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TP 4: Improve the Metropolis-Hastings algorithm

Exercise 1: Adaptive Metropolis-Hastings within Gibbs sampler
MCMC samplers, such as the Metropolis-Hastings algorithm or Gibbs sampler, require that the user
specifies a transition kernel with a given invariant distribution (the target distribution). These transition
kernels usually depend on parameters which are to be given and tuned by the user. In practice, it is often
difficult (if not impossible) to find the best parameters for such algorithms given a target distribution.
Moreover, if the parameters are not carefully chosen, it may result in a MCMC algorithm performing
poorly as in part A. Adaptive MCMC algorithms is a class of MCMC algorithms which addresses the
problem of parameter tuning by updating automatically some of (if not all) the parameters.

1.A – Metropolis-Hastings within Gibbs sampler

We aim to sample on R2 the target distribution π given by

dπ(x, y) ∝ exp
(

−x2

a2 − y2 − 1
4

(
x2

a2 − y2
)2)

dx dy

where a > 0. We consider a Markov transition kernel P defined by

P = 1
2 (P1 + P2)

where Pi( (x, y) , dx′ dy′ ) for i = 1, 2 is the Markov transition kernel which only updates the i-th
component: this update follows a symmetric random walk proposal mechanism and uses a Gaussian
distribution with variance σ2

i .

1. Implement the MCMC algorithm with kernel P and Hastings-Metropolis filter.

2. Run the algorithm with a = 10, see Figure , and standard deviations of the proposal distributions
chosen as follows: (σ1, σ2) = (3, 3). Plot (i) the trajectory of the Markov chain along the coordi-
nates as well as (ii) the auto-correlation diagram on each coordinate (see pandas.DataFrame.corr).
Discuss the performance of the algorithm in this situation.

3. How could the performance of the above algorithm be improved ? Propose two methods.

1.B – Adaptive Metropolis-Hastings within Gibbs sampler

Let π be a density defined on an open set U of Rd, d ⩾ 2. We consider here a Metropolis-Hastings
within Gibbs algorithm to sample from the target density π. More precisely, the HM-step is a symmetric
random walk one and the proposal distribution is a Gaussian distribution centered at the current state.

As usual, for i ∈ J1, dK, let πi denote the i-th full conditional of π, which is given by:

x−i = {x1, . . . , xi−1, xi+1, . . . , xd} ; πi(xi | x−i) ∝ π(x)

and σ2
i the variance of the corresponding proposal distribution.
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Figure 1: Mean acceptance rate and contour plot of the density – a = 10

Algorithm 1: Metropolis-Hastings (symmetric random walk) within Gibbs Sampler

1 Given x(k) = (x(k)
1 , . . . , x

(k)
d )

2 for i = 1 to d do
3 HM to sample from the target x

(k+1)
i ∼ πi(xi | x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
d ):

4 Proposal: x∗
i ∼ N (x(k)

i , σ2
i )

5 Acceptance ratio α(x∗
i , x

(k)
i ) =

πi(x∗
i | x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
d )

πi(x(k)
i | x

(k+1)
1 , . . . , x

(k+1)
i−1 , x

(k)
i+1, . . . , x

(k)
d )

∧ 1

6 end

In [RR09], the authors propose an adaptive version of the above sampler which automatically adjusts
the variances σ2

1 , . . . , σ2
d of the proposal distributions. We proceed as follows:

• For each of the variables xi, we create an associate variable ℓi defined by ℓi := log(σi) ;

• We initialize all ℓi to zero, which correspond to the unit proposal variance ;

• After the j-th (j ∈ N∗) batch of 50 iterations, each variable ℓi is updated by adding or subtracting
an amount δ(j) in order to make the acceptance rate of proposals for variable xi as close as possible
to 0.24 (proved to be optimal for one-dimensional proposals in certain settings). Specifically, if
the acceptance rate for the i-th variable is greater than 0.24, ℓi is increased with δ(j). Otherwise,
if the rate is lower than 0.24, ℓi is decreased by δ(j).
In practice, we take δ(j) := min(0.01, j−1/2).

1. Implement the adaptative Metropolis-Hastings within Gibbs sampler and test the algorithm on the
density π defined in the part A. Plot for each coordinate: the evolution of the average acceptance
rate, the trajectory of the Markov chain and the auto-correlation diagrams on each coordinate.
Compare the performance of the algorithm with or without adaptation.

2. Also compare the performance of this algorithm on (i) the centered d-dimensional Gaussian
N (0, Σ), where d = 20 and Σ is given in the file http://dept.stat.lsa.umich.edu/~yvesa/
tmalaexcov.txt and (ii) the "banana"-shaped density (d = 20, B = 0.1):

∀x = (x1, . . . , xd) ∈ Rd, fB(x) ∝ exp
(

− x2
1

200 − 1
2
(
x2 + Bx2

1 − 100B
)2 − 1

2
(
x2

3 + . . . + x2
d

))
.
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To go further. . .

The next improvement of the Metropolis-Hastings algorithm we can make is to consider a drift function
in the proposal distribution. Given a positive definite matrix Λ and a scale parameter σ > 0, we consider
a proposal distribution of the form:

qσ,Λ(y | x) = 1
(σ

√
2π)d

1√
det(Λ)

exp
(

− 1
2σ2

[
y − x − σ2

2 ΛD(x)
]⊤Λ−1[y − x − σ2

2 ΛD(x)
])

.

qσ,Λ is the density (with respect to the Lebesgue measure on Rd) of the d-dimensional Gaussian distri-
bution with mean x+ σ2

2 ΛD(x) and variance-covariance matrix σ2Λ. If D vanishes everywhere (D ≡ 0),
the corresponding algorithm is a Metropolis-Hastings Symmetric Random Walk. If the drift D is chosen
such that:

∀x ∈ Rd, D(x) = δ

max(δ, ∥∇ log π(x)∥)∇ log π(x)

for a constant δ > 0, the corresponding algorithm is a Metropolis Adjusted Langevin Algorithm (MALA).
In that case, the proposal distribution includes information on the gradient ∇ log π of the target dis-
tribution π. In [Atc06], the author proposes an adaptive version of the MALA algorithm in which the
parameters σ and Λ are adjusted automatically.

Exercise 2: Sampling from multimodal distributions
We consider a target distribution π with support U ⊂ Rd (d ∈ N∗). When the target distribution is
multi-modal, especially with well-separated modes, classical MCMC algorithms can perform very poorly
and exhibit poor mixing. Indeed, a Metropolis-Hastings algorithm with local proposal can get stuck for
a long time in a local mode of the target distribution.
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Figure 2: Mixture of 20 Gaussian distributions
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2.A – A toy example

In the following, we consider a target distribution π – taken from [LW01] and plotted at Figure 2 –
defined on R2 as a mixture of 20 Gaussian distributions. The target distribution writes:

π(x) =
20∑

i=1

wi√
2πσ2

i

exp
(

− 1
2σ2

i

∥x − µi∥2
)

where, ∀i ∈ {1, . . . , 20}, wi = 0.05 and σi = 0.1. The 20 means µi are defined as follows:

(
µ1, . . . , µ20

)
=

((
2.18
5.76

)
,

(
8.67
9.59

)
,

(
4.24
8.48

)
,

(
8.41
1.68

)
,

(
3.93
8.82

)
,

(
3.25
3.47

)
,

(
1.70
0.50

)
,(

4.59
5.60

)
,

(
6.91
5.81

)
,

(
6.87
5.40

)
,

(
5.41
2.65

)
,

(
2.70
7.88

)
,

(
4.98
3.70

)
,

(
1.14
2.39

)
,(

8.33
9.50

)
,

(
4.93
1.50

)
,

(
1.83
0.09

)
,

(
2.26
0.31

)
,

(
5.54
6.86

)
,

(
1.69
8.11

))
.

1. Write a Metropolis-Hastings Symmetric Random Walk algorithm (you may use your code from
previous tutorial classes) to sample from π.

2. Show that the Metropolis-Hastings algorithm (even the adaptive Metropolis-Hastings algorithm)
fails to sample from π.

2.B – Parallel Tempering

The general idea of the Parallel Tempering (PT) [Gey91, ED05] algorithm is to use tempered versions
of the distribution π and run parallel Metropolis-Hastings algorithms to sample from these tempered
distributions. The tempered distributions are obtained by "warming up" the target distribution π at
different temperatures. At each iteration of the algorithm, a swap between two chains (chains running
at different temperature levels) is proposed. The Parallel Tempering uses the fast mixing of the chains
at high temperature to improve the mixing of the chains at low temperatures.

Let K denote a positive integer. We consider a sequence of temperatures (Ti)1≤i≤K such that:

T1 > T2 > . . . > TK = 1 .

In the Parallel Tempering algorithm, K chains run in parallel: for i ∈ J1, KK, the i-th chain targets the
tempered distribution πi := π

1/Ti ; the distribution of interest corresponds to the lowest temperature,
TK = 1. Let (X(i)

n )n∈N denote the i-th chain, sampling from the tempered distribution πi.
At the n-th iteration of the Parallel Tempering algorithm, a candidate Y

(i)
n+1 for the i-th chain is

proposed using the transition kernel P (i)(X(i)
n , ·) of a Metropolis-Hastings algorithm. The next step

consists in proposing a swap between two different chains (running at different temperatures): given
(i, j) ∈ J1, KK2, with i ̸= j, a swap is proposed with probability α(i, j).

1. Implement the Parallel Tempering algorithm.
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Algorithm 2: Parallel Tempering
1 For all i ∈ J1, KK, initialize X

(i)
0 ;

2 for n = 1 to Niter do
3 For all i ∈ J1, KK, draw Y

(i)
n+1 using the transition kernel P (i)(X(i)

n , ·) and standard MH filter;
4 Choose uniformly (i, j) ∈ J1, KK2, with |i − j| = 1 ;

5 Compute the swap acceptance probability α(i, j) = min
(

1 ,
πi(Y

(j)
n+1) πj(Y

(i)
n+1)

πi(Y
(i)

n+1) πj(Y
(j)

n+1)

)
;

6 Draw U ∼ U([0, 1]) ;
7 if U ⩽ α(i, j) then
8

X
(i)
n+1 = Y

(j)
n+1 and X

(j)
n+1 = Y

(i)
n+1 ;

9 else
10

X
(i)
n+1 = Y

(i)
n+1 and X

(j)
n+1 = Y

(j)
n+1 ;

11 end
12 For all k ∈ J1, KK, k ̸= i, j, set X

(k)
n+1 = Y

(k)
n+1 .

13 end

2. In order to illustrate the performance of the algorithm, use your code to sample from the distri-
bution π of Part A. Use the algorithm with K = 5 and with the following temperatures ladder:

(T1, . . . , T5) = ( 60, 21.6, 7.7, 2.8, 1 ) .

For the Metropolis-Hastings step (Line 3), take as proposal distribution the bivariate Gaussian
distribution centered at X

(i)
n , with variance-covariance matrix τ2

i I2:

∀i ∈ J1, KK, Y
(i)

n+1 ∼ NR2(X(i)
n , τ2

i I2) where τi = 0.25
√

Ti .

The scale parameters τi are tuned to ensure a reasonable acceptance rate in the algorithm.

In practice, the performance of the Parallel Tempering algorithm strongly depends on the choice of
the temperatures ladder, the number of chains and the choice of proposal kernels. For most distribu-
tions, tuning these parameters may be infeasible. In [MMV13], the authors have proposed an adaptive
Parallel Tempering algorithm to address these difficulties.

Exercise 3: Bayesian analysis of a one-way random effects model
We recall that the density of an Inverse-Gamma distribution with positive parameters (a, b) is propor-
tional to

x 7→ 1
xa+1 exp

(
− b

x

)
1R+(x).
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We recall that we can sample y from this distribution by generating x from a gamma distribution of
parameters (a, 1

b ) and then taking y = 1
x . In practice, consider scipy.stats.invgamma or the Statistics

and Machine Learning Toolbox in Matlab.

Assume that we are provided with observations Y = { yi,j , i ∈ J1, NK, j ∈ J1, kiK }. Define k :=∑N
i=1 ki as the total number of observations. We consider the following random effects model:

(i) yi,j is a realization of the variable Yi,j where Yi,j = Xi + εi,j ;

(ii) The random effects X = { Xi, i ∈ J1, NK } are i.i.d from a Gaussian N (µ, σ2) and independent of
the errors ε = { εi,j , i ∈ J1, NK, j ∈ J1, kiK } ;

(iii) The errors ε are i.i.d from the centered Gaussian N (0, τ2) ;

where (µ, σ, τ) are the unknown parameters. Bayesian analysis using this model requires specifying
a prior distribution, for which we consider:

πprior(µ, σ2, τ2) ∝ 1
σ2(1+α) exp

(
− β

σ2

)
1

τ2(1+γ) exp
(

− β

τ2

)
where α, β and γ are known hyper-parameters (Inverse-gamma on σ2, Inverse-gamma on τ2 and
no prior on µ).

1. Write the density of the a posteriori distribution (X, µ, σ2, τ2) up to a normalizing constant.

2. Implement a Gibbs sampler which updates in turn (σ2, τ2, µ, X) one at a time.

3. Implement a Block-Gibbs sampler which updates σ2, then τ2 and then the block (X, µ).

4. Discuss the theoretical performance of these two algorithms.

5. Test your code on a synthetic dataset Y = { yi,j , i ∈ J1, NK, j ∈ J1, kiK } generated from the
previous model.
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