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TP 3: Hasting-Metropolis (and Gibbs) samplers

Exercise 1: Hasting-Metropolis within Gibbs – Stochastic Approximation EM
We observe a group of N individuals. For the i-th individual, we have ki measurements denoted by
yi,j ∈ R, where j ∈ J1, kiK. In studies on the progression of diseases, measurements yi,j can be measures
of weight, volume of brain structures, protein concentration, tumoral score, etc. over time. For any
i ∈ J1, NK, we assume that the measurements {yi,j}j∈J1,kiK are independent and are obtained at times
{ti,j}j∈J1,kiK where ti,1 < . . . < ti,ki

.

1.A – A population model for longitudinal data

We wish to model an average progression as well as individual-specific progressions of some disease from
the observations (yi,j)i∈J1,NK, j∈J1,kiK. To do that, we consider a hierarchical model defined as follows.

i. We assume that the average progression is given by the straight line which goes through the point
p0 at time t0 with velocity v0

d(t) := p0 + v0(t − t0)

where
p0 ∼ N ( p0, σ2

p0
) ; t0 ∼ N ( t0, σ2

t0
) ; v0 ∼ N ( v0, σ2

v0
)

and σp0 , σt0 , σv0 are fixed variance parameters. We also assume that p0 is fixed.

ii. For the i-th individual, we assume a progression of the form

di(t) := d( αi(t − t0 − τi) + t0 ) .

Here, the trajectory of the i-th individual corresponds to an affine re-parameterization of the
average trajectory. This affine re-parameterization, given by t 7→ αi(t − t0 − τi) + t0, allows to
characterize changes in speed and delay in the progression of the i-th individual with respect to
the average trajectory. Moreover, we assume that for any j ∈ J1, kiK

yi,j = di(ti,j) + εi,j where εi,j
i.i.d.∼ N (0, σ2)

αi = exp(ξi) where ξi
i.i.d.∼ N (0, σ2

ξ )

τi
i.i.d.∼ N (0, σ2

τ )

.

The parameters of the model are θ = ( t0, v0, σξ, στ , σ ). For all i ∈ J1, NK, the random variable
zi = (αi, τi) corresponds to random effects and zpop = ( t0, v0 ) to fixed effects. The fixed effects are used
to model the group progression whereas random effects model individual progressions.
Likewise, we define θind = (σξ, στ , σ) and θpop = ( t0, v0 ).
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We consider a Bayesian framework and assume the following a priori on the parameters θ :

t0 ∼ N ( t0, s2
t0

) ; v0 ∼ N ( v0, s2
v0

)

σ2
ξ ∼ W−1(vξ, mξ) ; σ2

τ ∼ W−1(vτ , mτ ) ; σ2 ∼ W−1(v, m) .

where W−1(v, m) (v > 0, m ∈ N∗) is the inverse-Gamma distribution whose density w.r.t. the Lebesgue
measure is given by:

fW−1(σ2) = 1
Γ

(
m
2

) 1
σ2

(
v

σ
√

2

)m

exp
(

− v2

2σ2

)
.

1. Write the complete log-likelihood of the previous model for the observations {yi,j}i,j (including
the latent variables zpop and {zi}i, and the parameter θ). Show that the proposed model belongs
to the curved exponential family, i.e., that the log-likelihood can be written under the explicit
form log p(y, z, θ) = −Φ(θ) + ⟨ S(y, z) | Ψ(θ) ⟩, up to some constant independent of θ.

2. Generate synthetic data from the model by taking some reasonable values for the parameters
(σt0 = σv0 = 0.1, st0 = sv0 = 0.1, ¯̄t0 = ¯̄v0 = 1, m = mξ = mτ ∈ [5, 10], v = vξ = vτ ∈ [1, 5],
N = 100, ki = 20).

1.B – HM-SAEM – Hasting-Metropolis sampler

In order to estimate – by a maximum a posteriori for instance – the parameter θ of this statistical
model, we will use the SAEM – Stochastic Approximation EM – algorithm. However, this algorithm
requires to sample from the a posteriori distribution, see Algorithm 2.

We will use the Hasting-Metropolis algorithm to that end, since a direct sampling is not possible in
our context. Let q(.|z) be the proposal distribution of the algorithm, i.e. the conditional probability of
proposing a state z∗ given the current state z, and π be a density defined on an open set U of Rn. The
Hasting-Metropolis algorithm targeting π writes:

Algorithm 1: Hasting-Metropolis Sampler
1 Given initialisation state z(0), proposal kernel q(dz|·), target distribution π
2 for k = 0 to maxIter do
3 #Proposal: z∗ ∼ q(.|z(k))
4 #Acceptance-Rejection: α(z(k), z∗) = min

(
1, q(z(k)|z∗) π(z∗)

q(z∗|z(k)) π(z(k))

)
5 z(k+1) =

{
z∗ with probability α(z(k), z∗)

z(k) with probability 1 − α(z(k), z∗)
6 end
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3. Propose a Metropolis-Hastings sampler to sample from the a posteriori distribution p(z | y, θ) of
the latent variable z = (zpop, zi)i∈J1,NK = (t0, v0, ξi, τi)i∈J1,NK ∈ R2N+2.
A natural choice for the proposal distribution is to consider a multivariate Gaussian distribution
N (z, σ2

propI). Thus, the acceptance ratio simply writes 1 ∧ π(z∗)
π(z(k)) . This algorithm is called

Symmetric Random Walk Hasting-Metropolis algorithm.

We would like to us the EM algorithm to maximize the likelihood of our model, especially as we
have proved at Question 1 that this model belongs to the curved exponential family. Nevertheless,
the expectation required by the EM algorithm Qk(θ) = Ez∼p(·|y,θk) [log p(y, z, θ)] cannot be explicitly
calculated due to the particular form of the posterior distribution. Thus, we have to use a stochastic
version of the EM algorithm, namely the SAEM algorithm. Here, the Expectation step is split into two
steps, the Simulation one (relying on MCMC technique) and the Stochastic Approximation one, see
Algorithm 2.

Algorithm 2: MCMC-SAEM (for curved exponential family)
1 Given observed data y and initial guess θ(0)

2 #Initialization : z(0) = 0, S(0) = 0 and step-sizes (εk)k⩾0.
3 for k = 0 to maxIter do
4 #Simulation z(k+1) ∼ p(.|y, θ(k)) (MCMC sampler initialized at z(k))
5 #Stochastic Approximation : S(k+1) = S(k) + εk

(
S(y, z(k+1)) − S(k) )

,
6 #Maximization : θ(k+1) = argmax

θ∈Θ

{
− Φ(θ) +

〈
S(k+1)

∣∣ Ψ(θ)
〉 }

7 end

4. Compute the optimal parameters at step k

θ(k) = argmax
θ∈Θ

{−Φ(θ) +
〈

S(k)
∣∣ Ψ(θ)

〉
}

and implement the HM-SAEM in order to find the MAP of your model. In particular, we assume
that the MAP exists. Use Question 2 to check your algorithm.
For the step-sizes εk, you can choose a parameter Nb – burn-in parameter – and define

∀k ∈ N, εk =
{

1 if k ∈ J1, NbK
(k − Nb)−α otherwise

where α ∈ ] 1
2 , 1] is necessary to ensure the convergence of the MCMC-SAEM. See [AKT10, AK15].

Remark : Contrary to Bayesian inference, where burn-in traditionally refers to a certain
amount of samples which are discarded, here the term burn-in refers to memoryless approx-
imation steps. In other words, during the burn-in phase, the information contained in z(k)

is not used in the approximation of the sufficient statistics. In practice, the burn-in period
is chosen to be half of the maximum number of iterations.
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1.C – HMwG-SAEM – Hasting-Metropolis within Gibbs sampler

However, the dimension of the latent variable z may become high if we consider a large cohort and
so the a posteriori distribution of the latent variable is difficult to sample. In that case, we can use
a Gibbs sampler which consists in generating an instance from the distribution of each (sub)-variable,
conditionally on the current values of the other (sub)-variables. Gibbs sampling is more generally ap-
plicable when the joint distribution is not known explicitly or is difficult to sample from directly, but
the conditional distribution of each variable is known and is easy (or at least, easier) to sample from.

If we consider π, a density defined on an open set U of Rn (n ⩾ 2) and if we denote, for ℓ ∈ J1, nK,
πℓ the ℓth full conditional of π, we have

πℓ(zℓ | z−ℓ) ∝ π(z)

where z−ℓ = {z1, . . . , zℓ−1, zℓ+1, . . . , zn}. We recall that the classical Gibbs sampler writes as follows :

Algorithm 3: Gibbs Sampler
1 Given z(k) = (z(k)

1 , . . . , z
(k)
n )

2 for ℓ = 1 to n do
3 z

(k+1)
ℓ ∼ πℓ(zℓ | z

(k+1)
1 , . . . , z

(k+1)
ℓ−1 , z

(k)
ℓ+1, . . . , z

(k)
n ) (⋆)

4 end

When direct sampling from the full conditionals is not possible, the step (⋆) is often replaced with a
Metropolis-Hastings step. The resulting MCMC algorithm is called hybrid Gibbs sampler or Metropolis-
Hastings within Gibbs sampler.

5. Propose a Metropolis-Hastings within Gibbs sampler to sample from the a posteriori distribution
p(zi | zpop, y, θ) for the variable zi = (ξi, τi).

6. Likewise, propose a HMwG sampler for the a posteriori distribution p(zpop | {zi}i, y, θ) of the
variable zpop = (t0, v0).

7. Using the results of the two previous questions, implement the HMwG-SAEM in order to find the
MAP.

We can improve the sampling step for big dataset by considering a Block HMwG sampler instead of a
"one-at-a-time" as described above HMwG sampler. In the Block version, each Metropolis-Hastings step
of the algorithm consists in a multivariate symmetric random walk. Then, the Block MHwG sampler
updates simultaneously block (or sets) of latent variables given the others.

8. Explain what is the advantages of a Block Gibbs sampler over a "one-at-a-time" Gibbs sampler
for our model.

9. Implement a Block HMwG sampler by choosing a block for the fixed effects and a block by
individuals, in the SAEM framework. Compare your results with the classical Gibbs sampler and
comment.
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The model studied in this exercise is a very simplified version of the model proposed by Jean-Baptiste
Schiratti in his PhD-Thesis. For more details, you can refer to [SACD15, Sch16, COA17].

Exercise 2: Multiplicative Hasting-Metropolis
Let f be the density of some distribution πf supported on ]−1, 1[. We consider the multiplicative
Hasting-Metropolis algorithm defined as follows.

Let X be the current state of the Markov chain.

(i) We sample ε from πf and from a random variable B that has the Bernoulli distribution
with parameter 1

2 .

(ii) If B = 1, we set Y = εX. Otherwise, we set Y = X
ε . Then, we accept the candidate Y

with a probability given by α(X, Y ), the usual Hasting-Metropolis acceptation ratio.

1. Given a current state x, determine the proposal kernel q(x, dy) of the MCMC step described
above.

2. Compute the acceptation ratio α(x, y) so that the chain has a given distribution π as invariant
distribution.

3. Implement this sampler, where f is given by the uniform distribution on ] − 1, 1[, for two different
target distributions : the first one being a distribution from which we can sample using the inverse
transform method and the second one being of your choice.

4. Evaluate, in each case, the match of your samples with the true distribution.
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