..., cfg=cfg, default.units="in",
op_scale=0.7, op_angle=45)
}
draw_tak_board <- function(x, y) {
g.p("board_back", x=x+0.5, y=y+0.5)
}
draw_flat_stone <- function(x, y, suit=1) {
z <- 1/4*seq(along=suit)+1/8
g.p("bit_back", x=x+0.5, y=y+0.5, z=z, suit=suit, rank=1)
}
draw_standing_stone <- function(x, y, suit=1, n_beneath=0, angle=0) {
z <- (n_beneath+1)*1/4+0.3
g.p("bit_back", suit=suit, rank=2,
x=x+0.5, y=y+0.5, z=z, angle=angle)
}
draw_capstone <- function(x, y, suit=1, n_beneath=0) {
z <- (n_beneath+1)*1/4+0.4
g.p("pawn_back", x=x+0.5, y=y+0.5, z=z, suit=suit)
}
Then we'll draw an example Tak game diagram:
pushViewport(viewport(width=inch(6), height=inch(6)))
draw_tak_board(3, 3)
draw_flat_stone(1, 1, 1)
draw_flat_stone(1, 2, 2)
draw_flat_stone(2, 4, 1)
draw_capstone(2, 4, 2, n_beneath=1)
draw_flat_stone(2, 5, 2)
draw_flat_stone(3, 4, 1:2)
draw_flat_stone(3, 3, c(2,1,1,2))
draw_flat_stone(3, 2, 1:2)
draw_flat_stone(3, 1, 2)
draw_standing_stone(4, 2, 2, angle=90)
draw_flat_stone(5, 2, 1)
draw_capstone(5, 3, 1)
popViewport()
To install the last version released on CRAN use the following command in R:
install.packages("piecepackr")
To install the development version use the following commands:
install.packages("remotes")
remotes::install_github("piecepackr/piecepackr")
Although the "core" {piecepackr}
functionality does not need any additional software installed some non-"core" functionality needs extra suggested software to be installed. To install all of the suggested R packages use:
install.packages("piecepackr", dependencies = TRUE)
or (for the development version):
install.packages("remotes")
remotes::install_github("piecepackr/piecepackr", dependencies = TRUE)
Suggested R packages:
- animation
animate_piece()
uses the{animation}
package to save "html" and "video" (e.g. mp4 and avi) animations. Additionally, if the{gifski}
package is not installedanimate_piece()
will fall back to using{animation}
to make "gif" animations.- ggplot2
- Required by the
{ggplot2}
bindingsgeom_piece()
and its helper functionsaes_piece()
,scale_x_piece()
, andscale_y_piece()
. - gifski
animate_piece()
preferably uses the{gifski}
package to save "gif" animations. If{gifski}
is not available thenanimate_piece()
can fall back on{animation}
to make "gif" animations.- gridpattern
- The
pp_shape()
object'spattern()
method uses{gridpattern}
to make patterned shapes. In particular can be used to make patterned board game pieces. - magick
file2grob()
usesmagick::image_read()
to import images that are not "png", "jpg/jpeg", or "svg/svgz".- pdftools
get_embedded_font()
usespdftools::pdf_fonts()
. It also requires R compiled with Cairo support (i.e.capabilities("cairo") == TRUE
). If the suggested R package{systemfonts}
is not installed thenhas_font()
can also fall back on usingget_embedded_font()
.- rayrender
- Required for the
{rayrender}
bindingpiece()
and thepp_cfg()
object'srayrender_fn()
method. - rayvertex
- Required for the
{rayvertex}
bindingpiece_mesh()
and thepp_cfg()
object'srayvertex_fn()
method. - readobj
- Allows the
{rgl}
bindings to support more game piece shapes; in particular the "meeple", "halma", and "roundrect" shaped token game pieces. - rgl
- Required for the
{rgl}
bindingpiece3d()
and thepp_cfg()
object'srgl_fn()
method. Also required for theobj_fn()
method for game pieces with ellipsoid shapes (in particular this may effectsave_piece_obj()
,piece()
,piece3d()
, and/orpiece_mesh()
when used with the go stones and joystick pawns provided bygame_systems()
). You may need to install extra software for{rgl}
to support OpenGL (in addition to WebGL). Consider also installing{readobj}
which allows the{rgl}
bindings to support more game piece shapes; in particular the "meeple", "halma", and "roundrect" shaped token game pieces. - systemfonts
has_font()
preferably uses{systemfonts}
to determine if a given font is available. If{systemfonts}
is not available thenhas_font()
can fall back on{pdftools}
ifcapabilities("cairo") == TRUE
.- tweenr
animate_piece()
needs{tweenr}
to do animation transitions (i.e. itsn_transitions
argument is greater than the default zero).- xmpdf
save_print_and_play()
can use{xmpdf}
to embed bookmarks, documentation info, and XMP metadata into pdf print-and-play files. You may also need the system tools ghostscript, pdftk, and/or exiftool.
The default piecepackr pp_cfg()
configuration and the default game systems returned by game_systems()
should work out on the box on most modern OSes including Windows without the user needing to mess with their system fonts. However game_systems(style = "dejavu")
requires that the Dejavu Sans font is installed.
For more advanced {piecepackr}
configurations you'll want to install additional Unicode fonts and Windows users are highly recommended to use and install piecepackr on "Ubuntu on Bash on Windows" if planning on using Unicode symbols from multiple fonts. The following bash commands will give you a good selection of fonts (Noto, Quivira, and Dejavu) on Ubuntu:
sudo apt install fonts-dejavu fonts-noto
fonts_dir=${XDG_DATA_HOME:="$HOME/.local/share"}/fonts
curl -O http://www.quivira-font.com/files/Quivira.otf
mv Quivira.otf $fonts_dir/
curl -O https://noto-website-2.storage.googleapis.com/pkgs/NotoEmoji-unhinted.zip
unzip NotoEmoji-unhinted.zip NotoEmoji-Regular.ttf
mv NotoEmoji-Regular.ttf $fonts_dir/
rm NotoEmoji-unhinted.zip
Certain {piecepackr}
features works best if the version of R installed was compiled with support for Cairo:
- A subset of game system configurations use Unicode glyphs. The "cairo" graphics devices support Unicode glyphs.
- 3D
{grid}
renderings for certain pieces like dice and pyramids are enhanced if the graphic device supports the "affine transformation" feature. In recent versions of R the "cairo" graphics devices support the "affine transformation" feature. - The function
get_embedded_font()
needs support for thecairo_pdf()
function (which embeds fonts in the pdf) and by defaultrender_piece()
andsave_print_and_play()
may try to use "cairo" graphics devices.
Fortunately R is typically compiled with support for Cairo.
One can confirm that R was compiled with support for Cairo via R's capabilities()
function:
> capabilities("cairo")
cairo
TRUE
- For general questions about piecepackr one may use the project mailing list: https://groups.google.com/forum/#!forum/piecepackr
- If you have a bug report or a feature request please use the issue tracker: https://github.com/piecepackr/piecepackr/issues
The code of this software package is licensed under the MIT license.
Graphical assets generated using configurations returned by game_systems()
should be usable without attribution:
- Uses fonts which should allow you to embed them in images/documents without requiring attribution.
- Does not embed any outside copyrighted images. [1]
- Only contains public domain game systems which should not suffer from copyright / trademark issues.
However, third party game configurations may be encumbered by copyright / trademark issues.
[1] | The outline for the meeple shape used in the "meeples" configuration (also used in some face cards in the playing cards configurations) was extracted (converted into a dataset of normalized x, y coordinates) from Meeple icon by Delapouite / CC BY 3.0. Since "simple shapes" nor data can be copyrighted under American law this meeple outline is not copyrightable in the United States. However, in other legal jurisdictions with stricter copyright laws you may need to give the proper CC BY attribution if you use any of the meeples. |
Why does the package sometimes use a different font then the one I instructed it to use for a particular symbol?
Some of R's graphic devices (cairo_pdf()
, svg()
, and png()
) use Cairo
which uses fontconfig
to select fonts. fontconfig
picks what it thinks is the 'best' font and sometimes it annoyingly decides that the font to use for a particular symbol is not the one you asked it to use (although sometimes the symbol it chooses instead still looks nice in which case maybe you shouldn't sweat it). It is hard but not impossible to configure which fonts are dispatched by fontconfig
. A perhaps easier way to guarantee your symbols will be dispatched would be to either make a new font and re-assign the symbols to code points in the Unicode "Private Use Area" that aren't used by any other font on your system or to simply temporarily move (or permanently delete) from your system font folders the undesired fonts that fontconfig
chooses over your requested fonts:
# temporarily force fontconfig to use Noto Emoji instead of Noto Color Emoji in my piecepacks on Ubuntu 18.04 $ sudo mv /usr/share/fonts/truetype/noto/NotoColorEmoji.ttf ~/ ## Make some piecepacks $ sudo mv ~/NotoColorEmoji.ttf /usr/share/fonts/truetype/noto/
Also as a sanity check use the command-line tool fc-match
(or the R function systemfonts::match_font()
) to make sure you specified your font correctly in the first place (i.e. fc-match "Noto Sans"
on my system returns "Noto Sans" but fc-match "Sans Noto"
returns "DejaVu Sans" and not "Noto Sans" as one may have expected). To help determine which fonts are actually being embedded you can use the get_embedded_font()
helper function:
library("piecepackr")
fonts <- c('Noto Sans Symbols2', 'Noto Emoji', 'sans')
chars <- c('β₯', 'β ', 'β£', 'β¦', 'π' ,'π' ,'κ©')
get_embedded_font(fonts, chars)
# char requested_font embedded_font
# 1 β₯ Noto Sans Symbols2 NotoSansSymbols2-Regular
# 2 β Noto Sans Symbols2 NotoSansSymbols2-Regular
# 3 β£ Noto Sans Symbols2 NotoSansSymbols2-Regular
# 4 β¦ Noto Sans Symbols2 NotoSansSymbols2-Regular
# 5 πNoto Sans Symbols2 NotoEmoji
# 6 πNoto Sans Symbols2 NotoEmoji
# 7 κ© Noto Sans Symbols2 NotoSansCham-Regular
# 8 β₯ Noto Emoji NotoEmoji
# 9 β Noto Emoji NotoEmoji
# 10 β£ Noto Emoji NotoEmoji
# 11 β¦ Noto Emoji NotoEmoji
# 12 π Noto Emoji NotoEmoji
# 13 π Noto Emoji NotoEmoji
# 14 κ© Noto Emoji NotoSansCham-Regular
# 15 β₯ sans Arimo
# 16 β sans Arimo
# 17 β£ sans Arimo
# 18 β¦ sans Arimo
# 19 π sans NotoEmoji
# 20 π sans NotoEmoji
# 21 κ© sans NotoSansCham-Regular