ACAN_T4 CAN and CANFD library for Teensy 4.0 / 4.1
Version 1.1.5

Pierre Molinaro

October 1, 2021

Contents

1 \Versions

2 Features

CAN 2.0B

3 Dataflow

4 A simple example: LoopBackDemoCAN1
5 The CANMessage class

6 Driver instances

7 CRX: pin configuration
7.0 Inputimpedance
7.2 Alternate CRXIPiN o o

8 CTX: pin configuration
8.1 Outputimpedance
8.2 ThemTxPinIsOpenCollectorproperty. i
83 Alternate CTXiPin . . . o . o o

9 Sending data frames
9.1 tryToSendforsendingdataframes o
9.2 Drivertransmit buffersize
9.3 ThetransmitBufferSizemethod,
9.4 ThetransmitBufferCountmethod.
9.5 ThetransmitBufferPeakCountmethod

10 Sending remote frames

10

11

11
11
12

12
12
13
13

14
14
15
15
15
15

16

CONTENTS CONTENTS

11 Sending frames using the tryToSendReturnStatus method 16
12 Retrieving received messages using the receive method 17
12,1 Driverreceive buffersize e 18

12.2 ThereceiveBufferSizemethod 18
12.3 ThereceiveBufferCountmethod 18
12.4 The receiveBufferPeakCountmethod 18

13 Primary filters 19
13.1 Primaryfilterexample 19
13.2 Primary filter as pass-allfilter 20

13.3 Primary filter for matching several identifiers 21

13.4 Primary filterconformance 21
13.5 Thereceivemethodrevisited 22

14 Secondary filters 22
14.1 Secondary filters, without primary filter. 22
14.2 Primary and secondary filters 23

14.3 Secondaryfilteras pass-allfilter. 24
14.4 Secondaryfilter conformance 25
145 Thereceivemethodrevisited 26

15 ThedispatchReceivedMessage method 26
16 The ACAN_T4: :begin method reference 28
16.1 The ACAN_T4::begin method prototype 28
16.2 Theerrorcode i 29
16.2.1 CAN Bit setting too far fromwishedrate 30

16.2.2 CAN Bit inconsistent configurationerror L. 30

16.2.3 Too much primary filterserror. 30

16.3 Primary filters conformance error 30
16.3.1 Too much secondary filterserror 31

16.3.2 Secondary filter conformanceerror.o 31

17 ACAN_T4_Settings class reference 31
17.1 The ACAN_T4_Settings constructor: computation of the CAN bit settings 31
17.2 CANDbittiming consistency 34
17.3 The CANBitSettingConsistencymethod, 34
17.4 TheactualBitRatemethod 35
175 TheexactBitRatemethod 36
17.6 The ppmFromWishedBitRatemethod 36
17.7 The samplePointFromBitStart method 37
17.8 Properties of the ACAN_T4_Settingsclass 37
17.8.1 ThemListenOnlyMode property o oottt 37

17.8.2 The mSelfReceptionMode property 37

CONTENTS CONTENTS
17.8.3 The mLoopBackMode property o o 38

18 CAN controller state 38
18.1 ThecontrollerStatemethod 38
18.2 ThereceiveErrorCountermethod. 38
18.3 ThetransmitErrorCountermethod 38
18.4 TheglobalStatusmethod 39
18,5 TheresetGlobalStatusmethod 39

19 The demoCAN1CAN2CAN3 sketch 39
Il CANFD 41
20 Data flow 41
21 A simple example: LoopBackDemoCAN3FD 42
22 The CANFDMessage class 45
22,1 Properties 45
22.2 Thedefaultconstructor 45
22.3 Constructor from CANMESSAEE . . . o . v v e e 46
22.4 Thetype property o o 46
225 Thelenproperty 47
22.6 Theidxproperty 47
22.7 Thepadmethod 47
228 TheisValidmethod 47

23 Driver instance 48
24 CRX3 pin configuration 48
247 Inputimpedance 48

25 CTX3 pin configuration 48
25.1 Outputimpedance 49
25.2 ThemTxPinIsOpenCollectorproperty. it it 49

26 Sending CAN2.0B and CANFD data frames 50
26.1 tryToSendFDforsendingdataframes 50
26.2 Driver transmitbuffersize 51
26.3 ThetransmitBufferSizemethod 51
26.4 The transmitBufferCountmethod. 51
26.5 The transmitBufferPeakCountmethod 51

27 Sending remote frames in CANFD mode 52
28 Sending frames using the tryToSendReturnStatusFD method 52

CONTENTS CONTENTS
29 Retrieving received messages using the receiveFD method 53
29.1 Driverreceive buffersize 54
29.2 ThereceiveBufferSizemethod 54
29.3 ThereceiveBufferCountmethod 54
29.4 The receiveBufferPeakCountmethod 54

30 CANFD receive filters 55
30.1 Message Buffersin CANFD mode 55
30.2 ThemPayload property o o 55
30.3 TheMBCount function 56
30.4 ThemRXCANFDMBCount property o i e e e e 56
30.5 CANFDFilters . . . o o o 57

31 Defining CANFD filters 58
31.1 CANFDfilterexample 58
31.2 CANFDfilteras pass-allfilter. 59
31.3 CANFD filter for matching several identifiers 59
31.4 CANFDfilter conformance 60
315 ThereceiveFDmethodrevisited 60

32 The dispatchReceivedMessageFD method 61
33 The ACAN_T4: :beginFD method reference 63
33.1 The ACAN_T4::beginFD method prototype 63
332 Theerrorcode o i 63
33.2.1 CAN Bit setting too far from wishedrate 64

33.2.2 CAN Bit inconsistent configurationerror 65

34 ACAN_T4FD_Settings class reference 65
34.1 The ACAN_T4FD_Settings constructor: computation of the CAN bit settings 65
34.2 The CANFDBitSettingConsistencymethod 68
34.3 TheactualArbitrationBitRatemethod 69
34.4 TheactualDataBitRatemethod 70
345 TheexactBitRatemethod 70
34.6 The ppmFromWishedBitRatemethod 71
34.7 ThearbitrationSamplePointFromBitStart method 72
34.8 ThedataSamplePointFromBitStartmethod 72
34.9 Properties of the ACAN_T4FD_Settingsclass 72
34.9.1 ThemListenOnlyMode property i 73

34.9.2 ThemSelfReceptionMode property 73

3493 The mLoopBackMode property o 73

Il Setting the CAN Root Clock 73
35 The three CAN Root Clocks 73

2 FEATURES

36 The ERRO50235 Silicon Bug 73
37 CAN Root Clock API 74
37.17 The ACAN_CAN_ROOT_CLOCK enumeration v v v i e e it e e e e 74
37.2 ThesetCANRootClock function 74
37.3 ThegetCANRootClock function i 75
37.4 The getCANRootClockFrequency function 75
37.5 The getCANRootClockDivisorfunction 75
38 An example: the 615 kbit/s bitrate 75
39 Low bitrate: the 100 bit/s bitrate 76

1 Versions

Version Date Comment

1.1.5 October 1, 2021 Added data_s64, data_s32, data_sl6 and data_s8 to
CANMessage class union members, see section 5 page 10 (thanks
to tomtom@707).

1.1.4 July 31, 2021 Added root CAN Clock API, see section 37 page 74.

1.1.3 July 19, 2021 Fixed FPROPSEG setting (thanks to Liz).

1.1.2 April 21,2021 Added x9 and x10 data bitrate factors (thanks to Pedro Dionisio
Pereira Junior).

1.1.1 April 27,2020 Added dataFloat to CANMessage (thanks to Koryphon)

Added several forgotten volatile

1.1.0 December 31,2019 For compatibility with ACAN2517FD library, the
DataBitRateFactor enumeration is declared outside of the
ACAN_T4FD_Settings class.

1.0.0 October 18, 2019 Initial release Left Justify

2 Features

The ACAN_T4 library is a CAN ("Controller Area Network") driver for Teensy 4.0 / 4.1. It has been designed to

make it easy to start and to be easily configurable: It’s my understanding that the Teensy 3.2 and
3.6 also support CAN, but not CANFD.
» default configuration sends and receives any frame — no default filter to provide;

» efficient built-in CAN and CANFD bit settings computation from user bitrate;
» user can fully define its own CAN and CANFD bit setting values;
» reception filters are easily defined;

» reception filters accept call back functions;

Bryan Miller

Bryan Miller
Left Justify

Bryan Miller
It’s my understanding that the Teensy 3.2 and 3.6 also support CAN, but not CANFD.

3 DATA FLOW

» driver transmit buffer size is customisable;

» driver receive buffer size is customisable;

» overflow of the driver receive buffer is detectable;

» loop back, self reception, listing only FLEXCAN controller modes are selectable;
» Tx pin can be configured (output impedance, open collector, alternate pin);

» Rx pin can be configured (intput pullup/pulldown, alternate pin).

Part |

A short description of the difference between CAN 2.0A and 2.0B might be helpful. From Wikipedia:
“Bosch published several versions of the CAN specification. The latest is CAN 2.0, published in 1991.
CAN 2 OB This specification has two parts. Part A is for the standard format with an 11-bit identifier, and part B is
. for the extended format with a 29-bit identifier. A CAN device that uses 11-bit identifiers is commonly
called CAN 2.0A, and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B.”

The three FLEXCAN modules of the Teensy 4.0 / 4.1 microcontroller handle CAN 2.0B.

3 Data flow

The figure 1 illustrates message flow for sending and receiving CAN messages.

FLEXCAN module is hardware, integrated into the micro-controller. It implements 64 MBs (Message Buffers),
used for the data frame transmit buffer, remote frame transmit buffer(s), reception FIFO and reception filters. The=
§es 64 MBs are used as follows: The

» MB 0-37 implement a 6-messages deep RxFIFO, up to 32 primary filters (see section 13 page 19) and
up to 96 secondary filters (see section 14 page 22);

» MB 38-62 are used for sending remote frames;

» MB 63 is used for sending data frames.

Note. Teensy 3.x FLEXCAN modules implement 16 MBs. So the ACANSetting class has amConfiguration
property that defines the MB assignment. As Teensy 4.0 / 4.1 has 64 MBs, | had removed this property and
defined a non configurable assignment.

Sending messages. The FLEXCAN hardware makes sending data frames different from sending remote frames.
For both, user code calls the tryToSend method — see section 9 page 14 for sending data frames, and sec-
tion 10 page 16 for sending remote frames. The data frames are stored in the Driver Transmit Buffer, before to
be moved by the message interrupt service routine into the data frame transmit buffer. The size of the Driver
Transmit Buffer is 16 by default — see section 9.2 page 15 for changing the default value.

Receiving messages. The FLEXCAN CAN Protocol Engine transmits all correct frames to the reception filters. By
default, they are configured as pass-all, see section 13 page 19 and section 14 page 22 for configuring them.
Messages that pass the filters are stored in the Reception FIFO. Its depth is not configurable — it is always

Bryan Miller
A short description of the difference between CAN 2.0A and 2.0B might be helpful. From Wikipedia:
“Bosch published several versions of the CAN specification. The latest is CAN 2.0, published in 1991. This specification has two parts. Part A is for the standard format with an 11-bit identifier, and part B is for the extended format with a 29-bit identifier. A CAN device that uses 11-bit identifiers is commonly called CAN 2.0A, and a CAN device that uses 29-bit identifiers is commonly called CAN 2.0B.”

Bryan Miller

Bryan Miller

Bryan Miller
The

3 DATA FLOW

available
User code receive
tryToSend dispatchReceivedMessage
remote frame ~ ACAN_T4 driver

data frame

Driver transmit Buffer Driver reception Buffer

(FIFO) (FIFO)
Data frame Remote frame .
transmit buffer transmit buffer(s) Reception FIFO
FLEXCAN; module Reception filters
. 1
CAN Protocol Engine

RS

Figure 1 — Message flow in the ACAN_T4: : cani driver and FLEXCAN; module, 1 <7 < 3

6-message. The message interrupt service routine transfers the messages from Reception FIFO to the Driver
Receive Buffer. The size of the Driver Receive Buffer is 32 by default — see section 12.1 page 18 for changing
the default value. Three user methods are available:

» the available method returns false if the Driver Receive Buffer is empty, and true otherwise;

» the receive method retrieves messages from the Driver Receive Buffer — see section 12 page 17, sec-
tion 13.5 page 22 and section 14.5 page 26;

» the dispatchReceivedMessage method if you have defined primary and / or secondary filters that

name a call-back function — see section 15 page 26.

Sequentiality. The ACAN_T4 driver and the configuration of the FLEXCAN module ensures sequentiality of
data messages. This means that if an user program calls tryToSend first for a message M; and then for a
message Mo, the message M; will be always retrieved by receive or dispatchReceivedMessage before

the message Ms.

4 A SIMPLE EXAMPLE: LOOPBACKDEMOCAN1

4 A simple example: LoopBackDemoCAN1

The LoopBackDemoCAN1 sketch is a sample code for introducing the ACAN_T4 library”. It demonstrates how

to configure the driver, to send a CAN message, and to receive a CAN message

Note it runs without any external hardware, it uses the loop back mode and the self reception mode.

1 |#ifndef __IMXRT1062__

2 #error

3 | #endif

4

5 |#include <ACAN_T4.h>

6

7 |void setup () {

8 pinMode (LED_BUILTIN, OUTPUT) ;

9 Serial.begin (9600) ;

10 while (!Serial) {

11 delay (59) ;

12 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
13 }

14 Serial.println () 3

15 ACAN_T4_Settings settings (125 * 1@00) ; // 125 kbit/s
16 settings.mLoopBackMode = true ;

17 settings.mSelfReceptionMode = true ;

18 const uint32_t errorCode = ACAN_T4::canl.begin (settings) ;
19 if (@ == errorCode) {

20 Serial.println ()

21 }else{

22 Serial.print ()

23 Serial.println (errorCode, HEX) ;

24 }

25 |}

26

27 |static uint32_t gBlinkDate = @ ;

28 |static uint32_t gSendDate = 0 ;

29 |static uint32_t gSentCount = 0 ;

30 | static uint32_t gReceivedCount = 0 ;

31

32 |void loop () {

33 if (gBlinkDate <= millis ()) {

34 gBlinkDate += 500 ;

35 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
36 }

37 CANMessage message ;

38 if (gSendDate <= millis ()) {

39 message.id = 0x542 ;

40 const bool ok = ACAN_T4::canl.tryToSend (message) ;
41 if (ok) {

42 gSendDate += 2000 ;

43 gSentCount += 1 ;

a4 Serial.print ()

45 Serial.println (gSentCount) ;

46 }

1See also the demoCAN1CAN2CAN3 sketch, section 19 page 39.

4 A SIMPLE EXAMPLE: LOOPBACKDEMOCAN1

47 }

48 if (ACAN_T4::canl.receive (message)) {
49 gReceivedCount += 1 ;

50 Serial.print ()

51 Serial.println (gReceivedCount) ;

52 }

53 |}

Line 1 to 3. This ensures the Teensy 4.0 / 4.1 board is selected.
Line 5. This line includes the ACAN_T4 library. Arduino IDE

Line 9 to 13. Start serial (the 9600 argument value is ignored by Teensy), and blink quickly until the Arduino
Serial Monitor is opened.

Line 15. Configuration is a four-step operation. This line is the first step. It instanciates the settings object
of the ACAN_T4_Settings class. The constructor has one parameter: the wished CAN bitrate. It returns
a settings object fully initialized with CAN bit settings for the wished bitrate, and default values for other
configuration properties.

Lines 16 and 17. This is the second step. You can override the values of the properties of settings object.
Here, the mLoopBackMode and mSelfReceptionMode properties are set to true — they are false by de-
fault. Theses two properties fully enable loop back, that is you can run this demo sketch even it you have no
connection to a physical CAN network. The section 17.8 page 37 lists all properties you can override.

Line 18. This is the third step, configuration of the ACAN_T4: : canl driver with settings values. You cannot
change the ACAN_T4: : canl name — see section 6 page 11. The driver is configured for being able to send any
(standard / extended, data / remote) frame, and to receive all (standard / extended, data / remote) frames. If
you want to define reception filters, see section 13 page 19 and section 14 page 22.

Lines 19 to 24. Last step: the configuration of the ACAN_T4: : can1l driver returns an error code, stored in the
errorCode constant. It has the value 0 if all is ok — see section 16.2 page 29.

Line 27. The gBlinkDate global variable is used for blinking Teensy LED every 0.5 s.
Line 28. The gSendDate global variable is used for sending a CAN message every 2 s.
Line 29. The gSentCount global variable counts the number of sent messages.

Line 30. The gReceivedCount global variable counts the number of received messages.
Line 33 to 36. Blink Teensy LED.

Line 37. The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data — see section 5 page 10.

Line 38. It tests if it is time to send a message.

Line 39. Set the message identifier. In a real code, we set here message data, and for an extended frame the
ext boolean property.

Line 40. We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSend method returns false if the buffer is full, and true
otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer is successful or not:

Bryan Miller

Bryan Miller
Arduino IDE

5 THE CANMESSAGE CLASS

we have no way to know if the frame is actually sent on the the CAN network.

Lines 41 to 46. We act the successfull transfer by setting gSendDate to the next send date and incrementing
the gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSend method
will be called on the execution of the loop function.

Line 48. As the FLEXCAN module is configured in loop back mode (see lines 16 and 17), all sent messages
are received. The receive method returns false if no message is available from the driver reception buffer.
It returns true if a message has been successfully removed from the driver reception buffer. This message is
assigned to the message object.

Lines 49 to 51. It a message has been received, the gReceivedCount is incremented and displayed.

5 The CANMessage class

Note. The CANMessage class is declared in the CANMessage . h header file. The class declaration is protected
by an include guard that causes the macro GENERIC_CAN_MESSAGE_DEFINED to be defined. The ACAN2515
driver contains an identical CANMessage . h file header, enabling using both ACAN driver and ACAN2515 driver
in a sketch.

A CAN message is an object that contains all CAN frame user informations. All properties are initialized by
default, and represent a standard data frame, with an identifier equal to 0, and without any data.

class CANMessage {
public : uint32_t id = @ ; // Frame identifier
public : bool ext = false ; // false -> standard frame, true -> extended frame
public : bool rtr = false ; // false -> data frame, true -> remote frame
public : uint8_t idx = @ ; // This field is used by the driver

public : uint8_t len = @ ; // Length of data (@ ... 8)

public : union {
uint64_t data64 ; // Caution: subject to endianness
int64_t data_s64 5 // Caution: subject to endianness
uint32_t data32 [2] ; // Caution: subject to endianness
int32_t data_s32 [2] ; // Caution: subject to endianness
float dataFloat [2] ; // Caution: subject to endianness
uintil6_t datale [4] ; // Caution: subject to endianness

intl6_t data_s16 [4] ; // Caution: subject to endianness
int8_t data_s8 [81 ;
uint8_t data [8] = {0, @, 0, 0, 0, 0, 0, O} ;

Y

Y

Note the message datas are defined by an union. So message datas can be seen as height bytes, four 16-bit
unsigned integers, two 32-bit, one 64-bit or two 32-bit floats. Be aware that multi-byte integers and floats
are subject to endianness (Cortex M7 processor of Teensy 4.x are little-endian).

The idx property is not used in CAN frames, but:

» for a received message, it contains the acceptance filter index (see section 13.5 page 22 and section
14.5 page 26);

10

7 CRXI PIN CONFIGURATION

» itis not used on sending messages.

6 Driver instances

Driver instances are global variables. You cannot choose their names, they are defined by the library.

Module Driver name

FLEXCAN1 ACAN_T4::canl
FLEXCAN2 ACAN_T4::can2
FLEXCAN3 ACAN_T4::can3

Table 1 — Driver global variables

Note. Drivers variables are ACAN_T4 class static properties. This choice may seem strange. However, a com-
mon error is to declare its own driver variable:

‘ACAN_T4 myCAN ; // Don't do that, it is an error !!!

Declaring drivers variables as ACAN_T4 class static properties? enables the compiler to raise an error if you try
to declare your own driver variable.

7 CRX: pin configuration

You can change CRX: pin following settings:

» its input impedance (section 7.1 page 11, 47k pullup by default);

» choosing an alternate pin (section 7.2 page 12).

7.1 Input impedance

An input pin of the Teensy 4.0 / 4.1 micro-controller has different pullup / pulldown configurations. Five set-
tings are available:

class ACAN_T4_Settings {

public: typedef enum : uint8_t {
NO_PULLUP_NO_PULLDOWN = @, // PUS = @, PUE = @, PKE = @

PULLDOWN_100k = @beell, // PUS = @, PUE = 1, PKE = 1
PULLUP_47k = @be111, // PUS =1, PUE = 1, PKE = 1
PULLUP_100k = @ble1l, // PUS = 2, PUE = 1, PKE =1
PULLUP_22k = @b1111 // PUS = 3, PUE = 1, PKE = 1

} RxPinConfiguration ;

}s

2The ACAN_T4 constructor is declared private.

11

7.2 Alternate CRXi pin 8 CTXI PIN CONFIGURATION

By default, PULLUP_47k is selected. For setting an other value, write for example:

‘ settings.mRxPinConfiguration = ACAN_T4_Settings::PULLUP_100k ;

7.2 Alternate CRX: pin

FLEXCAN1 accepts one alternate input pin, FLEXCAN2 and FLEXCAN3 have no alternate input pin on Teensy
4.0/ 4.1 (table 2).

Module Default Rx pin Alternate Rx pin

FLEXCAN1 #23 #13
FLEXCAN2 #1 no alternate pin
FLEXCAN3 #30 no alternate pin

Table 2 — Teensy 4.0 / 4.1 CAN Rx pins

The mRxPin property of the ACAN_T4_Settings class specifies the pin number. By default, it is set to 255,
meaning using default pin.

For example, for using FLEXCAN1 alternate pin, write:

‘ settings.mRxPin = 13 ;

If you select an invalid pin number, the error kInvalidRxPin is raised (table 7).

8 CTX: pin configuration

You can change CTXi pin following settings:

» its output impedance (section 8.1 page 12, 781 by default);
= push/pull or open collector (section 8.2 page 13);

» choosing an alternate pin (section 8.3 page 13).

8.1 Output impedance

An output pin of the Teensy 4.0 / 4.1 micro-controller has a programmable output impedance. Seven settings
are available3:
Theses settings are defined by an enumerated type:
class ACAN_T4_Settings {
public: typedef enum {

IMPEDANCE_R® = 1,
IMPEDANCE_R@_DIVIDED_BY 2 = 2,

3 MX RT1060 Crossover Processors for Consumer Products, IMXRT1060CEC, Rev. 0.1, 04/2019, Table 27 page 38.

12

82 ThemTxPinIsOpenCollector property 8 CTXI PIN CONFIGURATION

Symbol Typical value at 3.3V
ACAN_T4_Settings::IMPEDANCE_RO 157 Q
ACAN_T4_Settings::IMPEDANCE_R@_DIVIDED BY 2 78(Q
ACAN_T4_Settings::IMPEDANCE_R@_DIVIDED BY 3 53
ACAN_T4_Settings::IMPEDANCE_RO_DIVIDED BY 4 39
ACAN_T4 Settings::IMPEDANCE_R@ DIVIDED BY 5 320
ACAN_T4 Settings::IMPEDANCE_RO DIVIDED BY 6 260
ACAN_T4 Settings::IMPEDANCE_RO DIVIDED BY 7 23Q

Table 3 — GPIO output buffer average impedance, 3.3 V

IMPEDANCE_RO_DIVIDED_BY_3
IMPEDANCE_RO_DIVIDED_BY_4
IMPEDANCE_R@_DIVIDED_BY_5
IMPEDANCE_RO_DIVIDED_BY_6
IMPEDANCE_R@_DIVIDED_BY_7 =
} TxPinOutputBufferImpedance ;

1} n
N oo v bhw
- -

-

-

Y

By default, IMPEDANCE_RO_DIVIDED_BY_2 is selected. For setting an other value, write:

‘ settings.mTxPinOutputBufferImpedance = ACAN_T4_Settings::IMPEDANCE_RO_DIVIDED_BY_7;

8.2 ThemTxPinIsOpenCollector property

When the mTxPinIsOpenCollector property is set to true, the RECESSIVE output state puts the Tx pin
Hi-Z, instead of driving high. The Tx pin is always driving low in DOMINANT state.

Output state Tx Pin Output Output state Tx Pin Output
DOMINANT 0 DOMINANT (%]
RECESSIVE 1 RECESSIVE Hi-Z

(@) mTxPinIsOpenCollector is false (default) (b) mTxPinIsOpenCollector is true

Table 4 — Tx pin output, following the mTxPinIsOpenCollector property setting

8.3 Alternate CTX: pin

FLEXCAN1 accepts one alternate output pin, FLEXCAN2 and FLEXCAN3 have no alternate output pin on Teensy
4.0/ 4.1 (table 5).

The mTxPin property of the ACAN_T4_Settings class specifies the pin number. By default, it is set to 255,
meaning using default pin.

For example, for using FLEXCAN1 alternate pin, write:

‘ settings.mTxPin = 11 ;

13

9 SENDING DATA FRAMES

Module Default Tx pin Alternate Tx pin

FLEXCAN1 #22 #11
FLEXCAN2 #0 no alternate pin
FLEXCAN3 #31 no alternate pin

Table 5 — Teensy 4.0 / 4.1 CAN Tx pins

If you select an invalid pin number, the error kInvalidTxPin is raised (table 7).

9 Sending data frames

Note. This section applies only to data frames. For sending remote frames, see section 10 page 16.

9.1 tryToSend for sending data frames
Call the method tryToSend for sending data frames; it returns:

» true if the message has been successfully transmitted to driver transmit buffer; note that does not
mean that the CAN frame has been actually sent;

» false if the message has not been successfully transmitted to driver transmit buffer, it was full.

Soitis wise to systematically test the returned value. One way to achieve this is to loop while there is no room
in driver transmit buffer:

while (!ACAN_T4::canl.tryToSend (message)) {
yield () ;
}

A better way is to use a global variable to note if message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {
CANMessage message ;
if (gSendDate < millis ()) {
// Initialize message properties
const bool ok = ACAN_T4::canl.tryToSend (message) ;
if (ok) {
gSendDate += 2000 ;
}
}
¥

An other hint to use a global boolean variable as a flag that remains true while the frame has not been sent.

static bool gSendMessage = false ;

14

9.2 Driver transmit buffer size 9 SENDING DATA FRAMES

void loop () {

if (frame_should_be_sent) {
gSendMessage = true ;

}

if (gSendMessage) {
CANMessage message ;
// Initialize message properties
const bool ok = ACAN_T4::canl.tryToSend (message) ;
if (ok) {
gSendMessage = false ;
}
}

9.2 Driver transmit buffer size

By default, driver transmit buffer sizeis 16. You can change this default value by setting themTransmitBufferSize
property of settings variable:

ACAN_T4_Settings settings (125 * 1000) ;
settings.mTransmitBufferSize = 30 ;
const uint32_t errorCode = ACAN_T4::canl.begin (settings) ;

As the size of CANMessage class is 16 bytes, the actual size of the driver transmit buffer is the value of
settings.mTransmitBufferSize * 16.

9.3 The transmitBufferSize method , _ ,
settings.mTransmitBufferSize

ThetransmitBufferSize method returns the size of the driver transmit buffer, thatis the value of settings mTransmitBuf

‘const uint32_t s = ACAN_T4::canl.transmitBufferSize () ;

9.4 The transmitBufferCount method

The transmitBufferCount method returns the current number of messages in the transmit buffer.

‘const uint32_t n = ACAN_T4::canl.transmitBufferCount () ;

9.5 The transmitBufferPeakCount method

The transmitBufferPeakCount method returns the peak value of message count in the transmit buffer.

‘const uint32_t max = ACAN_T4::canl.transmitBufferPeakCount () ;

15

Bryan Miller

Bryan Miller
settings.mTransmitBufferSize

11 SENDING FRAMES USING THE TRYTOSENDRETURNSTATUS METHOD

Il the transmit buffer is full when tryToSend is called, the return value is false. In such case, the following
calls of transmitBufferPeakCount will return transmitBufferSize ()+1.

So, when transmitBufferPeakCount returnsavalue lower orequal to transmitBufferSize (),itmeans
that calls to tryToSend have always returned true.

10 Sending remote frames

Note. This section applies only to remote frames. For sending data frames, see section 9 page 14.
The hardware design of the FLEXCAN module makes sending remote frames different from data frames.

However, for sending remote frames, you also invoke the tryToSend method. This method understands if a
remote frame should be sent, the rtr property of its argument is set (it is cleared by default, denoting a data
frame).

CANMessage message ;
message.rtr = true ; // Remote frame

const bool sent = ACAN_T4::canl.tryToSend (message) ;

11 Sending frames using the tryToSendReturnStatus method

‘uint32_t ACAN_T4::tryToSendReturnStatus (const CANMessage & inMessage) ;

This method is functionally identical to the tryToSend method, the only difference is the detailled return
status:

» 0if message has been successfully submitted (the call to the tryToSend method would have returned
true);

» non zero if message has not been successfully submitted (the call to the tryToSend method would
have returned false).

A non-zero return value is a bit field that details the error, as listed in table 6.

BitIndex Constant Comment
@ kTransmitBufferOverflow Trying to send a data frame, but the transmit buffer is
full (retry later).
1 kNoAvailableMBForSendingRemoteFrame Trying to send a remote frame, but currently there is
no available Message Buffer (retry later).
5 kFlexCANinCANFDBMode CAN3 is in CANFD mode, not CAN 2.0B mode.

Table 6 — tryToSendReturnStatus method returned status bits

16

12 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

12 Retrieving received messages using the receive method

There are two ways for retrieving received messages :

» using the receive method, as explained in this section;

» using the dispatchReceivedMessage method (see section 15 page 26).

This is a basic example:

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const uint32_t errorCode = ACAN_T4::canl.begin (settings) ; // No receive filter

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) {
// Handle received message

The receive method:

» returns false if the driver receive buffer is empty, message argument is not modified;

» returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const uint32_t errorCode = ACAN_T4::canl.begin (settings) ; // No receive filter

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) {
if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is 0x123456
}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542

17

12.1 Driver receive buffer size 12 RETRIEVING RECEIVED MESSAGES USING THE RECEIVE METHOD

The handle_myMessage_@ function has the following header:

void handle_myMessage_© (const CANMessage & inMessage) {

}

Soarethetheaderof the handle_myMessage_1 and the handle_myMessage_2 functions.

The same is true for

12.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change this default value by setting the mReceiveBufferSize
property of settings variable:

ACAN_T4_Settings settings (125 * 1000) ;
settings.mReceiveBufferSize = 100 ;
const uint32_t errorCode = ACAN_T4::canl.begin (settings) ;

As the size of CANMessage class is 16 bytes, the actual size of the driver receive buffer is:

settings.mReceiveBufferSize x 16

12.2 The receiveBuffersSize method

The receiveBufferSize method returns the size of the driver receive buffer, thatis the value of settings.
mReceiveBufferSize.

‘const uint32_t s = ACAN_T4::canl.receiveBufferSize () ;

12.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

‘const uint32_t n = ACAN_T4::canl.receiveBufferCount () ;

12.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive buffer.

‘const uint32_t max = ACAN_T4::canl.receiveBufferPeakCount () ;

Note the driver receive buffer may overflow, if messages are not retrieved (by calls of the receive or the
dispatchReceivedMessage methods). If an overflow occurs, further calls of ACAN_T4::canl.receive-
BufferPeakCount () return ACAN_T4::canl.receiveBufferSize ()+1.

18

Bryan Miller

Bryan Miller
The same is true for

13 PRIMARY FILTERS

13 Primary filters

A first step is to define receive filters*. The receive filters are set to the FLEXCAN module, so filtering is per-
formed by hardware, without any CPU charge. The messages that pass the filters are transfered into the
FLEXCAN RxFIFO by the FLEXCAN module, and transfered info the driver receive buffer by the driver. So the
receive method only gets messages that have passed the filters.

The driver lets you t6 define two kinds of filters: primary filters and secondary filters®. Making the difference is
required by FLEXCAN hardware design: primary filters are more @oWEHEEl than secondary filters.

powerful

13.1 Primary filter example

For defining primary filters®, you write:

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, ©0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1
ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2
Y

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters, // The filter array
3) ; // Filter array size

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) { // Only frames that pass a filter are retrieved
if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is 0x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542

Each element of the primaryFilters constant array defines an acceptance filter. Should be specified’:

» the required kind: data frames (kData) or remote frames (kRemote);

» the required format: standard frames (kStandard) or extended frames (kExtended);

“The second step is to use the dispatchReceivedMessage method instead of the receive method, see section 15 page 26.

5The primary filters and secondary filters terms are used in this document for simplicity. FLEXCAN documentation names them respec-
tively Rx FIFO filter Table Elements Affected by Rx Individual Masks and Rx FIFO filter Table Elements Affected by Rx FIFO Global Mask.

8For secondary filters, see section 14 page 22.

There is a fourth optional argument, that is NULL by default — see section 15 page 26.

19

Bryan Miller

Bryan Miller

Bryan Miller
powerful

Bryan Miller

13.2 Primary filter as pass-all filter 13 PRIMARY FILTERS

» the required identifier value.

Maximum number of primary filters. The number of primary filters is limited by hardware to 32.

Test order. The FLEXCAN hardware examines the filtersin the increasing order of theirindexesinthe primaryFilters
constant array. As soon as a match occurs, the message is transfered to Rx FIFO buffer and the examination
process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match. In the next example, the
Filter #3 will never match, as it is identical to filter #1.

void setup () {

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, ©0x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1

ACANPrimaryFilter (kRemote, kStandard, 0x542), // Filter #2

ACANPrimaryFilter (kData, kStandard, 0x234) // Filter #3
Y

13.2 Primary filter as pass-all filter

You can specify a primary filter that matches any frame:

‘ ACANPrimaryFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, ©x123456), // Filter #0

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1
ACANPrimaryFilter (kRemote, kStandard, ©x542), // Filter #2
ACANPrimaryFilter () // Filter #3

} 5 // Filter #3 catches any message that did not match filters #0, #1 and #2

Be aware if the pass-all filter is not the last one, following ones will never match.

void setup () {

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0
ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1
ACANPrimaryFilter (), // Filter #2
ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #3
} ; // Filter #3 will never match

20

13.3 Primary filter for matching several identifiers 13 PRIMARY FILTERS

13.3 Primary filter for matching several identifiers

A primary filter can be configured for matching several identifiers®. You provide two values: a filter_mask
andafilter_acceptance. A message with an identifier is accepted if:

filter_mask & identifier = filter_acceptance

The & operator is the bit-wise and operator.

Let's take an example: the filter should match standard data frames with identifiers equal to @x540, 8x541,
0x542 and ©x543. The four identifiers differs by the two lower bits. As a standard identifiers are 11-bits wide,
the filter_mask is @x7FC. The filter acceptance is @x540. The filter is declared by:

ACANPrimaryFilter (kData, // Accept only data frames

kStandard, // Accept only standard frames
Ox7FC, // Filter mask
0x540) // Filter acceptance

For a standard frame (11-bit identifier), both filter_mask and a filter_acceptance should be lower or
equal to @x7FF.

For a extended frame (29-bit identifier), both filter mask and a filter_acceptance should be lower or
equal to @x1FFF_FFFF.

Be aware that the filter_mask and a filter_acceptance mustalso conform to the following constraint:
if a bitis clear in the filter_mask, the corresponding bit of the filter_acceptance should also be clear.
In other words, filter_mask anda filter_acceptance should check:

filter_mask & filter_acceptance = filter_acceptance

For example, the filter mask @x7FC and the filter acceptance @x541 do not conform because the bit O of

filter_mask s clear and the bit O of the filter acceptance is set. Maybe work out an example showing the hex and

binary representations of the filter_mask and
filter_acceptance calculations. This would should
the logical AND function and better explain the
math behind the filter.

A non conform filter may never match.

13.4 Primary filter conformance

The pass-all primary filter (section 13.2 page 20) always conforms.
For a primary filter for matching several identifiers, see section 13.3 page 21.

For a primary filter for one single identifier:

» for a standard frame (11-bit identifier), the given identifier value should be lower or equal to @x7FF;

» foraextended frame (29-bitidentifier), the given identifier value should be lower or equal to ©x1FFF_FFFF.

87 secondary filter cannot be configured for matching several identifiers.

21

Bryan Miller
Maybe work out an example showing the hex and binary representations of the filter_mask and filter_acceptance calculations. This would should the logical AND function and better explain the math behind the filter.

13.5 The receive method revisited 14 SECONDARY FILTERS

If one or more primary filters do not conform, the execution of the begin method returns an error — see table
7 page 29.

13.5 The receive method revisited

The receive method retrieves a received message. When you define primary filters, the value of the idx
property of the message is the matching filter index. For example:
void setup () {

ACAN_T4_Settings settings (125 * 1000) ;

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #9©

ACANPrimaryFilter (kData, kStandard, 0x234), // Filter #1
ACANPrimaryFilter (kRemote, kStandard, 0x542) // Filter #2
Y

const uint32_t errorCode = ACAN_T4::canl.begin (settings, primaryFilters, 3) ;

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) { // Only frames that pass a filter are retrieved
switch (message.idx) {
case O:
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
break ;
case 1:
handle_myMessage_1 (message) ; // Standard data frame, id is ©0x234
break ;
case 2:
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542
break ;
default:
break ;

An improvement is to use the dispatchReceivedMessage method — see section 15 page 26.

14 Secondary filters
Depending from the configuration, you can define up to 96 secondary filters.

14.1 Secondary filters, without primary filter

This is an example without primary filter, and with secondary filters:

22

14.2 Primary and secondary filters 14 SECONDARY FILTERS

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kExtended, ©x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, ©x234), // Filter #1
ACANSecondaryFilter (kRemote, kStandard, @x542) // Filter #2
Y

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
NULL, ©, // No primary filter
secondaryFilters, // The filter array
3) ; // Filter array size

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) { // Only frames that pass a filter are retrieved
if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542

Each element of the secondaryFilters constant array defines an acceptance filter. Should be specified®:

» the required kind: data frames (kData) or remote frames (kRemote);
» the required format: standard frames (kStandard) or extended frames (kExtended);

» the required identifier value.

Maximum number of secondary filters. The number of secondary filters is limited by hardware to 96.

Test order. The FLEXCAN hardware examines the filters in the increasing order of theirindexes inthe secondaryFilters
constant array. As soon as a match occurs, the message is transfered to Rx FIFO buffer and the examination
process is completed. If no match occurs, the message is lost.

A consequence is if a filter appears twice, the second occurrence will never match.

14.2 Primary and secondary filters

This is an example with one primary filter, and two secondary filters:

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

SThere is a fourth optional argument, that is NULL by default — see section 15 page 26.

23

14.3 Secondary filter as pass-all filter 14 SECONDARY FILTERS

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, 0x123456), // Filter #0

Y

const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1
ACANSecondaryFilter (kRemote, kStandard, ©x542) // Filter #2

Y

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters,
1, // Primary filter array size
secondaryFilters,
2) ; // Secondary filter array size

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) { // Only frames that pass a filter are retrieved
if (!message.rtr && message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
}else if (!message.rtr && !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
}else if (message.rtr && !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542

Test order. The FLEXCAN hardware performs sequentially:

» testing the primary filters in the increasing order of their indexes in the primaryFilters constant
array;

» as soon as a match with a primary filter occurs, the message is transfered to Rx FIFO buffer and the
examination process is completed;

» ifnomatch occurs, testing the secondary filters in the increasing order of theirindexes in the secondaryFilters
constant array;

» as soon as a match with a secondary filter occurs, the message is transfered to Rx FIFO buffer and the
examination process is completed;

» if no match occurs, the message is lost.

A consequenceis if afilter appears twice, the second occurrence will never match. If a secondary filter matches
the same message that a primary filter, the secondary filter will never match.

as

14.3 Secondary filter as pass-all filter

You can specify a secondary filter that matches any frame:

‘ ACANSecondaryFilter ()

24

Bryan Miller

Bryan Miller
as

14.4 Secondary filter conformance 14 SECONDARY FILTERS

You can use it for accepting all frames that did not match previous filters:

void setup () {

const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kExtended, ©x123456), // Filter #0

ACANSecondaryFilter (kData, kStandard, ©0x234), // Filter #1
ACANSecondaryFilter (kRemote, kStandard, ©x542), // Filter #2
ACANSecondaryFilter () // Filter #3

} 5 // Filter #3 catches any message that did not match filters #0, #1 and #2

Be aware if the pass-all filter is not the last one, following ones will never match.

void setup () {

const ACANSecondaryFilter primaryFilters [] = {
ACANSecondaryFilter (kData, kExtended, ©x123456), // Filter #0
ACANSecondaryFilter (kData, kStandard, 0x234), // Filter #1
ACANSecondaryFilter (), // Filter #2
ACANSecondaryFilter (kRemote, kStandard, ©x542) // Filter #3
} ;5 // Filter #3 will never match

If you use a primary pass-all filter, secondary filters will never match:

void setup () {

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, ©0x123456) // Filter #0
ACANPrimaryFilter (), // Filter #1 - pass-all
Y
const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kStandard, ©x234), // Filter never matches
ACANSecondaryFilter (kRemote, kStandard, ©x542) // Filter never matches

} s

14.4 Secondary filter conformance

The pass-all secondary filter (section 14.3 page 24) always conforms.

For a standard frame (11-bit identifier), a secondary filter definition is conform if the given identifier value is
lower or equal to @x7FF. will

For a extended frame (29-bit identifier), a secondary filter definition i§ conform if the given identifier value is

lower or equal to @x1FFF_FFFF. will

25

Bryan Miller

Bryan Miller

Bryan Miller
will

Bryan Miller
will

14.5 The receive method revisited 15 THEDISPATCHRECEIVEDMESSAGE METHOD

14.5 The receive method revisited

The receive method retrieves a received message. \When you define primary and secondary filters, the value
of the idx property of the message is the matching filter index. Filters are numbering from O, starting by
the first element of the first primary filter array until the last one, and continuing from the first element of
the secondary filter array, until its last element. So the the idx property of the message can be used for
dispatching the received message:

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, ©x123456), // Filter #0

Y

const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kStandard, ©x234), // Filter #1
ACANSecondaryFilter (kRemote, kStandard, 0x542) // Filter #2

Y

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters, 1,
secondaryFilters, 2) ;

void loop () {
CANMessage message ;
if (ACAN_T4::canl.receive (message)) { // Only frames that pass a filter are retrieved
switch (message.idx) {
case @:
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
break ;
case 1:
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
break ;
case 2:
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542
break ;
default:
break ;

An improvement is to use the dispatchReceivedMessage method — see section 15 page 26.

15 ThedispatchReceivedMessage method

The last improvement is to call the dispatchReceivedMessage method — do not call the receive method
any more. You can use it if you have defined primary and / or secondary filters that name a call-back function.

26

15 THEDISPATCHRECEIVEDMESSAGE METHOD

The primary and secondary filter constructors have as a last argument a call back function pointer. It defaults
to NULL, so until now the code snippets do not use it.

For enabling the use of the dispatchReceivedMessage method, you add to each filter definition as last ar-
gument the function that will handle the message. In the 1oop function, call the dispatchReceivedMessage
method: it dispatches the messages to the call back functions.

void setup () {
ACAN_T4_Settings settings (125 * 1000) ;

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)
Y
const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kStandard, ©x234, handle_myMessage_1),
ACANSecondaryFilter (kRemote, kStandard, ©x542, handle_myMessage_2)
Y
const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters, 1,
secondaryFilters, 2) ;

void loop () {
ACAN_T4::canl.dispatchReceivedMessage () ; // Do not use ACAN_T4::canl.receive any more

The dispatchReceivedMessage method handles one message at a time. More precisely:

« if it returns false, the driver receive buffer was empty;

» if it returns true, the driver receive buffer was not empty, one message has been removed and dis-
patched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {
while (ACAN_T4::canl.dispatchReceivedMessage ()) {
}

If afilter definition does not name a call back function, the corresponding messages are lost. In the code below,
filter #1 does not name a call back function, standard data frames with identifier @x234 are lost.

void setup () {

const ACANPrimaryFilter primaryFilters [] = {
ACANPrimaryFilter (kData, kExtended, 0x123456, handle_myMessage_0)
Y
const ACANSecondaryFilter secondaryFilters [] = {
ACANSecondaryFilter (kData, kStandard, ©x234), // Filter #1
ACANSecondaryFilter (kRemote, kStandard, ©x542, handle_myMessage 2)

27

16 THEACAN_T4::BEGIN METHOD REFERENCE

The dispatchReceivedMessage method has an optional argument — NULL by default: a function name.
This function is called for every message that pass the receive filters, with an argument equal to the matching
filter index:

void filterMatchFunction (const uint32_t inFilterIndex) {

void loop () {
ACAN_T4::canl.dispatchReceivedMessage (filterMatchFunction) ;

You can use this function for maintaining statistics about receiver filter matches.

16 The ACAN_T4: :begin method reference

16.1 The ACAN_T4: :begin method prototype

The begin method prototype is:

uint32_t ACAN_T4::begin (const ACAN_T4_Settings & inSettings,
const ACANPrimaryFilter inPrimaryFilters [] = NULL,
const uint32_t inPrimaryFilterCount = 0,
const ACANSecondaryFilter inSecondaryFilters [] = NULL,
const uint32_t inSecondaryFilterCount = 0)

The four last arguments have default values.

Omitting the last argument makes no secondary filter is defined:

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters, primaryFilterCount,
secondaryFilters) ;
means
Omitting the last two arguments fMakes no secondary filter is defined:

‘const uint32_t errorCode = ACAN_T4::canl.begin (settings, primaryFilters, primaryFilterCount) ;

Omitting the last three or the last four arguments makes no primary and no secondary filter is defined — so
any (data / remote, standard / extended) frame is received:

‘const uint32_t errorCode = ACAN_T4::canl.begin (settings, primaryFilters) ;

‘const uint32_t errorCode = ACAN_T4::canl.begin (settings)

E}

28

Bryan Miller

Bryan Miller
means

16.2 The error code

16 THEACAN_T4::BEGIN METHOD REFERENCE

16.2 The error code

The begin method returns an error code. The value @ denotes no error. Otherwise, you consider every bit
as an error flag, as described in table 7. An error code could report several errors. Bits from O to 11 are ac-
tually defined by the ACAN_T4_Settings class and are also returned by the CANBitSettingConsistency
method (see section 17.3 page 34). Bits from 12 are defined by the ACAN_T4 class.

Bit number

W 00 N O U1 A W N P O

W N W N DNDNDNDNNPR R
R O ® 0 N O U1 B O

Comment

mBitRatePrescaler ==
mBitRatePrescaler > 256
mPropagationSegment ==
mPropagationSegment > 8
mPhaseSegmentl ==
mPhaseSegmentl > 8
mPhaseSegment2 ==
mPhaseSegment2 > 8

MRIW ==

mRIW > 4

mRIW > mPhaseSegment2
mPhaseSegmentl == 1 and triple sampling
Inconsistent CAN Bit configuration
Invalid Rx pin selection

Invalid Tx pin selection

Secondary filter conformance error
Primary filter conformance error
Too much secondary filters

Too much primary filters

Link

section 16.2.2 page 30
section 8.3 page 13
section 7.2 page 12
section 16.3.2 page 31
section 16.3 page 30
section 16.3.1 page 31
section 16.2.3 page 30

Table 7 — The ACAN_T4: :begin method error codes

The ACAN_T4_Settings class defines static constant properties that can be used as mask error:

public:
public:
public:
public:
public:
public:
public:
public:
public:
public:
public:
public:

static
static
static
static
static
static
static
static
static
static
static
static

const
const
const
const
const
const
const
const
const
const
const
const

uint32_t kBitRatePrescalerIsZero =1<< ©
uint32_t kBitRatePrescalerIsGreaterThan256 =1 << 1
uint32_t kPropagationSegmentIsZero = 1< 2 ;
uint32_t kPropagationSegmentIsGreaterThan8 =1 << 3 ;
uint32_t kPhaseSegmentlIsZero =1<< 4 ;
uint32_t kPhaseSegmentlIsGreaterThan8 = 1< 5 ;
uint32_t kPhaseSegment2IsZero = 1< 6 ;
uint32_t kPhaseSegment2IsGreaterThan8 =1<< 7 ;
uint32_t kRJIWIsZero = 1< 8
uint32_t kRJIWIsGreaterThan4 =1<< 9
uint32_t kRJIWIsGreaterThanPhaseSegment2 =1 << 10
uint32_t kPhaseSegmentlIslAndTripleSampling = 1 << 11

The ACAN_T4 class defines static constant properties that can be used as mask error:

public:
public:
public:
public:

static
static
static
static

const
const
const
const

uint32_t kTooMuchPrimaryFilters =1 << 31 ;
uint32_t kNotConformPrimaryFilter =1 << 30 ;
uint32_t kTooMuchSecondaryFilters =1 << 29 ;
uint32_t kNotConformSecondaryFilter = 1 << 28 ;

29

16.3 Primary filters conformance error 16 THEACAN_T4::BEGIN METHOD REFERENCE

public: static const uint32_t kInvalidTxPin =1 << 27 ;
public: static const uint32_t kInvalidRxPin =1 << 26 ;
public: static const uint32_t kCANBitConfiguration =1 << 25 ;

Fo

=

example, you can write:

const uint32_t errorCode = ACAN_T4::canl.begin (settings,
primaryFilters, primaryFilterCount,
secondaryFilters, secondaryFilterCount) ;
if (errorCode != 0) {
// Error(s)
if (errorCode & ACAN_T4::kTooMuchPrimaryFilters) {
// Error: too much primary filters

}

16.2.1 CAN Bit setting too far from wished rate

This error is raised when the mBitConfigurationClosedToWishedRate of the settings object is false.
This means that the ACAN_T4_Settings constructor cannot compute a CAN bit configuration close enough to
the wished bitrate. When the begin is called with settings.mBitConfigurationClosedToWishedRate
false, this error is reported. For example:

void setup () {
ACAN_T4_Settings settings (1) ; // 1 bit/s !!!
// Here, settings.mBitConfigurationClosedToWishedRate is false
const uint32_t errorCode = ACAN_T4::canl.begin (settings) ;
// Here, errorCode == ACAN_T4::kCANBitConfigurationTooFarFromWishedBitRateErrorMask

This error is a fatal error, the driver and the FLEXCAN module are not configured. See section 17.1 page 31 for
a discussion about CAN bit setting computation.

16.2.2 CAN Bit inconsistent configuration error

This erroris raised when you have changed the CAN bit properties (nBitRatePrescaler, mPropagationSegment,
mPhaseSegmentl, mPhaseSegment2, @RBI), and one or more resulting values are inconsistent. See section

17.3 page 34. what is this?

16.2.3 Too much primary filters error

The number of primary filters is limited by hardware to 32.

16.3 Primary filters conformance error

One or several primary filters do not conform: see section 13.4 page 21. Comment out primary filter definitions
until finding the (@Y definition.

fault
aulty 30

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller
what is this?

Bryan Miller
faulty

Bryan Miller

17 ACAN_T4_SETTINGS CLASS REFERENCE

16.3.1 Too much secondary filters error

The number of secondary filters is limited by hardware to 96.

16.3.2 Secondary filter conformance error

One or several secondary filters do not conform: see section 14.4 page 25. Comment out secondary filter
definitions until finding the f@@lEly definition.

faulty

17 ACAN_T4_Settings class reference

Note. The ACAN_T4_Settings class is not @Ellil® specific. You can compile it on your desktop computer
with your favorite C++ compiler. Why the mention of Arduino? | thought this was
specifically for Teensy microcontrollers.

17.1 The ACAN_T4_Settings constructor: computation of the CAN bit settings

The constructor of the ACAN_T4_Settings has one mandatory argument: the wished bitrate. It tries to com-
pute the CAN bit settings for this bitrate. Ifit succeeds, the constructed object has its MBitConfigurationClosedToWishedRe
property set to true, otherwise it is set to false. For example: Move down to next line

void setup () {
ACAN_T4_Settings settings (1 * 1000 * 1000) ; // 1 Mbit/s
// Here, settings.mBitConfigurationClosedToWishedRate is true

}

Of course, CAN bit computation always succeeds for classical bitrates: 1 Mbit/s, 500 kbit/s, 250 kbit/s, 125
kbit/s. But CAN bit computation can also succeed for some unusual bitrates, as 842 kbit/s. You can check the
result by computing actual bitrate, and the distance from the wished bitrate:

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (842 * 1000) ; // 842 kbit/s

Serial.print ()

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
Serial.print ()

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ()

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

}

The actual bitrate is 842,105 bit/s, and its distance from wished bitrate is 124 ppm. "ppm” stands for "part-
per-million’, and 1 ppm = 10~5. In other words, 10,000 ppm = 1%.

By default, a wished bitrate is accepted if the distance from the computed actual bitrate is lower or equal
to 1,000 ppm = 0.1 %. You can change this default value by adding your own value as second argument of
ACAN_T4_Settings constructor:

31

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller
faulty

Bryan Miller

Bryan Miller
Why the mention of Arduino? I thought this was specifically for Teensy microcontrollers.

Bryan Miller
Move down to next line

Bryan Miller

17.1 TheACAN_T4_Settings constructor: computation of the CAN bid&eitingd SETTINGS CLASS REFERENCE

Serial

Serial

Serial

}

Serial.

Serial.

Serial.

void setup () {

.begin (9600) ;

ACAN_T4_Settings settings (842 * 1000, 100) ; // 842 kbit/s, max distance is 100 ppm
Serial.

print ()

println (settings.mBitConfigurationClosedToWishedRate) ; // © (--> is false)
.print ()

println (settings.actualBitRate ()) ; // 842105 bit/s

.print ()

println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

The second argument does not change the CAN bit computation, it only changes the acceptance test for setting

the mBitConfigurationClosedToWishedRate property. For example, you can specify that you want the
computed actual bit to be exactly the wished bitrate:

Serial

}

Serial.

Serial.
Serial.
Serial.
Serial.

void setup () {

begin (9600) ;

ACAN_T4_Settings settings (500 * 1000, ©) ; // 500 kbit/s, max distance is @ ppm
Serial.

print ()

.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
print ()

println (settings.actualBitRate ()) ; // 500,000 bit/s

print ()

println (settings.ppmFromWishedBitRate ()) ; // © ppm

With default CAN root clock settings (see section 37 page 74), the fastest exact bitrate is 3,2 Mbit/s. It works
when the FLEXCAN module is configured in both /oop back mode (section 17.8.3 page 38) and self recep-
tion mode (section 17.8.2 page 37). Note bitrates above 1 Mbit/s do not conform to the IS0-11898; CAN
transceivers as MCP2551 require the bitrate lower or equal to 1 Mbit/s.

With default CAN root clock settings (see section 37 page 74), the slowest exact bitrate is 9 375 kbit/s. Note
many CAN transceivers as the MCP2551 provide "detection of ground fault (permanent Dominant) on TXD input”.
For example, the MCP2551 constraints the bitrate to be greater or equal to 16 kbit/s. If you want to work with
slower bitrates and you need a transceiver, use one without this detection, as the PCA82C258.

In any way, the bitrate computation always gives a consistent result, resulting an actual bitrate closest from

the wished bitrate. For example:

Serial

}

Serial.
Serial.

Serial.

void setup () {

Serial.begin (9600) ;

ACAN_T4_Settings settings (440 * 1000) ; // 440 kbit/s

Serial.print ()

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // @ (--> is false)

print ()
println (settings.actualBitRate ()) ; // 444,444 bit/s

.print ()

println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm

You can get the details of the CAN bit decomposition. For example:

32

17.1 TheACAN_T4_Settings constructor: computation of the CAN bid&eitingd SETTINGS CLASS REFERENCE

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (440 * 1000) ; // 440 kbit/s
Serial.print ()
Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // © (--> is false)

Serial.print ()

Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s
Serial.print ()

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,100 ppm
Serial.print ()

Serial.println (settings.mBitRatePrescaler) ; // BRP = 2
Serial.print ()

Serial.println (settings.mPropagationSegment) ; // PropSeg = 6
Serial.print ()

Serial.println (settings.mPhaseSegmentl) ; // PS1 = 5
Serial.print ()

Serial.println (settings.mPhaseSegment2) ; // PS2 = 6
Serial.print ()
Serial.println (settings.mRIW) ; // RIW = 4

Serial.print () 8

Serial.println (settings.mTripleSampling) ; // ©, meaning single sampling
Serial.print ()
Serial.println (settings.samplePointFromBitStart ()) ; // 68, meaning 68%
Serial.print ()
Serial.println (settings.CANBitSettingConsistency ()) ; // ©, meaning Ok

The samplePointFromBitStart method returns sample point, expressed in per-cent of the bit duration
from the beginning of the bit.

Note the computation may calculate a bit decomposition too far from the wished bitrate, but it is always
consistent. You can check this by calling the CANBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2 value in
order to sample the CAN Rx pin later.

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (500 * 1000) ; // 500 kbit/s
Serial.print ()
Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
settings.mPhaseSegmentl ++ ; // 5 -> 6: safe, 1 <= PS1 <= 8
settings.mPhaseSegment2 -- ; // 5 -> 4: safe, 2 <= PS2 <= 8 and RIW <= PS2

Serial.print ()

Serial.println (settings.samplePointFromBitStart ()) ; // 75, meaning 75%
Serial.print ()

Serial.println (settings.actualBitRate ()) ; // 500000: ok, bitrate did not change
Serial.print ()

Serial.println (settings.CANBitSettingConsistency ()) ; // ©, meaning Ok

33

17.2 CAN bit timing consistency 17 ACAN_T4_SETTINGS CLASS REFERENCE

Be aware to always respect CAN bit timing consistency!

17.2 CAN bit timing consistency
The constraints are:
1 < mBitRatePrescaler < 256
1<mRIWNLA4
1 < mPropagationSegment < 8
Single sampling:
Triple sampling: mPhaseSegmentl

<
<
<
< mPhaseSegmentl < 8
< <8
< mPhaseSegment2 < 8
<

1
2
2
W

mRJ mPhaseSegment2

Resulting actual bitrate is given by:

CANRootClockFrequency / CANRootClockDivisor
mBitRatePrescaler - (1 + mPropagationSegment + mPhaseSegmentl + mPhaseSegment2)

Actual bitrate =

Where (see section 37 page 74):
» CANRootClockFrequency is either 60 MHz (default) or 24 MHz;
» CANRootClockDivisorisan integerin [1, 64], defaultis value is 1.

And sampling points (in per-cent unit) are given by:

1 4+ mPropagationSegment 4+ mPhaseSegmentl
1+ mPropagationSegment + mPhaseSegmentl + mPhaseSegment2

Sampling point (single sampling) = 100 -

mPropagationSegment + mPhaseSegmentl
1 4+ mPropagationSegment + mPhaseSegmentl + mPhaseSegment2

Sampling first point (triple sampling) = 100 -

17.3 The CANBitSettingConsistency method

This method checks the CAN bit decomposition (given by mBitRatePrescaler, mPropagationSegment,
mPhaseSegmentl, mPhaseSegment2, mRIW property values) is consistent.

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (500 * 1000) ; // 500 kbit/s
Serial.print () 3
Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
settings.mPhaseSegmentl = @ ; // Error, mPhaseSegmentl should be >= 1 (and <= 8)
Serial.print () 8
Serial.println (settings.CANBitSettingConsistency (), HEX) ; // ©x10, meaning error

34

17.4 TheactualBitRate method 17 ACAN_T4_SETTINGS CLASS REFERENCE

The CANBitSettingConsistency method returns 0 if CAN bit decomposition is consistent. Otherwise, the
returned value is a bit field that can report several errors — see table 8.

Bit number Error

mBitRatePrescaler ==0
mBitRatePrescaler > 256
mPropagationSegment ==
mPropagationSegment > 8
mPhaseSegmentl ==
mPhaseSegmentl > 8
mPhaseSegment2 ==
mPhaseSegment2 > 8

MRIW ==

mRIW > 4

mRJIW > mPhaseSegment2

VW W N O U A WNPR O

=
[

11 mPhaseSegment2 == 1 and triple sampling

Table 8 — The ACAN_T4_Settings::CANBitSettingConsistency method error codes

The ACAN_T4_Settings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero = 1< 0 ;
public: static const uint32_t kBitRatePrescalerIsGreaterThan256 = 1 << 1 ;
public: static const uint32_t kPropagationSegmentIsZero =1<< 2 ;
public: static const uint32_t kPropagationSegmentIsGreaterThan8 =1 << 3 ;
public: static const uint32_t kPhaseSegmentlIsZero =1<< 4 ;
public: static const uint32_t kPhaseSegmentlIsGreaterThan8 =1<< 5 ;
public: static const uint32_t kPhaseSegment2IsZero = 1< 6 ;
public: static const uint32_t kPhaseSegment2IsGreaterThan8 = 1< 7 ;
public: static const uint32_t kRIWIsZero =1<< 8 ;
public: static const uint32_t kRIWIsGreaterThan4 =1<< 9 ;
public: static const uint32_t kRJIWIsGreaterThanPhaseSegment2 =1 << 10 ;
public: static const uint32_t kPhaseSegmentlIslAndTripleSampling = 1 << 11 ;

17.4 The actualBitRate method

The actualBitRate method returnsthe actual bit computed frommBitRatePrescaler, mPropagationSegment,
mPhaseSegment1, mPhaseSegment2 property values.

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (440 * 1000) ; // 440 kbit/s
Serial.print ()
Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // @ (--> is false)
Serial.print ()
Serial.println (settings.actualBitRate ()) ; // 444,444 bit/s

Note. If CAN bit settings are not consistent (see section 17.3 page 34), the returned value is irrelevant.

35

17.5 TheexactBitRate method 17 ACAN_T4_SETTINGS CLASS REFERENCE

17.5 The exactBitRate method

The exactBitRate method returns true if the actual bitrate is equal to the wished bitrate, and false oth-
erwise.
void setup () {

Serial.begin (9600) ;
ACAN_T4_Settings settings (842 * 1000) ; // 842 kbit/s

Serial.print () 3

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
Serial.print ()

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ()

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

Serial.print ()

Serial.println (settings.exactBitRate ()) ; // @ (---> false)

}

Note. If CAN bit settings are not consistent (see section 17.3 page 34), the returned value is irrelevant.

With the default CAN root clock settings (60 MHz CAN root clock, CAN root clock divisor equal to 1, see section
37 page 74), there are 52 exact bit rates : 9 375 bit/s, 9 600 bit/s, 10 000 bit/s, 12 000 bit/s, 12 500 bit/s,
15 000 bit/s, 15 625 bit/s, 16 000 bit/s, 18 750 bit/s, 19 200 bit/s, 20 000 bit/s, 24 000 bit/s, 25 000 bit/s,
30 000 bit/s, 31 250 bit/s, 32 000 bit/s, 37 500 bit/s, 40 000 bit/s, 46 875 bit/s, 48 000 bit/s, 50 000 bit/s,
60 000 bit/s, 62 500 bit/s, 75 000 bit/s, 78 125 bit/s, 80 000 bit/s, 93 750 bit/s, 96 000 bit/s, 100 000 bit/s,
120 000 bit/s, 125 000 bit/s, 150 000 bit/s, 156 250 bit/s, 160 000 bit/s, 187 500 bit/s, 200 000 bit/s, 234
375 bit/s, 240 000 bit/s, 250 000 bit/s, 300 000 bit/s, 312 500 bit/s, 375 000 bit/s, 400 000 bit/s, 468 750
bit/s, 480 000 bit/s, 500 000 bit/s, 600 000 bit/s, 625 000 bit/s, 750 000 bit/s, 800 000 bit/s, 937 500 bit/s,
1 000 000 bit/s.

With the 24 MHz CAN root clock and the CAN root clock divisor equal to 1 (see section 37 page 74), there are
62 exact bitrates: 3 750 bit/s, 3 840 bit/s, 4 000 bit/s, 4 800 bit/s, 5 000 bit/s, 6 000 bit/s, 6 250 bit/s, 6 400
bit/s, 7 500 bit/s, 7 680 bit/s, 8 000 bit/s 9 375 bit/s, 9 600 bit/s, 10 000 bit/s, 12 000 bit/s, 12 500 bit/s, 12
800 bit/s, 15 000 bit/s, 15 625 bit/s, 16 000 bit/s, 18 750 bit/s, 19 200 bit/s, 20 000 bit/s, 24 000 bit/s, 25
000 bit/s, 30 000 bit/s, 31 250 bit/s, 32 000 bit/s, 37 500 bit/s, 38 400 bit/s, 40 000 bit/s, 46 875 bit/s, 48
000 bit/s, 50 000 bit/s, 60 000 bit/s, 62 500 bit/s, 64 000 bit/s, 75 000 bit/s, 80 000 bit/s, 93 750 bit/s, 96
000 bit/s, 100 000 bit/s, 120 000 bit/s, 125 000 bit/s, 150 000 bit/s, 160 000 bit/s, 187 500 bit/s, 192 000
bit/s, 200 000 bit/s, 240 000 bit/s, 250 000 bit/s, 300 000 bit/s, 320 000 bit/s, 375 000 bit/s, 400 000 bit/s,
480 000 bit/s, 500 000 bit/s, 600 000 bit/s, 750 000 bit/s, 800 000 bit/s, 960 000 bit/s, 1 000 000 bit/s.

17.6 The ppmFromWishedBitRate method

The ppmFromWishedBitRate method returns the distance from the actual bitrate to the wished bitrate, ex-
pressed in part-per-million (ppm): 1 ppm = 10~°. In other words, 10,000 ppm = 1%.

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (842 * 1000) ; // 842 kbit/s

36

17.7 ThesamplePointFromBitStart method 17 ACAN_T4_SETTINGS CLASS REFERENCE

Serial.print ()

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
Serial.print () 8

Serial.println (settings.actualBitRate ()) ; // 842105 bit/s

Serial.print ()

Serial.println (settings.ppmFromWishedBitRate ()) ; // 124 ppm

Note. If CAN bit settings are not consistent (see section 17.3 page 34), the returned value is irrelevant.

17.7 The samplePointFromBitStart method

The samplePointFromBitStart method returns the distance of sample point from the start of the CAN bit,
expressed in part-per-cent (ppc): 1 ppc = 1% = 10~ 2. If triple sampling is selected, the returned value is the
distance of the first sample point from the start of the CAN bit. It is a good practice to get sample point from
65% to 80%.

void setup () {
Serial.begin (9600) ;
ACAN_T4_Settings settings (500 * 1000) ; // 500 kbit/s
Serial.print ()
Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
Serial.print ()
Serial.println (settings.samplePointFromBitStart ()) ; // 68 --> 68%

Note. If CAN bit settings are not consistent (see section 17.3 page 34), the returned value is irrelevant.

17.8 Properties of the ACAN_T4_Settings class
All properties of the ACAN_T4_Settings class are declared public and are initialized (table 9). The de-

fault values of properties from mwWhishedBitRate untilmTripleSampling corresponds to a CAN bitrate of
250,000 bit/s.

17.8.1 ThemListenOnlyMode property

This boolean property corresponds to the LOM bit of the FLEXCAN CTRL1 control register.

17.8.2 The mSelfReceptionMode property

This boolean property corresponds to the complement of the SRXDIS bit of the FLEXCAN MCR control register.

37

18 (AN CONTROLLER STATE

Property Type Initial value Comment
mWhishedBitRate uint32_t 250,000 See section 17.1 page 31
mBitRatePrescaler uintle_t 10 See section 17.1 page 31
mPropagationSegment uint8_t 8 See section 17.1 page 31
mPhaseSegmentl uint8_t 8 See section 17.1 page 31
mPhaseSegment2 uint8_t 7 See section 17.1 page 31
mRIW uint8_t 4 See section 17.1 page 31
mTripleSampling bool false See section 17.1 page 31
mBitConfigurationClosedToWishedRate bool true See section 17.1 page 31
mListenOnlyMode bool false See section 17.8.1 page 37
mSelfReceptionMode bool false See section 17.8.2 page 37
mLoopBackMode bool false See section 17.8.3 page 38
mTxPin uint8_t 255 See section 8.3 page 13
mRxin uint8_t 255 See section 7.2 page 12
mReceiveBufferSize uintl6e_t 32 See section 12.1 page 18
mTransmitBufferSize uintle_t 16 See section 9.2 page 15
mTxPinIsOpenCollector bool false See section 8.2 page 13

Table 9 — Properties of the ACAN_T4_Settings class

17.8.3 The mLoopBackMode property

This boolean property corresponds to the LBP bit of the FLEXCAN CTRL1 control register.

18 CAN controller state

Three methods return the CAN controller state, the receive error counter and the transmit error counter.

18.1 The controllerState method

‘public: tControllerState controllerState (void) const ;

This method returns the current state (error active, error passive, bus off) of the CAN controller. The tControllerState
type is defined by an enumeration:

‘typedef enum {kActive, kPassive, kBusOff} tControllerState ;

18.2 The receiveErrorCounter method

‘public: uint32_t receiveErrorCounter (void) const ;

18.3 The transmitErrorCounter method

38

184 TheglobalStatus method 19 THE DEMOCAN1CAN2CAN3 SKETCH

‘public: uint32_t transmitErrorCounter (void) const ;

As the CANx_ESR FLEXCAN control register does not return a valid value when the CAN controller is in the bus
off state, the value 256 is forced.

18.4 The globalStatus method
‘public: uint32_t globalStatus (void) const ;

This method returns a value bit field value. All bits are @ when there is no error. The bits are described in the
table 10.

Constant Value Comment

kGlobalStatusInitError 1 << @ The begin method did return a not null value.

kGlobalStatusRxFIFOWarning 1 << 1 Thehardware RXFIFO has at one time contained 5 or
more messages. No message loss.

kGlobalStatusRxFIFOOverflow 1 << 2 The hardware RXFIFO did overflow. Message loss.

kGlobalStatusReceiveBufferOverflow 1 << 3 Thedriver receive buffer did overflow. Message loss.

Table 10 — The globalStatus bits

18.5 The resetGlobalStatus method

‘public : void resetGlobalStatus (const uint32_t inReset) ;

The inReset value is bit field. For every global status bit :

«» if a bit of inReset value is 0, no effect;
reset

» if abit of inReset value is 1, the correspondant bit of the global status is feseted.

Note: the kGlobalStatusInitError bit (bit ©) cannot be feseted.

reset

19 The demoCAN1CAN2CAN3 sketch

| use this sketch for testing the ACAN_T4 library. An elementary CAN network is built, that consists of the
three FLEXCAN modules. Every ACAN_T4: : cani sends messages as quickly as possible that are received by
the other two.

Hardware. Simply connect the six CTX1, CRX1, CTX2, CRX2, CTX3, CRX3 signals together, nothing more (figure
2). As there is no CAN transceiver, do not use wires that are too long, 20 cm is 2 maximum.

This is consistent because:

= all CTXi pins are configured in open collector mode;

39

Bryan Miller

Bryan Miller

Bryan Miller
reset

Bryan Miller
reset

19 THE DEMOCAN1CAN2CAN3 SKETCH

Teensy 4.0 / 4.1
CTX1 CRX1 CTX2 CRX2 CTX3 CRX3

Figure 2 — Connections for the demoCAN1CAN2CAN3 sketch

» all CRXi pins are configured with the smallest pullup value, 22kS2.

Running the sketch. Every ACAN_T4: :cani sends 50,000 standard messages as quickly as possible. For
avoiding identifier collisions, the identifiers are randomly computed as follows:

» ACAN_T4: :canl sends standard frame with identifier equal to ((micros () % 682) * 3);
» ACAN_T4: :can2 sends standard frame with identifier equal to ((micros () % 682) * 3 + 1);

» ACAN_T4: :can3 sends standard frame with identifier equal to ((micros () % 682) * 3 + 2).
Note :

» 0 < ((micros () %682) < 681

» 0 < ((micros () %682) 3 < 2043

The largest generated value is 2045, less than the maximum standard identifier value @x7FF = 2047.

After initialization messages, the serial monitor outputs for every CANi:

the sent message count;

the received message count;
» the global status (@ if all is ok, function globalStatus, see section 18.4 page 39);

» the received buffer peak count (function receiveBufferPeakCount, see section 12.4 page 18).

CAN1-CAN2-CAN3 test

Bitrate: 1000000 bit/s

canl ok

can2 ok

can3 ok

CAN1: © / © / @ / @6, CAN2: © / @ / @6 / @0, CAN3: @ / @6 / 0 / ©

CAN1: 5877 / 7386 / ©x0 / 1, CAN2: 927 / 12336 / 0x0 / 1, CAN3: 6493 / 6770 / ox0 / 1

CAN1: 26326 / 27834 / 0x@ / 1, CAN2: 927 / 53233 / 0x0 / 1, CAN3: 26941 / 27219 / ox0 / 1
CAN1: 46776 / 48285 / 0x@ / 1, CAN2: 927 / 94134 / 0x0 / 1, CAN3: 47392 / 47669 / 0x0 / 1
CAN1: 50000 / 85246 / 0x@ / 1, CAN2: 35263 / 100000 / 0x0 / 1, CAN3: 50000 / 85246 / ox0 / 1
CAN1: 50000 / 100000 / ©x0 / 1, CAN2: 50000 / 100000 / 0x0 / 1, CAN3: 50000 / 100000 / 0x0 / 1
CAN1: 50000 / 100000 / ©x0 / 1, CAN2: 50000 / 100000 / 0x0 / 1, CAN3: 50000 / 100000 / 0x0 / 1

40

20 DATA FLOW

Part i

CANFD

Only the FLEXCAN 3 module of the Teensy 4.0 / 4.1 microcontroller handles CANFD.

In short: for using FLEXCAN 3 module in CANFD mode, use the methods with the FD suffix:

» beginFD instead of begin;

» tryToSendFD instead of tryToSend;

availableFD instead of available;
» receiveFDinstead of receive;

» dispatchReceivedMessageFD instead of dispatchReceivedMessage.

Note the CANFD receive filter mecanism is different from CAN 2.0B.

20 Data flow

The figure 3 illustrates message flow for sending and receiving CANFD messages.

FLEXCAN3 module is hardware, integrated into the micro-controller. It implements several MBs (Message
Buffers), used for the data frame transmit buffer, remote frame transmit buffer(s), reception buffers. By default,
the number of MBs is 14.

Sending CANFD messages. The FLEXCAN3 hardware makes sending data frames different from sending
remote frames. For both, user code calls the tryToSendFD method — see section 26 page 50 for sending data
frames, and section 27 page 52 for sending remote frames. The data frames are stored in the Driver Transmit
Buffer, before to be moved by the message interrupt service routine into the data frame transmit buffer. The
size of the Driver Transmit Buffer is 16 by default — see section 26.2 page 51 for changing the default value.

Receiving CANFD messages. The FLEXCAN CAN Protocol Engine transmits all correct frames to the reception
filters. By default, they are configured as pass-all, see section 13 page 19 and section 14 page 22 for config-
uring them. Messages that pass the filters are stored in the Reception FIFO. Its depth is not configurable — it
is always 6-message. The message interrupt service routine transfers the messages from Reception FIFO to
the Driver Receive Buffer. The size of the Driver Receive Buffer is 32 by default — see section 29.1 page 54 for
changing the default value. Three user methods are available:

» the availableFD method returns false if the Driver Receive Buffer is empty, and true otherwise;

» the receiveFD method retrieves messages from the Driver Receive Buffer — see section 29 page 53,
section 31.5 page 60;

» the dispatchReceivedMessageFD method if you have defined CANFD filters that name a call-back
function — see section 32 page 61.

41

21 ASIMPLE EXAMPLE: LOOPBACKDEMOCAN3FD
availableFD
User code receiveFD
tryToSendFD dispatchReceivedMessageFD
remote frame ~ ACAN_T4 driver
data frame
Driver transmit Buffer Driver reception Buffer
(FIFO) (FIFO)
Data frame Remote frame)
transmit buffer transmit buffer(s) Reception Buffers
FLEXCAN3 module Reception filters
. 1
CANFD Protocol Engine

o)
==

o)
]

Figure 3 — Message flow in the ACAN_T4: : can3 driver and FLEXCAN3 module, in CANFD mode

Sequentiality. The ACAN_T4 driver and the configuration of the FLEXCAN module ensures sequentiality of
sent data messages. This means that if an user program calls tryToSendFD first for a message M; and then

for a message M, the message M is sent in the CANFD network before the message M.

21 Asimple example: LoopBackDemoCAN3FD

The LoopBackDemoCAN3FD sketch is a sample code for introducing the ACAN_T4 library in CANFD mode©. It
demonstrates how to configure the driver, to send a CANFD message, and to receive a CANFD message

Note it runs without any external hardware, it uses the loop back mode and the self reception mode.

#ifndef _ IMXRT1062 _

#error
#tendif

#include <ACAN_T4.h>

N O~ W N R

void setup () {

10See also the LoopBackDemoCAN3FDWithCheck sketch.

42

21 ASIMPLE EXAMPLE: LOOPBACKDEMOCAN3FD

8 pinMode (LED_BUILTIN, OUTPUT) ;
9 Serial.begin (9600) ;
10 while (!Serial) {

11 delay (50) ;

12 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;

13 }

14 Serial.println ()

15 ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x4) ;
16 settings.mLoopBackMode = true ;

17 settings.mSelfReceptionMode = true ;

18 const uint32_t errorCode = ACAN_T4::can3.beginFD (settings) ;
19 if (@ == errorCode) {

20 Serial.println ()

21 }else{

22 Serial.print ()
23 Serial.println (errorCode, HEX) ;
24 }

25 |}

26

27 |static uint32_t gBlinkDate = @ ;

28 |static uint32_t gSendDate = 0 ;

29 |static uint32_t gSentCount = 0 ;

30 | static uint32_t gReceivedCount = 0 ;
31
32 |void loop () {

33 if (gBlinkDate <= millis ()) {

34 gBlinkDate += 500 ;

35 digitalWrite (LED_BUILTIN, !digitalRead (LED_BUILTIN)) ;
36 }

37 CANFDMessage message ; // By default: standard data CANFD frame, zero length
38 if (gSendDate <= millis ()) {

39 message.id = 0x123 ;

40 const bool ok = ACAN_T4::can3.tryToSendFD (message) ;

41 if (ok) {

42 gSendDate += 2000 ;

43 gSentCount += 1 ;

44 Serial.print () 3

45 Serial.println (gSentCount) ;

46 }

47 }

48 if (ACAN_T4::can3.receiveFD (messageFD)) {

49 gReceivedCount += 1 ;

50 Serial.print ()

51 Serial.println (gReceivedCount) ;

52 }

53 |}

Line 1 to 3. This ensures the Teensy 4.0 / 4.1 board is selected.
Line 5. This line includes the ACAN_T4 library. _

Arduino IDE
Line 9 to 13. Start serial (the 9600 argument value is ignored by Teensy), and blink quickly until the @F@EIRG
Serial Monitor is opened.

Line 15. Configuration is a four-step operation. This line is the first step. It instanciates the settings object

43

Bryan Miller

Bryan Miller
Arduino IDE

Bryan Miller

21 ASIMPLE EXAMPLE: LOOPBACKDEMOCAN3FD

of the ACAN_T4_Settings class. The constructor has two parameters: the wished CAN arbitration bitrate,
and the data bitrate factor. Here, it is DataBitRateFactor: : x4, meaning the data bitrate is four times the
arbitration bitrate. It returns a settings object fully initialized with CAN bit settings for the wished bitrate,

and default values for other configuration properties. maybe a mention of the max DataBitRateFactor
value, which | believe is 5 (5 Mbit/sec)?

Lines 16 and 17. This is the second step. You can override the values of the properties of settings object.
Here, the mLoopBackMode and mSelfReceptionMode properties are set to true — they are false by de-
fault. Theses two properties fully enable loop back, that is you can run this demo sketch even it you have no

connection to a physical CAN network. The section 17.8 page 37 lists all properties you can override. if
can3

Line 18. This is the third step, configuration of the ACAN_T4: : @ana driver with settings values. You cannot
change the ACAN_T4: : can3 name — see section 6 page 11. The driver is configured for being able to send
any CAN 2.0B frame(standard / extended, data / remote frame), any CANFD frame (up to 64 data byte / framme,
with or without data bitrate switch, and to receive all theses frames. If you want to define reception filters,

see section 30 page 55. can3

Lines 19 to 24. Last step: the configuration of the ACAN_T4: : @@n driver returns an error code, stored in the
errorCode constant. It has the value 0 if all is ok — see section 16.2 page 29.

Line 27. The gBlinkDate global variable is used for blinking Teensy LED every 0.5 s.
Line 28. The gSendDate global variable is used for sending a CAN message every 2 s.
Line 29. The gSentCount global variable counts the number of sent messages.

Line 30. The gReceivedCount global variable counts the number of received messages.
Line 33 to 36. Blink Teensy LED.

Line 37. The message object is fully initialized by the default constructor, it represents a standard data frame,
with an identifier equal to 0, and without any data, sent with bitrate switch — see section 22 page 45.

Line 38. It tests if it is time to send a message.

Line 39. Set the message identifier. In a real code, we set here message data, and for an extended frame the
ext boolean property.

Line 40. We try to send the data message. Actually, we try to transfer it into the Driver transmit buffer. The
transfer succeeds if the buffer is not full. The tryToSendFD method returns false if the buffer is full, and
true otherwise. Note the returned value only tells if the transfer into the Driver transmit buffer is successful
or not: we have no way to know if the frame is actually sent on the the CANFD network.

Lines 41 to 46. \We act the successfull transfer by setting gSendDate to the next send date and incrementing
the gSentCount variable. Note if the transfer did fail, the send date is not changed, so the tryToSend method
will be called on the execution of the 1loop function.

Line 48. As the FLEXCAN3 module is configured in loop back mode (see lines 16 and 17), all sent messages
arereceived. The receiveFD method returns false if no message is available from the driver reception buffer.
It returns true if a message has been successfully removed from the driver reception buffer. This message is
assigned to the message object.

Lines 49 to 51. It a message has been received, the gReceivedCount is incremented and displayed.

44

frame)

Bryan Miller

Bryan Miller
can3

Bryan Miller
can3

Bryan Miller
maybe a mention of the max DataBitRateFactor value, which I believe is 5 (5 Mbit/sec)?

Bryan Miller
if

Bryan Miller
frame)

Bryan Miller

Bryan Miller

Bryan Miller

22 THE CANFDMESSAGE (CLASS

22 The CANFDMessage class

Note. The CANFDMessage class is declared in the CANFDMessage.h header file. The class declaration is
protected by an include guard that causes the macro GENERIC_CANFD_MESSAGE_DEFINED to be defined. This
allows an other library, as the ACAN2717FD library, to freely include this file without any declaration conflict.

A CANFD message is an object that contains all CANFD frame user informations.

Example: The message object describes an extended frame, with identifier equal to ©x123, that contains 12
bytes of data:

CANFDMessage message ; // message is fully initialized with default values
message.id = ©x123 ; // Set the message identifier (it is @ by default)
message.ext = true ; // message is an extended one (it is a base one by default)
message.len = 12 ; // message contains 12 bytes (@ by default)

message.data [@] = @x12 ; // First data byte is 0x12

message.data [11] = OxCD ; // 11th data byte is @xCD

22.1 Properties

class CANFDMessage {

public : uint32_t id; // Frame identifier

public : bool ext ; // false -> base frame, true -> extended frame
public : Type type ;

public : uint8_t idx ; // Used by the driver

public : uint8_t len ; // Length of data (@ ... 64)

public : union {
uint64_t data64 [8] ; // Caution: subject to endianness
int64_t data_s64 [8] ; // Caution: subject to endianness
uint32_t data32 [16] ; // Caution: subject to endianness
int32_t data_s32 [16] ; // Caution: subject to endianness
float dataFloat [16] ; // Caution: subject to endianness
uintl6_t datalé [32] ; // Caution: subject to endianness

intl6_t data_s16 [32] ; // Caution: subject to endianness
int8_t data_s8 [64] ;
uint8_t data [64] ;

Y

} s

Note the message datas are defined by an union. So message datas can be seen as 64 bytes, 32 x 16-bit
unsigned integers, 16 x 32-bit, or 8 x 64-bit. Be aware that multi-byte integers are subject to endianness
(Cortex M7 processors of Teensy 4.x are little-endian).

22.2 The default constructor

All properties are initialized by default, and represent a base data frame, with an identifier equal to 0, and
without any data (table 11).

45

22.3 (Constructor from CANMessage

22 THE CANFDMESSAGE (CLASS

Property Initial value Comment

id 0

ext false Base frame

type CANFD_WITH_BIT_RATE_SWITCH CANFD frame, with bitrate switch
idx 0

len 0 No data

data - unitialized

Table 11 — CANFDMessage default constructor initialization

22.3 Constructor from CANMessage

class CANFDMessage {

CANFDMessage (const CANMessage & inCANMessage) ;

Y

All properties are initialized from the inCANMessage (table 12). Note that only data64[@] is initialized from

inCANMessage.data64.
Property Initial value
id inCANMessage.
ext inCANMessage.
type inCANMessage.
idx inCANMessage.
len inCANMessage.

data64[@] inCANMessage.

id

ext

rtr ? CAN_REMOTE : CAN_DATA
idx

len

data64d

Table 12 — CANFDMessage constructor CANMessage

22.4 The type property

Its value is an instance of an enumerated type:

class CANFDMessage {

public: typedef enum : uint8_t {
CAN_REMOTE,
CAN_DATA,
CANFD_NO_BIT_RATE_SWITCH,
CANFD_WITH_BIT_RATE_SWITCH

} Type ;

Y

The type property specifies the frame format, as indicated in the table 13.

46

225 The Len property 22 THE CANFDMESSAGE (CLASS

type property Meaning Constraint on 1en
CAN_REMOTE CAN 2.0B remote frame 0..8
CAN_DATA CAN 2.0B data frame .8

0
CANFD_NO_BIT_RATE_SWITCH CANFD frame, no bitrate switch 0... 8, 12, 16, 20, 24, 32, 48, 64
CANFD_WITH_BIT_RATE_SWITCH CANFD frame, bitrate switch 0..8,12,16, 20, 24, 32, 48, 64

Table 13 — CANFDMessage type property

22,5 The len property

Note that 1en field contains the actual length, not its encoding in CANFD frames. So valid values are: 0, 1, ..., 8,
12,16, 20, 24, 32, 48, 64. Having other values is an error that prevents frame to be sent by the tryToSendFD
method. You can use the pad method (see below) for padding with ©x@0 bytes to the next valid length

22.6 The idx property
The idx property is not used in CANFD frames, but:

» for areceived message, it contains the acceptance filter index (see section 32 page 61);

» itis not used for on sending messages.

22.7 The pad method

‘void CANFDMessage::pad (void) ;

The CANFDMessage: :pad method appends zero bytes to datas for reaching the next valid length. Valid
lengths are: 0, 1, .., 8, 12, 16, 20, 24, 32, 48, 64. If the length is already valid, no padding is performed.
For example:

CANFDMessage frame ;
frame.length = 21 ; // Not a valid value for sending
frame.pad () ;
// frame.length is 24, frame.data [21], frame.data [22], frame.data [23] are @

22.8 The isValid method

‘bool CANFDMessage::isValid (void) const ;
Is this true? No CANFD remote frames?

Not all settings of CANFDMessage instances represent a valid frame. Forexample;thereisino CANFD remote
frameysoarremote frameshouldihaveitsilengthilowerthanorequalto8. There is no constraint on extended
/ base identifier (ext property).

The isValid returns true if the contraints on the 1en property are checked, as indicated the table 13 page
47, and false otherwise.

47

Bryan Miller

Bryan Miller
Is this true? No CANFD remote frames?

25 CTX3 PIN CONFIGURATION

23 Driver instance

For using CAN3 in CANFD mode, you use the ACAN_T4: : can3 variable, as for CAN2.0B.

24 CRX3 pin configuration

You can change CRX3 pin following setting:
» its input impedance (section 7.1 page 11, 47k pullup by default);

FLEXCANS3 of Teensy 4.0 / 4.1 does not support alternate pins.

24.1 Input impedance

An input pin of the Teensy 4.0 / 4.1 micro-controller has different pullup / pulldown configurations. Five set-
tings are available:

class ACAN_T4_Settings {

public: typedef enum : uint8_t {
NO_PULLUP_NO_PULLDOWN = ©, // PUS = @, PUE = @0, PKE = 0

PULLDOWN_100k = @beell, // PUS = @, PUE = 1, PKE = 1
PULLUP_47k = @obe111, // PUS =1, PUE = 1, PKE = 1
PULLUP_100k = @ble1l, // PUS = 2, PUE = 1, PKE =1
PULLUP_22k = @0b1111 // PUS = 3, PUE = 1, PKE = 1

} RxPinConfiguration ;

}s

By default, PULLUP_47k is selected. For setting an other value, write for example:

‘ settings.mRxPinConfiguration = ACAN_T4_Settings::PULLUP_100k ;

25 CTX3 pin configuration

You can change CTX3 pin following settings:

» its output impedance (section 8.1 page 12, 781 by default);

= push/pull or open collector (section 8.2 page 13);

FLEXCAN3 of Teensy 4.0 / 4.1 does not support alternate pins.

48

25.1 Output impedance 25 CTX3 PIN CONFIGURATION

25.1 Output impedance

An output pin of the Teensy 4.0 / 4.1 micro-controller has a programmable output impedance. Seven settings
are available™:

Symbol Typical value at 3.3V
ACAN_T4_Settings::IMPEDANCE_RO® 157 Q
ACAN_T4_Settings::IMPEDANCE_RO_DIVIDED BY 2 78
ACAN_T4_Settings::IMPEDANCE_RO_DIVIDED BY 3 53(
ACAN_T4 Settings::IMPEDANCE_RO_DIVIDED BY 4 39
ACAN_T4 Settings::IMPEDANCE_RO_DIVIDED BY 5 32
ACAN_T4_Settings::IMPEDANCE_R@_DIVIDED BY 6 26
ACAN_T4_Settings::IMPEDANCE_R@_DIVIDED BY_7 230

Table 14 — GPIO output buffer average impedance, 3.3V

Theses settings are defined by an enumerated type:

class ACAN_T4_Settings {

public: typedef enum {
IMPEDANCE_RO = 1,
IMPEDANCE_R®_DIVIDED BY_2 =
IMPEDANCE_R@_DIVIDED BY_3
IMPEDANCE_R@_DIVIDED BY_ 4
IMPEDANCE_R@®_DIVIDED BY_5
IMPEDANCE_R@_DIVIDED_BY_6
IMPEDANCE_R@_DIVIDED BY_7

} TxPinOutputBufferImpedance ;

1} |
N o v b wN
. -

-

n U}
-

-

Y

By default, IMPEDANCE_RO_DIVIDED_BY_2 is selected. For setting an other value, write:

‘ settings.mTxPinOutputBufferImpedance = ACAN_T4_Settings::IMPEDANCE_RO_DIVIDED_BY_7;

25.2 ThemTxPinIsOpenCollector property

When the mTxPinIsOpenCollector property is set to true, the RECESSIVE output state puts the Tx pin
Hi-Z, instead of driving high. The Tx pin is always driving low in DOMINANT state.

Output state Tx Pin Output Output state Tx Pin Output
DOMINANT 0 DOMINANT 0
RECESSIVE 1 RECESSIVE Hi-Z

(a) mTxPinIsOpenCollector is false (default) (b) nTxPinIsOpenCollector is true

Table 15 — Tx pin output, following the mTxPinIsOpenCollector property setting

11 i.MX RT1060 Crossover Processors for Consumer Products, IMXRT1060CEC, Rev. 0.1, 04/2019, Table 27 page 38.

49

26 SENDING CANZ2.0B AND CANFD DATA FRAMES

26 Sending CAN2.0B and CANFD data frames

Note. This section applies only to data frames. Forsendingiremoterframes)seersection27/page’52. The

type property should have one of the following values: At the bottom of page 47, you said there
were no CANFD remote frames.

» CANFDMessage: :CAN_DATA (sending a CAN 2.0B data frame);
» CANFDMessage: :CANFD_NO_BIT_RATE_SWITCH (sending a CANFD frame, without bitrate switch);

» CANFDMessage: :CANFD_WITH_BIT_RATE_SWITCH (sending a CANFD frame, with bitrate switch).

Is it worth a short paragraph describing what
“bitrate switch” actually means and its

26.1 tryToSendFD for sending data frames implications?
Call the method tryToSendFD for sending data frames; it returns:

» true if the message has been successfully transmitted to driver transmit buffer; note that does not
mean that the CAN frame has been actually sent;

» false if the message has not been successfully transmitted to driver transmit buffer, it was full.

Soitis wise to systematically test the returned value. One way to achieve this is to loop while there is no room
in driver transmit buffer:

while (!ACAN_T4::can3.tryToSendFD (message)) {
yield () ;
}

A better way is to use a global variable to note if message has been successfully transmitted to driver transmit
buffer. For example, for sending a message every 2 seconds:

static uint32_t gSendDate = 0 ;

void loop () {
CANFDMessage message ;
if (gSendDate < millis ()) {
// Initialize message properties
const bool ok = ACAN_T4::can3.tryToSendFD (message) ;
if (ok) {
gSendDate += 2000 ;
}
}
}

An other hint to use a global boolean variable as a flag that remains true while the frame has not been sent.

static bool gSendMessage = false ;
void loop () {

if (frame_should_be_sent) {
gSendMessage = true ;

}

50

Bryan Miller

Bryan Miller
At the bottom of page 47, you said there were no CANFD remote frames.

Bryan Miller
Is it worth a short paragraph describing what “bitrate switch” actually means and its implications?

26.2 Driver transmit buffer size 26 SENDING CAN2.0B AND CANFD DATA FRAMES

if (gSendMessage) {
CANFDMessage message ;
// Initialize message properties
const bool ok = ACAN_T4::can3.tryToSendFD (message) ;
if (ok) {
gSendMessage = false ;
}
}

26.2 Driver transmit buffer size

By default, driver transmit buffer sizeis 16. You can change this default value by setting themTransmitBufferSize
property of settings variable:

ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x2) ;
settings.mTransmitBufferSize = 30 ;
const uint32_t errorCode = ACAN_T4::can3.begin (settings) ;

As the size of CANFDMessage class is 80 bytes, the actual size of the driver transmit buffer is the value of
settings.mTransmitBufferSize * 8@.

26.3 The transmitBufferSize method

The transmitBufferSize method returns the size of the driver transmit buffer, that is the value of the
settings.mTransmitBufferSize property.

‘const uint32_t s = ACAN_T4::can3.transmitBufferSize () ;

26.4 The transmitBufferCount method

The transmitBufferCount method returns the current number of messages in the transmit buffer.

‘const uint32_t n = ACAN_T4::can3.transmitBufferCount () ;

26.5 The transmitBufferPeakCount method

The transmitBufferPeakCount method returns the peak value of message count in the transmit buffer.

‘const uint32_t max = ACAN_T4::can3.transmitBufferPeakCount () ;

Il the transmit buffer is full when tryToSend is called, the return value is false. In such case, the following
calls of transmitBufferPeakCount will return transmitBufferSize ()+1.

So, when transmitBufferPeakCount returnsavalue lower orequal to transmitBufferSize (),itmeans
that calls to tryToSendFD have always returned true.

51

28 SENDING FRAMES USING THE TRYTOSENDRETURNSTATUSFD METHOD

27 Sending remote frames in CANFD mode

Note. This section applies only to remote frames. For sending data frames, see section 26 page 50.
The hardware design of the FLEXCAN module makes sending remote frames different from data frames.

However, for sending remote frames, you also invoke the tryToSendFD method. This method understands if
aremote frame should be sent, the type property of its argument is equal to CANFDMessage: : CAN_REMOTE.

You should set this value, the type property value is CANFDMessage: : CANFD_WITH_BIT_RATE_SWITCH by
default.

CANFDMessage message ;
message.type = CANFDMessage::CAN_REMOTE ; // Remote frame

const bool sent = ACAN_T4::can3.tryToSendFD (message) ;

28 Sending frames using the tryToSendReturnStatusFD method

‘uint32_t ACAN_T4::tryToSendReturnStatusFD (const CANFDMessage & inMessage) ;

This method is functionally identical to the tryToSendFD method, the only difference is the detailled return

status: detailed

» 0 if message has been successfully submitted (the call to the tryToSendFD method would have re-
turned true);

» non zero if message has not been successfully submitted (the call to the tryToSendFD method would
have returned false).

A non-zero return value is a bit field that details the error, as listed in table 16.

BitIndex Constant Comment

@ kTransmitBufferOverflow Trying to send a data frame, but the transmit buffer is
full (retry later).

1 kNoAvailableMBForSendingRemoteFrame Trying to send a remote frame, but currently there is
no available Message Buffer (retry later).

2 kNoReservedMBForSendingRemoteFrame Trying to send a remote frame, but there is no ded-
icaced Message Buffer for sending remote frames,
due to mRxCANFDMBCount value (permanent error).

3 kMessagelLengthExceedsPayload Trying to send a data frame, but frame length is
greater than the length allowed by mPayload

4 kFlexCANinCAN20BMode CAN3 is in CAN 2.0B mode, not CANFD mode.

Table 16 — tryToSendReturnStatusFD method returned status bits

52

Bryan Miller

Bryan Miller
detailed

29 RETRIEVING RECEIVED MESSAGES USING THE RECEIVEFD METHOD

29 Retrieving received messages using the receiveFD method

There are two ways for retrieving received messages :

» using the receiveFD method, as explained in this section;

» using the dispatchReceivedMessageFD method (see section 32 page 61).

This is a basic example:

void setup () {
ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x2) ;

const uint32_t errorCode = ACAN_T4::can3.begin (settings) ; // No receive filter

void loop () {
CANFDMessage message ;
if (ACAN_T4::canl.receiveFD (message)) {
// Handle received message

The receive method:

» returns false if the driver receive buffer is empty, message argument is not modified;

» returns true if a message has been has been removed from the driver receive buffer, and the message
argument is assigned.

You need to manually dispatch the received messages. If you did not provide any receive filter, you should
check the rtr bit (remote or data frame?), the ext bit (standard or extended frame), and the id (identifier
value). The following snippet dispatches three messages:

void setup () {
ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x2) ;

const uint32_t errorCode = ACAN_T4::can3.begin (settings) ; // No receive filter

void loop () {
CANMessage message ;
if (ACAN_T4::can3.receive (message)) {
if ((message.type == CANFDMessage::CAN_REMOTE)
&& message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message); // Extended remote CAN frame, id is ©x123456
}else if ((message.type == CANFDMessage::CAN_DATA)
&& !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message); // Standard data CAN frame, id is ©x234
}else if ((message.type == CANFDMessage::CANFD_WITH_BIT_RATE_SWITCH)
&& !message.ext && (message.id == 0Ox542)) {

53

29.1 Driver receive buffer size 29 RETRIEVING RECEIVED MESSAGES USING THE RECEIVEFD METHOD

handle_myMessage_2 (message); // Standard CANFD frame, id is ©x542

}
}

The handle_myMessage_® function has the following header:

void handle_myMessage © (const CANFDMessage & inMessage) {

}

Soarerthelheaderof the handle_myMessage 1 and the handle_myMessage_ 2 functions.

The same is true for

29.1 Driver receive buffer size

By default, the driver receive buffer size is 32. You can change this default value by setting the mReceiveBufferSize
property of settings variable:

ACAN_T4_Settings settings (125 * 1000) ;
settings.mReceiveBufferSize = 100 ;
const uint32_t errorCode = ACAN_T4::can3.begin (settings) ;

29.2 The receiveBufferSize method

The receiveBufferSize method returns the size of the driver receive buffer, thatis the value of settings.
mReceiveBufferSize.

‘const uint32_t s = ACAN_T4::can3.receiveBufferSize () ;

29.3 The receiveBufferCount method

The receiveBufferCount method returns the current number of messages in the driver receive buffer.

‘const uint32_t n = ACAN_T4::can3.receiveBufferCount () ;

29.4 The receiveBufferPeakCount method

The receiveBufferPeakCount method returns the peak value of message count in the driver receive buffer.

‘const uint32_t max = ACAN_T4::can3.receiveBufferPeakCount () ;

Note the driver receive buffer may overflow, if messages are not retrieved (by calling the receiveFD method
or the dispatchReceivedMessageFD method). If an overflow occurs, further calls of ACAN_T4::can3.
receiveBufferPeakCount () return ACAN_T4::can3.receiveBufferSize ()+1.

54

Bryan Miller

Bryan Miller
The same is true for

30 CANFD RECEIVE FILTERS

30 CANFD receive filters

A first step is to define receive filters'?>. Note the CANFD filters are very different from CAN primary filters
(section 13 page 19) and CAN secondary filters (section 14 page 22). Let me explain why.

The CANFD/FlexCAN3 chapter of the reference manual'® presents a wonderful Enhanced Rx FIFO'“. It stores
up to 32 CANFD messages, and provides 128 32-bit registers for defining receive filters. Unfortunately, it
doesn't work. Trying to access one of the dedicaced registers crashes the microcontroller. There are several
posts relating this bug: dedicated

» IMXRT1062 Hardfault Reading CAN3 ERFCR Register, https://community.nxp.com/thread/503656
» https://forum.pjrc.com/threads/54711-Teensy-4-0-First-Beta-Test/pagell9

I haven't found a single post that explains how to do it. And surprisingly, this bug is not mentioned in the Chip
Errata document . So forget the Enhanced Rx FIFO.

Using the Legacy Rx FIFO? The section 44.4.8 page 2721 says Legacy Rx FIFO must not be enabled when CAN FD
feature is enabled. So forget the Legacy Rx FIFO for CANFD: it works for CAN, but not for CANFD.

So we should use the legagy legacy way, filtering is done per receive Message Buffer.

this confused me, is there a different way to say it?

30.1 Message Buffers in CANFD mode

First, we should present how the Message Buffers are handled in CANFD mode. The reference manual an-

nounces the chip implements 64 Message Buffers for FlexCAN3, however it is true only in CAN 2.0B mode.
These

We can consider that 2 blocks of 512 bytes of double-access RAM are reserved for Message Buffers. Theses
blocks can be read and written by the CPU and by the CANFD protocol engine. A Message Buffer contains
message data, identifier, and a control word?®. In CAN 2.0B, the Message Buffer size is 16 bytes, so we have
64 Message Buffers. But in CANFD, a message can have up to 64 data bytes, so the Message Buffer size is
up to 72 bytes, so the Message Buffer count goes down to 14.

30.2 ThemPayload property

The mPayload of the ACAN_T4FD_Settings class sets the message maximum data size that the library can
handle. This allows you to adjust the size of your Message Buffers according to the size of the messages in
your application.

class ACAN_T4FD_Settings {

2The second step is to use the dispatchReceivedMessageFD method instead of the receiveFD method, see section 32 page 61.
13 MX RT1060 Processor Reference Manual, Rev. 1, 12/2018, chapter 44, pages 2691-2846.

T4section 44.4.7, page 2716.

15 Chip Errata for the iMX RT1060, Document Number: IMXRT1060CE, Rev. 1, 06/2019.

16See the reference manual, section 44.6.3, page 2829.

55

https://community.nxp.com/thread/503656
https://forum.pjrc.com/threads/54711-Teensy-4-0-First-Beta-Test/page119
Bryan Miller

Bryan Miller
dedicated

Bryan Miller

Bryan Miller

Bryan Miller
this confused me, is there a different way to say it?

Bryan Miller
These

Bryan Miller

30.3 TheMBCount function 30 CANFD RECEIVE FILTERS

public : typedef enum : uint8_t {
PAYLOAD_8 BYTES
PAYLOAD_16_BYTES
PAYLOAD_32_BYTES
PAYLOAD_64_BYTES
} Payload ;

-

-

U}
w N R o
-

public : Payload mPayload = PAYLOAD_64_BYTES ;

} s

For example, if your application has no message with more than 32 bytes, you can set the mPayload property
to ACAN_T4FD_Settings: :PAYLOAD_32_BYTES:the Message Buffer count becomes 24. The table 17 gives
the Message Buffer count according to the mPayload property.

By default, the mPayload property is set to ACAN_T4FD_Settings: :PAYLOAD_64_ BYTES, enabling send
and receive CANFD frame of @ny'size. o any size, or any size 0 <= x <= 64?

mPayload property value Message Buffer size Message Buffer count mRxCANFDMBCount property range
PAYLOAD 8 BYTES 16 bytes 64 1..62
PAYLOAD_16_BYTES 24 bytes 42 1.. 40
PAYLOAD_32_BYTES 40 bytes 24 1..22
PAYLOAD_64_BYTES (default) 72 bytes 14 1..12

Table 17 — Available Message Buffer count according to the mPayload property
An Message Buffer can be used for:

» reception;
» sending a remote frame;

» sending a data frame.

30.3 The MBCount function
‘uint32_t MBCount (const ACAN_T4FD_Settings::Payload inPayload) ;

TheMBCount standalone functionis declared in the ACAN_T4FD_Settings headerfile. It returns the available
Message Buffer count, according to a given payload, as shown in the table 17.

30.4 The mRxCANFDMBCount property

The mRxCANFDMBCount of the ACAN_T4FD_Settings class specifies the number of Message Buffers dedi-
caced to reception. Its valid ranges is one to the number of available Message Buffers minus two (see table
17); its default value is 11; its range depends from the mPayload property value.

The figure 4 shows the Message Buffer assignment, according to the mRxCANFDMBCount property value and
the number of available Message Buffers:

56

Bryan Miller

Bryan Miller
of any size, or any size 0 <= x <= 64?

305 CANFD filters 30 CANFD RECEIVE FILTERS

» the Message Buffer #0 is always unused, as recommended in Chip Errata for the iMX RT1060, section
ERROO5829, page 8;

» the last available Message Buffer is dedicated for sending data frames.

If your application does not send remote frames, it is safe to set the mMRxCANFDMBCount property to the num-
ber of available Message Buffers minus two.

Send
data
Unused Reception Send remote frame frame
e | 7 I
< 2 S | T
> c © ©
(o] > o o
9 S — —
o O > >
= s © ©
Message Buffers | #0 #1 a2 = Q a
[TH o ~ ~
= = + +
<< = c c
(@] < =] >
o] Y o o
x x v} v}
£ o om [a]
£ = =

Figure 4 — FLEXCAN3 module Message Buffer assignment, in CANFD mode

11
By default, FLEXCAN3 is configured with @2 Message Buffers available for reception, 1 Message Buffer for

sending remote data frames, and 1 Message Buffer for sending data frames (figure 5).

1 unused message buffer (#0), 11 message buffers for reception, 1

message buffer for sending remote data frames, and 1 message buffer Send Send
for sending data frames. remote data
Unused Reception frame frame

Message Buffers #0 #1 #11 #12 #13

Figure 5 — FLEXCAN3 module Message Buffer default assignment, in CANFD mode

30.5 CANFD filters

To each Message Buffer in reception is associated a filter.

By default, each Message Buffer receives a pass-all filter, that is every frame received by the protocol engine
can be assigned to any reception Message Buffer. More precisely, the matching process is:

1. the matching process starts with Message Buffer #1, until the mRxCANFDMBCount'™" Message Buffer;

2. if a Message Buffer is empty and its filter accepts the incomming frame, this frame is written to the

Message buffer that becomes full,

Buffer
3. if all the Message Buffers whose filter accepts the incoming frame are full, the last one is overwritten

by the incoming frame; the previous message is lost.

57

Bryan Miller

Bryan Miller
11

Bryan Miller
1 unused message buffer (#0), 11 message buffers for reception, 1 message buffer for sending remote data frames, and 1 message buffer for sending data frames.

Bryan Miller
Buffer

Bryan Miller

31 DEFINING CANFD FILTERS

If your application has somewhere an interrupt routine that lasts longer than the duration of receiving a CANFD
frame, the FLEXCAN3 interrupt routine may not be able to release a Message Buffer until a new message
arrives. If the reception filter is set only once, a message may be lost.

Itis therefore consistent to define the same filter several times. Itis very different from the CAN filters (section
13 page 19 and section 14 page 22).

31 Defining CANFD filters

The user can define up to mMRXCANFDMBCount different filters. However, internally the library always defines
mRxCANFDMBCount filters:

» if the user provides no filter, the pass-all filter is assigned to every reception Message Buffer;

» if the user provides exactly mRxCANFDMBCount filters, the first one is assigned to Message Buffer #1,
., the last one is assigned to the mMRxCANFDMBCount™ Message Buffer;

» if the user provides less than mMRxCANFDMBCount filters, the last filter is assigned to the remaining re-
ception Message Buffers.

A filter acts on:

»« remote / data information;
» standard / extended information;

« identifier value.

Note a filter cannot distinguish CANFD frames from CAN 2.0B frames.

31.1 CANFD filter example

In the following example, the mMRXCANFDMBCount property has its default value (11). Note the two first filters
have been duplicated.

void setup () {
ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x4) ;

const ACANFDFilter filters [] = {
ACANFDFilter (kData, kExtended, ©x123456), // Assigned to MB #1 Why not MB #47?
ACANFDFilter (kData, kExtended, ©x123456), // Assigned to MB #2
ACANFDFilter (kData, kStandard, ©x234), // Assigned to MB #3////)'
ACANFDFilter (kData, kStandard, ©0x234), // Assigned to MB #5
ACANFDFilter (kRemote, kStandard, ©x542) // Assigned to MB #6, ..., MB #11
}s T
const uint32_t errorCode = ACAN_T4::can3.beginFD (settings, #57?
filters, // The filter array
5) ; // Filter array size

58

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller
Why not MB #4?

Bryan Miller
#5?

Bryan Miller

Bryan Miller

Bryan Miller

Bryan Miller

312 CANFD filter as pass-all filter 317 DEFINING CANFD FILTERS

void loop () {
CANFDMessage message ;
if (ACAN_T4::can3.receiveFD (message)) { // Only frames that pass a filter are retrieved
if ((message.type != CANFDMessage::CAN_REMOTE)
&& message.ext && (message.id == 0x123456)) {
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
}else if ((message.type != CANFDMessage::CAN_REMOTE)
&& !message.ext && (message.id == 0x234)) {
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
}else if ((message.type == CANFDMessage::CAN_REMOTE)
&& !message.ext && (message.id == 0x542)) {
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542
}
}

}

Note there is a better way to handle received messages, with the dispatchReceivedMessageFD method,
see section 32 page 61.

31.2 CANFD filter as pass-all filter

You can specify a CANFD filter that matches any frame:
\ ACANFDFilter ()

You can use it for accepting all frames that did not match previous filters:

void setup () {

const ACANFDFilter primaryFilters [] = {
ACANFDFilter (kData, kExtended, ©x123456), // Filter #@ -> MB #1

ACANFDFilter (kData, kStandard, ©x234), // Filter #1 -> MB #2

ACANFDFilter (kRemote, kStandard, ©x542), // Filter #2 -> MB #3

ACANFDFilter () // Filter #3 -> MB #4 to MB #11
Y

}

Note if a message that matches the #0 filter can be assigned to Message Buffer #4 to Message Buffer #11 if
the Message Buffers #1 is full. And the same goes for #1 and #2 filters.

31.3 CANFD filter for matching several identifiers

A CANFD filter can be configured for matching several identifiers. You provide two values: a filter_mask
andafilter_acceptance. A message with an identifier is accepted if:

filter_mask & identifier = filter_acceptance

59

314 CANFD filter conformance 31 DEFINING CANFD FILTERS

The & operator is the bit-wise and operator.

Let's take an example: the filter should match standard data frames with identifiers equal to @x540, 0x541,
0x542 and @x543. The four identifiers differs by the two lower bits. As a standard identifiers are 11-bits wide,
the filter_mask is @x7FC. The filter acceptance is @x540. The filter is declared by:

ACANFDFilter (kData, // Accept only data frames

kStandard, // Accept only standard frames
Ox7FC, // Filter mask
0x540) // Filter acceptance

For a standard frame (11-bit identifier), both filter _mask and a filter_ acceptance should be lower or
equal to Ox7FF.

For a extended frame (29-bit identifier), both filter_mask and a filter_acceptance should be lower or
equal to @x1FFF_FFFF.

Be aware that the filter_mask anda filter_acceptance must also conform to the following constraint:
if a bitis clear in the filter_mask, the corresponding bit of the filter_acceptance should also be clear.
In other words, filter_mask anda filter_acceptance should check:

filter_mask & filter_acceptance = filter_acceptance

For example, the filter mask @x7FC and the filter acceptance @x541 do not conform because the bit O of
filter_maskis clear and the bit O of the filter acceptance is set.

A non conform filter may never match.

31.4 CANFD filter conformance

The pass-all primary filter (section 31.2 page 59) always conforms. For a filter for matching several identifiers,
see section 31.3 page 59. For a filter for one single identifier:

« for astandard frame (11-bit identifier), the given identifier value should be <= @x7FF;

» for a extended frame (29-bit identifier), the given identifier value should be <= @x1FFF_FFFF.
If one or CANFD filters do not conform, the execution of the beginFD method returns an error — see table 18
page 64.
31.5 The receiveFD method revisited

The receiveFD method retrieves a received message. The value of the idx property of the message is the
receiving Message Buffer index minus one. For example:

void setup () {
ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x4) ;

60

32 THEDISPATCHRECEIVEDMESSAGEFD METHOD

const ACANFDFilter filters [] = {
ACANFDFilter (kData, kExtended, ©x123456), // Filter #0 -> MB #1

ACANFDFilter (kData, kStandard, ©0x234), // Filter #1 -> MB #2
ACANFDFilter (kRemote, kStandard, ©x542) // Filter #2 -> MB #3 to MB #11
Y

const uint32_t errorCode = ACAN_T4::can3.begin (settings, filters, 3) ;

void loop () {
CANFDMessage message ;
if (ACAN_T4::can3.receiveFD (message)) { // Only frames that pass a filter are retrieved
switch (message.idx) {
case @: // MB #1 match
handle_myMessage_© (message) ; // Extended data frame, id is ©x123456
break ;
case 1: // MB #2 match
handle_myMessage_1 (message) ; // Standard data frame, id is ©x234
break ;
default: // MB #3 to MB #11 match
handle_myMessage_2 (message) ; // Standard remote frame, id is ©x542
break ;

An improvement is to use the dispatchReceivedMessageFD method — see section 32 page 61.

32 ThedispatchReceivedMessageFD method

The last improvement is to call the dispatchReceivedMessageFD method — do not call the receiveFD
method any more. You can use it if you have defined CANFD filters that name a call-back function.

The CANFD filter constructors have as a last argument a call back function pointer. It defaults to NULL, so until
now the code snippets do not use it.

For enabling the use of the dispatchReceivedMessageFD method, you add to each filter definition as last
argument the function that will handle the message. Inthe loop function, call the dispatchReceivedMessageFD

method: it dispatches the messages to the €all back functions.

void setup () { call-back

ACAN_T4FD_Settings settings (125 * 1000, DataBitRateFactor::x4) ;

const ACANFDFilter filters [] = {
ACANFDFilter (kData, kExtended, ©x123456, handle_myMessage_©), // Filter #0

ACANFDFilter (kData, kStandard, ©x234, handle_myMessage_1), // Filter #1
ACANFDFilter (kRemote, kStandard, 0x542, handle_myMessage_2) // Filter #2
Y

const uint32_t errorCode = ACAN_T4::can3.beginFD (settings,
filters, // The filter array

61

Bryan Miller

Bryan Miller

Bryan Miller
call-back

32 THEDISPATCHRECEIVEDMESSAGEFD METHOD

3) , // Filter array size

void loop () {
ACAN_T4::can3.dispatchReceivedMessageFD () ; // Do not use ACAN_T4::can3.receiveFD any more

The dispatchReceivedMessageFD method handles one message at a time. More precisely:

« if it returns false, the driver receive buffer was empty;

» if it returns true, the driver receive buffer was not empty, one message has been removed and dis-
patched.

So, the return value can used for emptying and dispatching all received messages:

void loop () {
while (ACAN_T4::can3.dispatchReceivedMessageFD ()) {
}

call-back
If a filter definition does not name a €all baek function, the corresponding messages are lost. In the code below,

filter #1 does not name a €all back function, standard data frames with identifier x234 are lost.

void setup () { call-back

const ACANFDFilter filters [] = {
ACANFDFilter (kData, kExtended, ©x123456, handle_myMessage_©), // Filter #0

ACANFDFilter (kData, kStandard, ©x234), // Filter #1
ACANFDFilter (kRemote, kStandard, ©x542, handle_myMessage 2) // Filter #2
Y

The dispatchReceivedMessageFD method has an optional argument — NULL by default: a function name.
This function is called for every message that pass the receive filters, with an argument equal to the matching
filter index:

void filterMatchFunction (const uint32_t inFilterIndex) {

void loop () {
ACAN_T4::can3.dispatchReceivedMessageFD (filterMatchFunction) ;

You can use this function for maintaining statistics about receiver filter matches.
Note the filter index is the matching Message Buffer index minus one, in order to have a zero-based number.

Asthe library always defines MRxCANFDMBCount filters, the filterindex value goes from @ to MRxCANFDMBCount - 1.

62

Bryan Miller

Bryan Miller

Bryan Miller
call-back

Bryan Miller

Bryan Miller

Bryan Miller
call-back

33 THEACAN_T4: :BEGINFD METHOD REFERENCE

33 The ACAN_T4: :beginFD method reference

33.1 The ACAN_T4: :beginFD method prototype

The beginFD method prototype is:

uint32_t ACAN_T4::beginFD (const ACAN_T4_Settings & inSettings,
const ACANFDFilter inFilters [] = NULL,
const uint32_t inFilterCount = 90) ;

The two last arguments have default values.
implies
Omitting the last two arguments Makes no user filter is defined, all messages are received:

‘const uint32_t errorCode = ACAN_T4::can3.beginFD (settings) ;

33.2 The error code

The beginFD method returns an error code. The value @ denotes no error. Otherwise, you consider every bit
as an error flag, as described in table 18. An error code could report several errors. Bits from O to 11 are actu-
ally defined by the ACAN_T4_Settings class and are also returned by the CANFDBitSettingConsistency
method (see section 34.2 page 68). Bits from 12 are defined by the ACAN_T4 class.

The ACAN_T4FD_Settings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero = 1< 0 ;
public: static const uint32_t kBitRatePrescalerIsGreaterThanl024 =1<< 1
public: static const uint32_t kArbitrationPropagationSegmentIsZero =1<< 2 ;
public: static const uint32_t kArbitrationPropagationSegmentIsGreaterThan64 = 1 << 3 ;
public: static const uint32_t kArbitrationPhaseSegmentlIsZero = 1< 4 ;
public: static const uint32_t kArbitrationPhaseSegmentlIsGreaterThan32 =1<< 5 ;
public: static const uint32_t kArbitrationPhaseSegment2IsLowerThan2 =1<< 6 ;
public: static const uint32_t kArbitrationPhaseSegment2IsGreaterThan32 = 1< 7 ;
public: static const uint32_t kArbitrationRIWIsZero =1 << 8 ;
public: static const uint32_t kArbitrationRIWIsGreaterThan32 =1<< 9 ;
public: static const uint32_t kArbitrationRIWIsGreaterThanPhaseSegment2 =1 << 10 ;
public: static const uint32_t kArbitrationPhaseSegmentlIslAndTripleSampling = 1 << 11 ;
public: static const uint32_t kDataPropagationSegmentIsZero =1 << 12 ;
public: static const uint32_t kDataPropagationSegmentIsGreaterThan32 =1 << 13 ;
public: static const uint32_t kDataPhaseSegmentlIsZero =1 << 14 ;
public: static const uint32_t kDataPhaseSegmentlIsGreaterThan8 =1 << 15 ;
public: static const uint32_t kDataPhaseSegment2IsLowerThan2 =1 << 16 ;
public: static const uint32_t kDataPhaseSegment2IsGreaterThan8 =1 << 17 ;
public: static const uint32_t kDataRJIWIsZero =1 << 18 ;
public: static const uint32_t kDataRJWIsGreaterThan8 =1 << 19 ;
public: static const uint32_t kDataRIWIsGreaterThanPhaseSegment2 =1 << 20 ;
The ACAN_T4 class defines static constant properties that can be used as mask error:

public: static const uint32_t kCANBitConfiguration =1 << 25 ;

public: static const uint32_t kCANFDNotAvailableOnCAN1AndCAN2 =1 << 24 ;

public: static const uint32_t kTooMuchCANFDFilters =1 << 23 ;

public: static const uint32_t kCANFDInvalidRxMBCountVersusPayload = 1 << 22 ;

63

Bryan Miller

Bryan Miller
implies

332 Theerror code 33 THEACAN_T4: :BEGINFD METHOD REFERENCE

Bit number Comment Link
0 mBitRatePrescaler==0

1 mBitRatePrescaler > 1024

2 mArbitrationPropagationSegment ==

3 mArbitrationPropagationSegment > 64

4 mArbitrationPhaseSegmentl ==

5 mArbitrationPhaseSegmentl > 32

6 mArbitrationPhaseSegment2 ==

7 mArbitrationPhaseSegment2 > 32

8 mArbitrationRIW==0

9 mArbitrationRIW > 32

10 mArbitrationRIW >mArbitrationPhaseSegment2
11 mArbitrationPhaseSegmentl == 1 and triple sampling
12 mDataPropagationSegment ==

13 mDataPropagationSegment > 32

14 mDataPhaseSegmentl ==0

15 mDataPhaseSegmentl > 8

16 mDataPhaseSegment2 < 2

17 mDataPhaseSegment2 > 8

18 mDataRIW==0

19 mDataRJIW > 32

20 mDataRJIW > mArbitrationPhaseSegment2

22 CANFD is not available on CAN1 and CAN2

23 More than mRxCANFDMBCount CANFD filters

24 Invalid mRxCANFDMBCount setting

25 Inconsistent CAN Bit configuration section 33.2.2 page 65

Table 18 — The ACAN_T4: :beginFD method error codes

33.2.1 CAN Bit setting too far from wished rate

This error is raised when the mBitConfigurationClosedToWishedRate of the settings object is false.
This means that the ACAN_T4_Settings constructor cannot compute a CAN bit configuration close enough to
the wished bitrate. When the begin is called with settings.mBitConfigurationClosedToWishedRate
false, this error is reported. For example:
void setup () {
ACAN_T4_Settings settings (1) ; // 1 bit/s !!!
// Here, settings.mBitConfigurationClosedToWishedRate is false

const uint32_t errorCode = ACAN_T4::canl.begin (settings) ;
// Here, errorCode == ACAN_T4::kCANBitConfigurationTooFarFromWishedBitRateErrorMask

This error is a fatal error, the driver and the FLEXCAN module are not configured. See section 17.1 page 31 for
a discussion about CAN bit setting computation.

64

34 ACAN_T4FD_SETTINGS CLASS REFERENCE

33.2.2 CAN Bit inconsistent configuration error

This erroris raised when you have changed the CAN bit properties (nBitRatePrescaler, mPropagationSegment,
mPhaseSegmentl, mPhaseSegment2, mRIW), and one or more resulting values are inconsistent. See section
34.2 page 68.

34 ACAN_T4FD_Settings class reference

Note. The ACAN_T4FD_Settings class is not F@EiR®specific. You can compile it on your desktop computer

with your favorite C++ compiler. Why the mention of Arduino? | thought this was
specifically for Teensy microcontrollers.

34.1 The ACAN_T4FD_Settings constructor: computation of the CAN bit settings
The constructor of the ACAN_T4FD_Settings has two mandatory arguments:

1. the wished arbitration bitrate;

2. the data bitrate factor.

It tries to compute the CANFD bit settings for theses argument values. If it succeeds, the constructed object
has its mBitConfigurationClosedToWishedRate property set to true, otherwise it is set to false. For
example:
void setup () {

ACAN_T4FD_Settings settings (1 * 1000 * 1000, // Arbitration bitrate: 1 Mbit/s

DataBitRateFactor::x4) ; // Data bitrate: 4 Mbit/s
// Here, settings.mBitConfigurationClosedToWishedRate is true

The DataBitRateFactor enumeration type is declared in the ACANFD_DataBitRateFactor.hfile:

enum class DataBitRateFactor : uint8_t {
x1l =

=
-

X2 =

-

X3 =
X4 =
x5 =

-

-

-

X6 =

X7 =

X8 =

X9 =

x1l0 = 10
Y

-

-

W 00 N O U1 b W N
-

-

Of course, CAN bit computation always succeeds for classical arbitration bitrates: 1 Mbit/s, 500 kbit/s, 250
kbit/s, 125 kbit/s. Note all data bitrate factors cannot be used for a given arbitration bitrate. The FLEXCAN
module uses an internal 60 MHz clock, that a data bitrate of 8 Mbit/s cannot be achieved.

65

Bryan Miller

Bryan Miller
Why the mention of Arduino? I thought this was specifically for Teensy microcontrollers.

Bryan Miller

34.1

what happened here?

The ACAN_T4FD_Settings constructor: computationiof 366 CACLDIt SIS ETTINGS CLASS REFERENCE

Not that CAN bit computation can also succeed for some unusual bitrates, as 937500 bit/s and data bitrate
factor of 8. You can check the result by computing actual bitrate, and the distance from the wished bitrate:

Serial

Serial

Serial

Serial.

Serial.
Serial.
Serial.
Serial.

void setup () {

begin (9600) ;

.print (
println (settings.

print (

println (settings.

print (

.println (settings.
Serial.

print (

.println (settings.

ACAN_T4FD_Settings settings (937500, DataBitRateFactor::x8) ;

)

mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)

)
actualArbitrationBitRate ()) ; //

) s
actualDataBitRate ()) ; //

) s

ppmFromWishedBitRate ())

937 500 bit/s

7.5 Mbit/s

; // @, exact bitrate

By default, a bitrate is accepted if the distance from the computed actual bitrate is lower or equal to 1, 000 ppm =
0.1%. You can change this default value by adding your own value as third argument of ACAN_T4FD_Settings

constructor:

Serial

Serial.

Serial.
Serial.
Serial.

Serial.

void setup () {

begin (9600) ;

print (

println (settings.

print (

println (settings.
.print (
println (settings.

ACAN_T4FD_Settings settings (833000, DataBitRateFactor::x1, 200) ;
Serial.

)
mBitConfigurationClosedToWishedRate) ; // © (--> is false)
)
actualArbitrationBitRate ()) ; // 833 333 bit/s

) s
ppmFromWishedBitRate ()) ; // 400 ppm

The third argument does not change the CAN bit computation, it only changes the acceptance test for setting

the mBitConfigurationClosedToWishedRate property. For example, you can specify that you want the

computed actual bit to be exactly the wished bitrate:

Serial

Serial

Serial.
ACAN_T4FD_Settings settings (500 * 1000, DataBitRateFactor::x4, 0) ;
Serial.
Serial.
Serial.

Serial.

void setup () {

begin (9600) ;

print (

println (settings.

print (

.println (settings.
Serial.

print (

.println (settings.
Serial.

print (

println (settings.

) s
mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
)
actualArbitrationBitRate ()) ; // 500,000 bit/s
)
actualDataBitRate ()) ; // 2 Mbit/s

)
ppmFromWishedBitRate ()) ; // © ppm

In any way, the bitrate computation always gives a consistent result, resulting an actual bitrate closest from
the wished bitrate. For example:

‘void setup () {

66

Bryan Miller

Bryan Miller
what happened here?

what happened here?

34.1 TheACAN_T4FD_Settings constructor: computation of 3te CACLbIt $etEiDgSETTINGS CLASS REFERENCE

Serial

Serial

Serial.
Serial.

Serial.

Serial.

print (
println
print (

.println

print (

.println
Serial.

print (
println

Serial.begin (9600) ;
ACAN_T4FD_Settings settings (440 * 1000, DataBitRateFactor::x3) ;
Serial.
(settings.
(settings.

(settings.

(settings.

)
mBitConfigurationClosedToWishedRate) ; // © (--> is false)
)
actualArbitrationBitRate ()) ; // 444,444 bit/s
)
actualDataBitRate ()) ; // 1,333,333 bit/s

)
ppmFromWishedBitRate ()) ; // 10,101 ppm

You can get the details of the CAN bit decomposition. For example:

Serial

Serial

Serial

Serial

Serial

Serial

Serial

Serial.

Serial.
Serial.
Serial.
Serial.
Serial.

Serial.
Serial.
Serial.
Serial.
Serial.

Serial.
Serial.
Serial.
Serial.
Serial.
Serial.

Serial.

Serial.

Serial.

Serial.

Serial.

void setup () {
Serial.begin (9600) ;
ACAN_T4FD_Settings settings (1000 * 1000, DataBitRateFactor::x5) ;
.print (

println

.print (
Serial.

println
print (
println
print (
println
print (

.println
Serial.

print (
println
print (
println
print (
println

.print (

println
print (
println
print (
println
print (

.println

print (

.println
Serial.

print (
println
print (
println

.print (

println

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

(settings.

)
mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
)
actualArbitrationBitRate ()) ; // 1,000,000 bit/s
)
ppmFromWishedBitRate ()) ; // © ppm
) s
mBitRatePrescaler) ; // 1
)
mArbitrationPropagationSegment) ; // 29
)
mArbitrationPhaseSegmentl) ; // 15
)
mArbitrationPhaseSegment2) ; // 15
)
mArbitrationRIW) ; // 15
)
mTripleSampling) ; // ©, meaning single sampling
)
arbitrationSamplePointFromBitStart ()) ; // 75, meaning 75%
)
mDataPropagationSegment) ; // 6
)
mDataPhaseSegmentl) ; // 2
)
mDataPhaseSegment2) ; // 3
)
mDataRIW) ; // 3
)
DataSamplePointFromBitStart ()) ; // 75, meaning 75%
)
CANFDBitSettingConsistency ()) ; // ©, meaning Ok

The arbitrationSamplePointFromBitStart and the dataSamplePointFromBitStart method return

the sample point, expressed in per-cent of the bit duration from the beginning of the bit.

67

Bryan Miller
what happened here?

34.2 The CANFDBitSettingConsistency method 34 ACAN_T4FD_SETTINGS CLASS REFERENCE

Note the computation may calculate a bit decomposition too far from the wished bitrate, but it is always
consistent. You can check this by calling the CANFDBitSettingConsistency method.

You can change the property values for adapting to the particularities of your CAN network propagation time.
By example, you can increment the mPhaseSegment1 value, and decrement the mPhaseSegment2 value in
order to sample the CAN Rx pin later.

void setup () {

Serial.begin (9600) ;
ACAN_T4FD_Settings settings (1000 * 1000, DataBitRateFactor::x5) ;

Serial.print ()

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // 1 (--> is true)
settings.mArbitrationPhaseSegmentl -- ; // 15 -> 14: safe, 1 <= PS1 <= 32
settings.mArbitrationPhaseSegment2 ++ ; // 15 -> 16: safe, 2 <= PS2 <= 32 and RIW <= PS2
Serial.print ()

Serial.println (settings.arbitrationSamplePointFromBitStart ()) ; // 73, meaning 73%
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 500000: ok, no change
Serial.print ()

Serial.println (settings.CANFDBitSettingConsistency ()) ; // ©, meaning Ok

Be aware to always respect CANFD bit timing consistency!

34.2 The CANFDBitSettingConsistency method

This method checks the CANFD bit decomposition is consistent.

void setup () {
Serial.begin (9600) ;
ACAN_T4FD_Settings settings (1000 * 1000, DataBitRateFactor::x5) ;
settings.mArbitrationPhaseSegmentl = @ ; // Error, should be >= 1 (and <= 64)
Serial.print ()
Serial.println (settings.CANFDBitSettingConsistency (), HEX) ; // ©x10, meaning error

The CANFDBitSettingConsistency method returns0if CANFD bit decomposition is consistent. Otherwise,
the returned value is a bit field that can report several errors — see table 19.

The ACAN_T4_Settings class defines static constant properties that can be used as mask error:

public: static const uint32_t kBitRatePrescalerIsZero =1<< 0 ;
public: static const uint32_t kBitRatePrescalerIsGreaterThanle24 = 1< 1;
public: static const uint32_t kArbitrationPropagationSegmentIsZero =1<< 2 ;
public: static const uint32_t kArbitrationPropagationSegmentIsGreaterThan64 = 1 << 3 ;
public: static const uint32_t kArbitrationPhaseSegmentlIsZero = 1< 4 ;
public: static const uint32_t kArbitrationPhaseSegmentlIsGreaterThan32 =1< 5 ;
public: static const uint32_t kArbitrationPhaseSegment2IsLowerThan2 =1<< 6 ;
public: static const uint32_t kArbitrationPhaseSegment2IsGreaterThan32 = 1< 7 ;
public: static const uint32_t kArbitrationRJIWIsZero = 1< 8 ;
public: static const uint32_t kArbitrationRIWIsGreaterThan32 =1<< 9 ;
public: static const uint32_t kArbitrationRIWIsGreaterThanPhaseSegment2 =1 << 10 ;

68

34.3 TheactualArbitrationBitRate method 34 ACAN_T4FD_SETTINGS CLASS REFERENCE

Bit number Error

0 mBitRatePrescaler ==

1 mBitRatePrescaler > 1024

2 mArbitrationPropagationSegment ==
3 mArbitrationPropagationSegment > 64
4 mArbitrationPhaseSegmentl ==

5 mArbitrationPhaseSegmentl > 32

6 mArbitrationPhaseSegment2 ==

7 mArbitrationPhaseSegment2 > 32

8 mArbitrationRIW==0

9 mArbitrationRIW > 32

10 mArbitrationRIW >mArbitrationPhaseSegment2
11 mArbitrationPhaseSegmentl == 1 and triple sampling
12 mDataPropagationSegment ==

13 mDataPropagationSegment > 32

14 mDataPhaseSegmentl ==

15 mDataPhaseSegmentl > 8

16 mDataPhaseSegment2 ==

17 mDataPhaseSegment2 > 8

18 mDataRIW==0

19 mDataRJIW > 8

20 mDataRJW > mDataPhaseSegment2

Table 19 — The ACAN_T4FD_Settings: :CANFDBitSettingConsistency method error codes

public: static const uint32_t kArbitrationPhaseSegmentlIslAndTripleSampling = 1 << 11 ;
public: static const uint32_t kDataPropagationSegmentIsZero =1 << 12 ;
public: static const uint32_t kDataPropagationSegmentIsGreaterThan32 =1 << 13 ;
public: static const uint32_t kDataPhaseSegmentlIsZero =1 << 14 ;
public: static const uint32_t kDataPhaseSegmentlIsGreaterThan8 =1 << 15 ;
public: static const uint32_t kDataPhaseSegment2IsLowerThan2 =1 << 16 ;
public: static const uint32_t kDataPhaseSegment2IsGreaterThan8 =1 << 17 ;
public: static const uint32_t kDataRJIWIsZero =1 << 18 ;
public: static const uint32_t kDataRJWIsGreaterThan8 =1 << 19 ;
public: static const uint32_t kDataRJIWIsGreaterThanPhaseSegment2 =1 << 20 ;

34.3 The actualArbitrationBitRate method

TheactualArbitrationBitRate method returnstheactual arbitration bitrate computed frommBitRatePrescaler,
mArbitrationPropagationSegment, mArbitrationPhaseSegmentl, mArbitrationPhaseSegment2 prop-
erty values.

Note. If CANFD bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

69

34.4 TheactualDataBitRate method 34 ACAN_T4FD_SETTINGS CLASS REFERENCE

34.4 The actualDataBitRate method

The actualDataBitRate method returns the actual data bitrate computed from mBitRatePrescaler,
mDataPropagationSegment, mDataPhaseSegmentl, mDataPhaseSegment2 property values.

Note. If CANFD bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

34.5 The exactBitRate method

The exactBitRate method returns true if the actual bitrate is equal to the wished bitrate, and false oth-
erwise.

Note. If CANFD bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

With the default CAN root clock settings (60 MHz CAN root clock, CAN root clock divisor equal to 1, see section
37 page 74), there are 480 exact bitrates (table 20).

Arbitration Available Arbitration Available Arbitration Available
bitrate Data bitrate Factors bitrate Data bitrate Factors bitrate Data bitrate Factors
(bit/s) (bit/s) (bit/s)
480 x5 500 X3 x4 x5 x6 x8 x10 600 x4 x5 x10
625 X2 x3 x4 x5 x6 x8 x10 640 x5 750 X2 x4 x5 x8 x10
768 x5 800 X3 x4 x5 x6 x8 x10 960 x4 x5 x10
1 000 X2 x3 x4 x5 x6 x8 x10 1 200 X2 x4 x5 x8 x10 1 250 x1 x2 x3 x4 x5 x6 x8 x10
1 280 x3 x5 1 500 x1 x2 x4 x5 x8 x10 1 600 X2 X3 x4 x5 x6 x10
1 875 x1 x2 x4 x5 x8 x10 1 920 x2 x5 x10 2 000 x1 x2 x3 x4 x5 x6 x8 x10
2 400 x1 x2 x4 x5 x8 x10 2 500 X1 x2 x3 x4 x5 x6 x8 x10 3 000 x1 x2 x4 x5 x8 x10
3 125 x1 x2 x3 x4 x5 x6 x8 x10 3 200 x1 x2 x3 x5 x6 x10 3 750 x1 x2 x4 x5 x8 x10
3 840 x1 x5 4 000 X1 x2 x3 x4 x5 x6 x8 x10 4 800 x1 x2 x4 x5 x10
5 000 x1 x2 x3 x4 x5 x6 x8 x10 6 000 x1 x2 x4 x5 x8 x10 6 250 x1 x2 x3 x4 x5 x6 x8 x10
6 400 x1 x3 x5 7 500 X1 x2 x4 x5 x8 x10 8 000 X1 x2 x3 x4 x5 x6 x10
9 375 x1 x2 x4 x5 x8 x10 9 600 x1 x2 x5 x10 10 000 x1 x2 x3 x4 x5 x6 x8 x10
12 000 x1 x2 x4 x5 x8 x10 12 500 x1 x2 x3 x4 x5 x6 x8 x10 15 000 x1 x2 x4 x5 x8 x10
15 625 x1 x2 x3 x4 x5 x6 x8 x10 16 000 x1 x2 x3 x5 x6 x10 18 750 x1 x2 x4 x5 x8 x10
19 200 x1 x5 20 000 x1 x2 x3 x4 x5 x6 x8 x10 24 000 x1 x2 x4 x5 x10
25 000 x1 x2 x3 x4 x5 x6 x8 x10 30 000 x1 x2 x4 x5 x8 x10 31 250 x1 x2 x3 x4 x5 x6 x8 x10
32 000 x1 x3 x5 37 500 x1 x2 x4 x5 x8 x10 40 000 x1 x2 x3 x4 x5 x6 x10
46 875 x1 x2 x4 x5 x8 x10 48 000 x1 x2 x5 x10 50 000 x1 x2 x3 x4 x5 x6 x8 x10
60 000 x1 x2 x4 x5 x8 x10 62 500 x1 x2 x3 x4 x5 x6 x8 x10 75 000 x1 x2 x4 x5 x8 x10
78 125 x1 x2 X3 x4 x6 x8 80 000 x1 x2 x3 x5 x6 x10 93 750 x1 x2 x4 x5 x8 x10
96 000 x1 x5 100 000 x1 x2 x3 x4 x5 x6 x8 x10 120 000 x1 x2 x4 x5 x10
125 000 x1 x2 x3 x4 x5 x6 x8 x10 150 000 x1 x2 x4 x5 x8 x10 156 250 x1 x2 X3 x4 x6 x8
160 000 x1 x3 x5 187 500 x1 x2 x4 x5 x8 x10 200 000 x1 x2 x3 x4 x5 x6 x10
234 375 x1 x2 x4 x8 240 000 x1 x2 x5 x10 250 000 x1 x2 x3 x4 x5 x6 x8 x10
300 000 x1 x2 x4 x5 x8 x10 312 500 x1 x2 x3 x4 x6 x8 375 000 x1 x2 x4 x5 x8 x10
400 000 x1 x2 x3 x5 x6 x10 468 750 x1 x2 x4 x8 480 000 x1 x5
500 000 x1 x2 x3 x4 x5 x6 x8 x10 600 000 x1 x2 x4 x5 x10 625 000 X1 X2 X3 x4 x6 x8
750 000 x1 x2 x4 x5 x8 x10 800 000 x1 x3 x5 937 500 x1 x2 x4 x8

1 000 000 x1 x2 x3 x4 x5 x6 x10

Table 20 — The 480 CANFD exact bitrates (60 MHz CAN root clock, divisor equal to 1)

With the 24 MHz CAN root clock, CAN root clock divisor equal to 1 (see section 37 page 74), there are 551
exact bitrates (table 21).

70

34.6 TheppmFromwWishedBitRate method 34 ACAN_T4FD_SETTINGS CLASS REFERENCE

Arbitration Available Arbitration Available Arbitration Available
bitrate Data bitrate Factors bitrate Data bitrate Factors bitrate Data bitrate Factors
(bit/s) (bit/s) (bit/s)
192 x5 200 X3 x4 x5 x6 x8 x10 240 x4 x5 x10
250 X2 x3 x4 x5 x6 x8 x10 256 x5 300 X2 x4 x5 x8 x10
320 X3 x4 x5 x6 x8 x10 375 X2 x4 x5 x8 x10 384 x4 x5 x10
400 X2 X3 x4 x5 x6 x8 x10 480 X2 x4 x5 x8 x10 500 X1 x2 x3 x4 x5 x6 x8 x10
512 X3 x5 600 x1 x2 x4 x5 x8 x10 625 x1 x2 x3 x4 x5 x6 x8 x10
640 X2 x3 x4 x5 x6 x10 750 x1 x2 x4 x5 x8 x10 768 x2 x5 x10
800 x1 x2 x3 x4 x5 x6 x8 x10 960 x1 x2 x4 x5 x8 x10 1 000 x1 x2 x3 x4 x5 x6 x8 x10
1 200 x1 x2 x4 x5 x8 x10 1 250 x1 x2 x3 x4 x5 x6 x8 x10 1 280 X1 x2 x3 x5 x6 x10
1 500 x1 x2 x4 x5 x8 x10 1 536 x1 x5 1 600 x1 x2 x3 x4 x5 x6 x8 x10
1 875 X1 x2 x4 x5 x8 x10 1 920 X1 x2 x4 x5 x10 2 000 x1 x2 x3 x4 x5 x6 x8 x10
2 400 x1 x2 x4 x5 x8 x10 2 500 x1 x2 x3 x4 x5 x6 x8 x10 2 560 x1 x3 x5
3 000 X1 x2 x4 x5 x8 x10 3 125 x1 x2 x3 x4 x5 x6 x8 x10 3 200 X1 x2 x3 x4 x5 x6 x10
3 750 x1 x2 x4 x5 x8 x10 3 840 x1 x2 x5 x10 4 000 x1 x2 x3 x4 x5 x6 x8 x10
4 800 X1 x2 x4 x5 x8 x10 5 000 x1 x2 x3 x4 x5 x6 x8 x10 6 000 x1 x2 x4 x5 x8 x10
6 250 x1 x2 x3 x4 x5 x6 x8 x10 6 400 x1 x2 x3 x5 x6 x10 7 500 x1 x2 x4 x5 x8 x10
7 680 x1 x5 8 000 X1 x2 x3 x4 x5 x6 x8 x10 9 375 x1 x2 x4 x5 x8 x10
9 600 x1 x2 x4 x5 x10 10 o600 x1 x2 x3 x4 x5 x6 x8 x10 12 000 x1 x2 x4 x5 x8 x10
12 500 x1 x2 x3 x4 x5 x6 x8 x10 12 800 x1 x3 x5 15 000 x1 x2 x4 x5 x8 x10
15 625 X1 x2 x3 x4 x6 x8 16 000 x1 x2 x3 x4 x5 x6 x10 18 750 x1 x2 x4 x5 x8 x10
19 200 x1 x2 x5 x10 20 000 x1 x2 x3 x4 x5 x6 x8 x10 24 000 x1 x2 x4 x5 x8 x10
25 000 x1 x2 x3 x4 x5 x6 x8 x10 30 000 x1 x2 x4 x5 x8 x10 31 250 x1 x2 X3 x4 x6 x8
32 000 x1 x2 x3 x5 x6 x10 37 500 x1 x2 x4 x5 x8 x10 38 400 x1 x5
40 000 x1 x2 x3 x4 x5 x6 x8 x10 46 875 x1 x2 x4 x8 48 000 x1 x2 x4 x5 x10
50 000 x1 x2 x3 x4 x5 x6 x8 x10 60 000 x1 x2 x4 x5 x8 x10 62 500 X1 X2 x3 x4 x6 x8
64 000 x1 x3 x5 75 000 x1 x2 x4 x5 x8 x10 80 000 x1 x2 x3 x4 x5 x6 x10
93 750 x1 x2 x4 x8 96 000 x1 x2 x5 x10 100 000 x1 x2 x3 x4 x5 x6 x8 x10
120 000 x1 x2 x4 x5 x8 x10 125 @00 x1 x2 x3 x4 x6 x8 150 000 x1 x2 x4 x5 x8 x10
160 000 x1 x2 x3 x5 x6 x10 187 500 x1 x2 x4 x8 192 000 x1 x5
200 000 x1 x2 x3 x4 x5 x6 x8 x10 240 000 x1 x2 x4 x5 x10 250 000 x1 x2 x3 x4 x6 x8
300 000 x1 x2 x4 x5 x8 x10 320 000 x1 x3 x5 375 000 x1 x2 x4 x8
400 000 x1 x2 x3 x4 x5 x6 x10 480 000 x1 x2 x5 x10 500 000 X1 x2 X3 x4 x6 x8
600 000 x1 x2 x4 x5 x8 750 000 x1 x2 x4 800 000 x1 x2 x3 x5 x6
960 000 x1 x5 1 000 000 x1 x2 x3 x4

Table 21 — The 551 CANFD exact bitrates (24 MHz CAN root clock, divisor equal to 1)

34.6 The ppmFromWishedBitRate method

The ppmFromWishedBitRate method returns the distance from the actual bitrate to the wished bitrate, ex-
pressed in part-per-million (ppm): 1 ppm = 10~6. In other words, 10, 000 ppm = 1%.
void setup () {

Serial.begin (9600) ;
ACAN_T4FD_Settings settings (440 * 1000, DataBitRateFactor::x3) ;

Serial.print ()

Serial.println (settings.mBitConfigurationClosedToWishedRate) ; // @ (--> is false)
Serial.print ()

Serial.println (settings.actualArbitrationBitRate ()) ; // 444,444 bit/s
Serial.print ()

Serial.println (settings.actualDataBitRate ()) ; // 1,333,333 bit/s

Serial.print ()

Serial.println (settings.ppmFromWishedBitRate ()) ; // 10,101 ppm

Note. If CAN bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

71

34.7 ThearbitrationSamplePointFromBitStart methdd% ACAN_T4FD_SETTINGS CLASS REFERENCE

34.7 ThearbitrationSamplePointFromBitStart method

The arbitrationSamplePointFromBitStart method returns the distance of sample point from the start
of the CANFD arbitration bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 1072,

Note. If CANFD bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

34.8 The dataSamplePointFromBitStart method

The dataSamplePointFromBitStart method returns the distance of sample point from the start of the
CANFD data bit, expressed in part-per-cent (ppc): 1 ppc = 1% = 1072,

Note. If CANFD bit settings are not consistent (see section 34.2 page 68), the returned value is irrelevant.

34.9 Properties of the ACAN_T4FD_Settings class

All properties of the ACAN_T4FD_Settings class are declared public and are initialized (table 22) by the

constructor.
Property (computed by the constructor) Type Valid Range
mWhishedBitRate uint32_t 1 ... 1000000
mBitRatePrescaler uintle_t 1..1024
mArbitrationPropagationSegment uint8_t 1..64
mArbitrationPhaseSegmentl uint8_t 1..32
mArbitrationPhaseSegment2 uint8_t 1..32
mArbitrationRIW uint8_t 1..32
mTripleSampling bool false, true
mDataPropagationSegment uint8_t 1..32
mDataPhaseSegmentl uint8_t 1.8
mDataPhaseSegment2 uint8_t 2.8
mDataRIW uint8_t 1..8
mBitConfigurationClosedToWishedRate bool false, true
Initialized Property Type Initial value
mListenOnlyMode bool false
mSelfReceptionMode bool false
mLoopBackMode bool false
mReceiveBufferSize uintle_t 32
mTransmitBufferSize uintle_t 16
mPayload Payload PAYLOAD_8_BYTES
mRxCANFDMBCount uint8_t 11 (<= MBCount (mPayload) - 2)
mTxPinOutputBufferImpedance TxPinOutputBufferImpedance IMPEDANCE_RO_DIVIDED_BY_6
mTxPinIsOpenCollector bool false
mRxPinConfiguration RxPinConfiguration PULLUP_47k

Table 22 — Properties of the ACAN_T4FD_Settings class

72

36 THEERRO560235 SILICON BUG

34.9.1 ThemListenOnlyMode property

This boolean property corresponds to the LOM bit of the FLEXCAN CTRL1 control register.

34.9.2 ThemSelfReceptionMode property

This boolean property corresponds to the complement of the SRXDIS bit of the FLEXCAN MCR control register.

34.9.3 The mLoopBackMode property

This boolean property corresponds to the LBP bit of the FLEXCAN CTRL1 control register.

Part Il

Setting the CAN Root Clock

35 The three CAN Root Clocks

The Teensy 4.x processor implements three clocks that can be used as root clock for the CAN1, CAN2 and CAN3
FlexCAN controllers. The selected root clock is used by all FlexCAN controllers.

The three available frequencies are 24 MHz, 60 MHz and 80 MHz. However, using 80 MHz root clock is prob-
lematic, it is subject to the ERRO50235 Silicon Bug.

36 The ERRO50235 Silicon Bug

The ERRO50235 Silicon bug concerns @N@OX mask (document RT1060_0N0OX Rev 1.2), and 1N@OX mask (doc-
ument RT1060_1N0oX Rev 1.0). The mask number is written on the chip, it can easily be read (third line, in
figure 6).

22_211%

aNBeXx
AA184

o3
| c

<
w
-
>
[~]

T

Figure 6 — Teensy 4.0, @NOOX mask

73

37 CAN ROOT CLOCK API

The ERRO50235 Silicon bug is described as follow in theses documents.

Description: When selecting the CCM CAN clock source with CAN_CLK_SEL set to 2, the UART clock gate will not
open and CAN_CLK_ROOT will be off. To avoid this issue, set CAN_CLK_SEL to O or 1 for CAN clock selection, or
open the UART clock gate by configuring the CCM_CCGRx register.

Workaround: There are two workarounds for this issue:

» Set CAN_CLK_SEL to O or 1 for CAN clock selection.

» IfCAN_CLK_SEL is set to 2, then the CCM must open any of UART clock gate by configuring the CCM_CCGRx
register.

Note: CAN_CLK_SEL is a 2-bit field of the CCM_CSCMR2 control register’:

0 -> CAN root Clock is 60 MHz;

1 -> CAN root Clock is 24 MHz;

2 -> CAN root Clock is 80 MHz;

0 -> CAN root Clock is disabled.

As the use of an UART cannot be assumed, the ACAN_T4 library does not use the 80 MHz frequency setting,
only 24 MHz and 60 MHz.

37 CAN Root Clock API

The Teensy 4.x micro-controller supports two CAN root clocks, 24 MHz and 60 MHz. In addition, a CAN Root
Clock divisor between 1 and 64 can be applied to this clock.

By default, the CAN Root Clock is 60 MHz, and the CAN Root Clock divisor is set to 1.

37.1 The ACAN_CAN_ROOT_CLOCK enumeration
‘enum class ACAN_CAN_ROOT_CLOCK { CLOCK_24MHz, CLOCK_6@MHz } ;

This enumeration defines the two implemented CAN root clocks, 24 MHz and 60 MHz.

37.2 The setCANRootClock function

bool setCANRootClock (const ACAN_CAN_ROOT_CLOCK inCANRootClock,
const uint32_t inCANRootClockDivisor) ;

The effect of calling this function depends from the inCANRootClockDivisor value:

171, MX RT1060 Processor Reference Manual, Rev. 2, 12/2019, section 14.7.8, pages 1059-1060.

74

37.3 ThegetCANRootClock function 38 AN EXAMPLE: THE 615 KBIT/S BITRATE

« if inCANRootClockDivisor > 1 and inCANRootClockDivisor < 64, the inCANRootClock and
inCANRootClockDivisor values are stored and will be used for all bitrate calculations; the function
returns true;

» if inCANRootClockDivisor < 1 or inCANRootClockDivisor > 64, the inCANRootClock and in-
CANRootClockDivisor values are ignored and will not be used for all bitrate calculations; the function
returns false; in other words, the call has no effect.

Note: Calling this function affects CAN1, CAN2 and CAN3 (CAN2.0B and CANFD). You must call this function
before any instantiation of the ACAN_T4_Settings and ACAN_T4FD_Settings classes. The constructors of
these classes use the CAN root clock settings to compute the parameters of the requested bitrates.

Note: Thereis no benefitin choosing inCANRootClockDivisor > 1, unless you want to achieve a low bitrate.

37.3 The getCANRootClock function
‘ACAN_CAN_ROOT_CLOCK getCANRootClock (void) ;

This function returns the current CAN root clock setting, either ACAN_CAN_ROOT_CLOCK: : CLOCK_24MHz or
ACAN_CAN_ROOT_CLOCK: : CLOCK_6@MHz.

37.4 The getCANRootClockFrequency function
‘uint32_t getCANRootClockFrequency (void) ; // 24 000 000, 60 000 00O

This function returns the current CAN root clock frequency, either 24 000 000 or 60 000 ©00.

37.5 The getCANRootClockDivisor function
‘uintBZ_t getCANRootClockDivisor (void) ; // 1 ... 64

This function returns the current CAN root clock divisor, a value between 1 and 64.

38 An example: the 615 kbit/s bitrate

See LoopBackDemoCAN1-615kbit-s demo sketch.

The 615 kbit/s bitrate cannot be achieved with the default settings of the CAN root clock (60 MHz, divisor
equal to 1). The closest bitrate is 612 244 bit/s, too far from 615 kbit/s to be accepted: the begin method
returns the @x2000000 error code, see table 7 page 29. The distance between actual bitrate and required
bitrate is 4479 ppm, and the default maximum value is 1 000 ppm.

The error can be removed by specifying a larger tolerance for acceptance of the actual bitrate, for example 5
000 ppm:

‘ACAN_T4_Settings settings (615000, 5000) ; // 615 kbit/s, tolerance 5000 ppm

75

39 LOW BITRATE: THE 100 BIT/S BITRATE

But this only silences the error, and does not affect the actual bitrate which is 612 244 bit/s.

If you want to get a closer bitrate, you should try the 24 MHz clock.

‘setCANRootClock (ACAN_CAN_ROOT_CLOCK: :CLOCK_24MHz, 1) ;

Note you must call this function before any instantiation of the ACAN_T4_Settingsand ACAN_T4FD_Settings
classes.

Now, the actual bitrate is 615 384 bit/s, closer than the previous one. The distance between actual bitrate
and required bitrate is 625 ppm, compatible with the default maximum value (1 000 ppm): the begin method
returns the @ error code, meaning no error.

39 Low bitrate: the 100 bit/s bitrate

See LoopBackDemoCAN1-100bit-s demo sketch.

With default CAN root clock settings (60 MHz, divisor equal to 1), the lowest bitrate is g%g";; = 9 375 bit/s.

With the 24 MHz root clock with a divisor equal to 64, the lowest bitrate becomes 622?‘3% = 58.59 bit/s.

Thus, with the settings 24 MHz and divisor equal to 64, we can try a bitrate of 100 bit/s: success, it is an
exact rate, reached with a bitrate prescaler equal to 150, and mPropagationSegment = mPhaseSegmentl =
mPhaseSegment2 = 8 (see section 17.2 page 34).

76

	Versions
	Features
	I CAN 2.0B
	Data flow
	A simple example: LoopBackDemoCAN1
	The CANMessage class
	Driver instances
	CRXi pin configuration
	Input impedance
	Alternate CRXi pin

	CTXi pin configuration
	Output impedance
	The mTxPinIsOpenCollector property
	Alternate CTXi pin

	Sending data frames
	tryToSend for sending data frames
	Driver transmit buffer size
	The transmitBufferSize method
	The transmitBufferCount method
	The transmitBufferPeakCount method

	Sending remote frames
	Sending frames using the tryToSendReturnStatus method
	Retrieving received messages using the receive method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	Primary filters
	Primary filter example
	Primary filter as pass-all filter
	Primary filter for matching several identifiers
	Primary filter conformance
	The receive method revisited

	Secondary filters
	Secondary filters, without primary filter
	Primary and secondary filters
	Secondary filter as pass-all filter
	Secondary filter conformance
	The receive method revisited

	The dispatchReceivedMessage method
	The ACAN_T4::begin method reference
	The ACAN_T4::begin method prototype
	The error code
	CAN Bit setting too far from wished rate
	CAN Bit inconsistent configuration error
	Too much primary filters error

	Primary filters conformance error
	Too much secondary filters error
	Secondary filter conformance error

	ACAN_T4_Settings class reference
	The ACAN_T4_Settings constructor: computation of the CAN bit settings
	CAN bit timing consistency
	The CANBitSettingConsistency method
	The actualBitRate method
	The exactBitRate method
	The ppmFromWishedBitRate method
	The samplePointFromBitStart method
	Properties of the ACAN_T4_Settings class
	The mListenOnlyMode property
	The mSelfReceptionMode property
	The mLoopBackMode property

	CAN controller state
	The controllerState method
	The receiveErrorCounter method
	The transmitErrorCounter method
	The globalStatus method
	The resetGlobalStatus method

	The demoCAN1CAN2CAN3 sketch

	II CANFD
	Data flow
	A simple example: LoopBackDemoCAN3FD
	The CANFDMessage class
	Properties
	The default constructor
	Constructor from CANMessage
	The type property
	The len property
	The idx property
	The pad method
	The isValid method

	Driver instance
	CRX3 pin configuration
	Input impedance

	CTX3 pin configuration
	Output impedance
	The mTxPinIsOpenCollector property

	Sending CAN2.0B and CANFD data frames
	tryToSendFD for sending data frames
	Driver transmit buffer size
	The transmitBufferSize method
	The transmitBufferCount method
	The transmitBufferPeakCount method

	Sending remote frames in CANFD mode
	Sending frames using the tryToSendReturnStatusFD method
	Retrieving received messages using the receiveFD method
	Driver receive buffer size
	The receiveBufferSize method
	The receiveBufferCount method
	The receiveBufferPeakCount method

	CANFD receive filters
	Message Buffers in CANFD mode
	The mPayload property
	The MBCount function
	The mRxCANFDMBCount property
	CANFD filters

	Defining CANFD filters
	CANFD filter example
	CANFD filter as pass-all filter
	CANFD filter for matching several identifiers
	CANFD filter conformance
	The receiveFD method revisited

	The dispatchReceivedMessageFD method
	The ACAN_T4::beginFD method reference
	The ACAN_T4::beginFD method prototype
	The error code
	CAN Bit setting too far from wished rate
	CAN Bit inconsistent configuration error

	ACAN_T4FD_Settings class reference
	The ACAN_T4FD_Settings constructor: computation of the CAN bit settings
	The CANFDBitSettingConsistency method
	The actualArbitrationBitRate method
	The actualDataBitRate method
	The exactBitRate method
	The ppmFromWishedBitRate method
	The arbitrationSamplePointFromBitStart method
	The dataSamplePointFromBitStart method
	Properties of the ACAN_T4FD_Settings class
	The mListenOnlyMode property
	The mSelfReceptionMode property
	The mLoopBackMode property

	III Setting the CAN Root Clock
	The three CAN Root Clocks
	The ERR050235 Silicon Bug
	CAN Root Clock API
	The ACAN_CAN_ROOT_CLOCK enumeration
	The setCANRootClock function
	The getCANRootClock function
	The getCANRootClockFrequency function
	The getCANRootClockDivisor function

	An example: the 615 kbit/s bitrate
	Low bitrate: the 100 bit/s bitrate

