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TP 1 : Reminder on Markov Chains – Stochastic gradient descent

Exercise 1 : Box-Muller and Marsaglia-Bray algorithm
Let R a random variable with Rayleigh distribution with parameter 1, whose probability

density function fR is given below, and Θ with uniform distribution on [0, 2π]. We also assume
that R and Θ are independent. We have

∀r ∈ R, fR(r) = r exp
(

−r2

2

)
1R+(r) .

1. Let X and Y such that
X = R cos(Θ) and Y = R sin(Θ) .

Prove that both X and Y have N (0, 1) distribution and are independent.

2. Write an algorithm for sampling 2 independent Gaussian distributions N (0, 1).

Algorithm 1: Marsaglia-Bray algorithm
1 while V 2

1 + V 2
2 > 1 do

2 Sample U1, U2 independent r.v. with distribution U([0, 1]) ;
3 Set V1 = 2U1 − 1 and V2 = 2U2 − 1.
4 end
5 Set S =

√
−2 log(V 2

1 + V 2
2 ) ;

6 Set X = S V1√
V 2

1 +V 2
2

and Y = S V2√
V 2

1 +V 2
2

;

7 return (X, Y ).

3. Consider the algorithm given above.
a) What is the distribution of (V1, V2) at the end of the "while" loop ?
b) Set

T1 = V1√
V 2

1 + V 2
2

, T2 = V2√
V 2

1 + V 2
2

and V = V 2
1 + V 2

2 .

Show that (T1, T2) and V are independent, V ∼ U([0, 1]) and (T1, T2) has the same
distribution as (cos(Θ), sin(Θ)) with Θ ∼ U([0, 2π]).

c) What is the distribution of the output (X, Y ) ?
d) What is the expected number of steps in the "while" loop ?
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Exercise 2 : Invariant distribution
We define a Markov chain (Xn)n≥0 with values in [0, 1] as follows : given the current value

Xn (n ∈ N) of the chain,

• if Xn = 1
m

(for some positive integer m), we let :


Xn+1 = 1

m + 1 with probability 1 − X2
n

Xn+1 ∼ U
(
[0, 1]) with probability X2

n.

• if not, Xn+1 ∼ U
(
[0, 1]).

1. Prove that the transition kernel of the chain (Xn)n≥0 is given by :

P (x, A) =


x2
∫

A∩[0,1]
dt + (1 − x2)δ 1

m+1
(A) if x = 1

m∫
A∩[0,1]

dt otherwise.

where δα is the Dirac measure at α.

2. Prove that the uniform distribution on [0, 1] is invariant for P . In the following, this
invariant distribution will be denoted by π.

3. Let x /∈
{ 1

m
, m ∈ N∗

}
. Compute the value of Pf(x) = E[f(X1) | X0 = x], for a bounded

measurable function f . Deduce P nf(x) for all n ⩾ 1. Compute lim
n→+∞

P nf(x) in terms
of
∫

f(x)π(x) dx.

4. Let x = 1
m

with m ⩾ 2.

a) Let n ∈ N∗. Compute P n
(
x,

1
n + m

)
in terms of m and n.

b) Do we have lim
n→+∞

P n(x, A) = π(A) when A =
⋃
q∈N

{ 1
m + 1 + q

}
?
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Exercise 3 : Stochastic Gradient Learning in Neural Networks, [Bot91, BCN16]

In the exercise, we consider the problem of classifying patterns x into two classes y = ±1.
We assume that there is a relationship between a pattern and its class, embodied by some
probability distribution P(x, y). If we know this distribution, we know the conditional proba-
bilities P(y|x) as well, and we can solve immediately the problem using the Bayes decision
rule. Learning means “Acquiring enough knowledge about P(x, y) from the examples to solve
the classification problem”.

The statistical machine learning approach begins with the collection of a sizeable set of
examples {(x1, y1), . . . , (xn, yn)}, where for each i ∈ J1, nK the vector xi represents the features
and the scalar yi a label indicating whether xi belongs (yi = 1) or not (yi = −1) to a parti-
cular class. With such a set of examples, one can construct a classification program, defined
by a prediction function h, and measure its performance by counting how often the program
prediction h(xi) differs from the correct prediction yi. To avoid rote memorization, one should
aim to find a prediction function that generalizes the concepts that may be learned from the
examples. One way to achieve good generalized performance is to choose amongst a carefully
selected class of prediction functions.

Thanks to such a high-dimensional sparse representation of documents, it has been deemed
empirically sufficient to consider prediction functions of the form h(x; w, τ) = wtx − τ . Here,
wtx is a linear discriminant parameterized by w ∈ Rd and τ ∈ R is a bias that provides a
way to compromise between precision and recall, P[y = 1|h(x) = 1] and P[h(x) = 1|y = 1]
respectively. The accuracy of the predictions could be determined by counting the number of
times that sign(h(x; w, τ)) matches the correct label, i.e., 1 or -1. However, while such a pre-
diction function may be appropriate for classifying new features, formulating an optimization
problem around it to choose the parameters (w; τ) is impractical in large-scale settings due to
the combinatorial structure introduced by the sign function, which is discontinuous. Instead,
one typically employs a continuous approximation through a loss function that measures a cost
for predicting h when the true label is y.

An Adaline (Widrow and Hoff, 1960) actually learns by (i) considering linear prediction
function, h(x, w) = wtx, and (ii) measuring the quality of the system through the mean squared
error :

CAdaline(w) =
∫

(y − h(x, w))2 dP(x, y) =
∫

(y − wtx)2 dP(x, y) .

Learning consists of finding the parameter w⋆ that minimizes the above, or a more general,
cost. This framework is the basis of classical statistical inference theory. Hundreds of practical
algorithms have been derived.

Teaching assistants : P. Clavier (pierre.clavier@polytechnique.edu), M. Noble
(maxence.noble-bourillot@polytechnique.edu)
Send your work at compstatsmva@gmail.com.

3/4

mailto:pierre.clavier@polytechnique.edu
mailto:maxence.noble-bourillot@polytechnique.edu
mailto:compstatsmva@gmail.com


M2 Mathématiques, Vision et Apprentissage
Computational statistics
Prof. Stéphanie Allassonnière

2023 – 2024
TP 1

In the following, we will denote by z = (x, y) the observation and consider the cost or expected
risk given a parameter vector w with respect to the probability P

R(w) = E[J(w, z)] =
∫

(y − wtx)2 dP(z) .

While it may be desirable to minimize the expected loss that would be incurred from any input-
output pair, such a goal is untenable when one does not have complete information about P.
Thus, in practice, one seeks the solution of a problem that involves an estimate of the expected
risk R. In supervised learning, one has access (either all-at-once or incrementally) to a set of
n ∈ N independently drawn input-output samples {zi = (xi, yi)}n

i=1 and one may define the
empirical risk function Rn : Rd → R+ by

Rn(w) = 1
n

n∑
i=1

(yi − wtxi)2

1. Describe the stochastic gradient descent algorithm for minimizing the empirical risk and
implement it.

2. Sample a set of observations {zi}n
i=1 by generating a collection

of random points xi of R2, w̄ ∈ R2 seen as the normal vector
of an hyperplane, a straight line here, and assigning the label yi

according to the side of the hyperplane where the point xi is.

3. Test the algorithm you wrote at the first question over these ob-
servations. What is the vector w⋆ estimated ? Is it far from w̄ ?

4. Noise your observations {zi}n
i=1 with an additive Gaussian noise and perform the opti-

misation again. Compare with the result of question 3.
5. Test the algorithm on the Breast Cancer Wisconsin (Diagnostic) Data Set [WSM95] :

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 .
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