
Dependently Typed Metaprogramming
(in Agda)

Conor McBride

August 26, 2013

2

Introduction

If you have never met a metaprogram in a dependently typed programming lan-
guage like Agda [Norell, 2008], then prepare to be underwhelmed. Once we have
types which can depend computationally upon first class values, metaprograms
just become ordinary programs manipulating and interpreting data which happen
to stand for types and operations.

This course, developed in the summer of 2013, explores methods of metapro-
gramming in the dependently typed setting. I happen to be using Agda to deliver
this material, but the ideas transfer to any setting with enough dependent types.
It would certainly be worth trying to repeat these experiments in Idris, or in Coq,
or in Haskell, or in your own dependently typed language, or maybe one day in
mine.

Chapter 1

Vectors and Normal Functors

It might be easy to mistake this chapter for a bland introduction to dependently
typed programming based on the yawning-already example of lists indexed by
their length, known to their friends as vectors, but in fact, vectors offer us a way to
start analysing data structures into ‘shape and contents’. Indeed, the typical moti-
vation for introducing vectors is exactly to allow types to express shape invariants.

1.1 Zipping Lists of Compatible Shape

Let us remind ourselves of the situation with ordinary lists, which we may define
in Agda as follows: Agda has a very

simple lexer and
very few special
characters. To a
first approximation,
(){}; stand alone
and everything else
must be delimited
with whitespace.

data List (X : Set) : Set where
〈〉 : List X
, : X → List X → List X

infixr 4 ,

The classic operation which morally involves a shape invariant is zip, taking
two lists, one of Ss, the other of T s, and yielding a list of pairs in the product
S × T formed from elements in corresponding positions. The trouble, of course, is
ensuring that positions correspond. The braces indicate

that S and T are
implicit arguments.
Agda will try to in-
fer them unless we
override manually.

zip : {S T : Set} → List S → List T → List (S × T)
zip 〈〉 〈〉 = 〈〉
zip (s, ss) (t , ts) = (s, t), zip ss ts
zip = 〈〉 -- a dummy value, for cases we should not reach

Overloading Constructors Note that I have used ‘, ’ both for tuple pairing and as
list ‘cons’. Agda permits the overloading of constructors, using type information
to disambiguate them. Of course, just because overloading is permitted, that does
not make it compulsory, so you may deduce that I have overloaded deliberately.
As data structures in the memory of a computer, I think of pairing and consing
as the same, and I do not expect data to tell me what they mean. I see types as
an external rationalisation imposed upon the raw stuff of computation, to help us
check that it makes sense (for multiple possible notions of sense) and indeed to
infer details (in accordance with notions of sense). Those of you who have grown
used to thinking of type annotations as glorified comments will need to retrain
your minds to pay attention to them.

3

4 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

Our zip function imposes a ‘garbage in? garbage out!’ deal, but logically, we
might want to ensure the obverse: if we supply meaningful input, we want to be
sure of meaningful output. But what is meaningful input? Lists the same length!
Locally, we have a relative notion of meaningfulness. What is meaningful output?
We could say that if the inputs were the same length, we expect output of that
length. How shall we express this property? We could externalise it in some suit-
able program logic, first explaining what ‘length’ is.The number of c’s in

suc is a long stand-
ing area of open
warfare.
Agda users tend
to use lowercase-
vs-uppercase to
distinguish things
in Sets from things
which are or
manipulate Sets.

The pragmas let you
use Arabic numer-
als.

data N : Set where
zero : N
suc : N→ N
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

length : {X : Set} → List X → N
length 〈〉 = zero
length (x , xs) = suc (length xs)

Informally,1 we might state and prove something like

∀ss, ts. length ss = length ts ⇒ length (zip ss ts) = length ss

by structural induction [Burstall, 1969] on ss , say. Of course, we could just as well
have concluded that length (zip ss ts) = length ts , and if we carry on zipping, we
shall accumulate a multitude of expressions known to denote the same number.

Matters get worse if we try to work with matrices as lists of lists (a matrix is
a column of rows, say). How do we express rectangularity? Can we define a
function to compute the dimensions of a matrix? Do we want to? What happens
in degenerate cases? Givenm, n, we might at least say that the outer list has length
m and that all the inner lists have length n. Talking about matrices gets easier if
we imagine that the dimensions are prescribed—to be checked, not measured.

1.2 Vectors

Dependent types allow us to internalize length invariants in lists, yielding vectors.
The index describes the shape of the list, thus offers no real choice of constructors.

data Vec (X : Set) : N→ Set where
〈〉 : Vec X zero
, : {n : N} → X → Vec X n → Vec X (suc n)

Parameters and indices. In the above definition, the element type is abstracted
uniformly as X across the whole thing. The definition could be instantiated to
any particular set X and still make sense, so we say that X is a parameter of the
definition. Meanwhile, Vec’s second argument varies in each of the three places
it is instantiated, so that we are really making a mutually inductive definition of
the vectors at every possible length, so we say that the length is an index. In an
Agda data declaration head, arguments left of : (X here) scope over all constructor
declarations and must be used uniformly in constructor return types, so it is sen-
sible to put parameters left of :. However, as we shall see, such arguments may be

1by which I mean, not to a computer

1.2. VECTORS 5

freely instantiated in recursive positions, so we should not presume that they are
necessarily parameters.

Let us now develop zip for vectors, stating the length invariant in the type.

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip ss ts = ?

The length argument and the two element types are marked implicit by de-
fault, as indicated by the {. .} after the forall. We write a left-hand-side naming
the explicit inputs, which we declare equal to an unknown ?. Loading the file with
[C − c C − l], we find that Agda checks the unfinished program, turning the ?
into labelled braces,

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip ss ts = { }0

and tells us, in the information window,

?0 : Vec (.S × .T) .n

that the type of the ‘hole’ corresponds to the return type we wrote. The dots before
S , T , and n indicate that these variables exist behind the scenes, but have not been
brought into scope by anything in the program text: Agda can refer to them, but
we cannot.

If we click between the braces to select that hole, and issue keystroke [C − c C−,],
we will gain more information about the goal:

Goal : Vec (Σ .S (λ .T)) .n
--——————————————————————

ts : Vec .T .n
ss : Vec .S .n
.T : Set
.S : Set
.n : N

revealing the definition of × used in the goal, about which more shortly, but also
telling us about the types and visibility of variables in the context.

Our next move is to split one of the inputs into cases. We can see from the type
information ss : Vec .S .n that we do not know the length of ss , so it might be
given by either constructor. To see if Agda agrees, we type ss in the hole and issue
the ‘case-split’ command [C − c C − c].

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip ss ts = {ss [C − c C − c]}0

Agda responds by editing our source code, replacing the single line of defintion
by two more specific cases.

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip 〈〉 ts = { }0
zip (x , ss) ts = { }1

Moreover, we gain the refined type information

?0 : Vec (.S × .T) 0
?1 : Vec (.S × .T) (suc .n)

6 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

which goes to show that the type system is now tracking what information is
learned about the problem by inspecting ss . This capacity for learning by testing
is the paradigmatic characteristic of dependently typed programming.

Now, when we split ts in the 0 case, we get

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip 〈〉 〈〉 = { }0
zip (x , ss) ts = { }1

and in the suc case,

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip 〈〉 〈〉 = { }0
zip (x , ss) (x1 , ts) = { }1

as the more specific type now determines the shape. Sadly, Agda is not very cleverIt’s not even as
clever as Epigram. about choosing names, but let us persevere. We have now made sufficient analysis

of the input to determine the output, and shape-indexing has helpfully ruled out
shape mismatch. It is now so obvious what must be output that Agda can figure it
out for itself. If we issue the keystroke [C − c C − a] in each hole, a type-directed
program search robot called ‘Agsy’ tries to find an expression which will fit in the
hole, asssembling it from the available information without further case analysis.
We obtain a complete program.

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip 〈〉 〈〉 = 〈〉
zip (x , ss) (x1 , ts) = (x , x1), zip ss ts

I tend to α-convert and realign such programs manually, yielding

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip 〈〉 〈〉 = 〈〉
zip (s, ss) (t , ts) = (s, t), zip ss ts

What just happened? We made Vec, a version of List, indexed by N, and sud-
denly became able to work with ‘elements in corresponding positions’ with some
degree of precision. That worked because N describes the shape of lists: indeed
N ∼= List One, instantiating the List element type to the type One with the sin-
gle element 〈〉, so that the only information present is the shape. Once we fix the
shape, we acquire a fixed notion of position.

Exercise 1.1 (vec) Complete the implementation of

vec : forall {n X } → X → Vec X n
vec {n } x = ?

using only control codes and arrow keys. (Note the brace notation, making the implicit nWhy is there no
specification? explicit. It is not unusual for arguments to be inferrable at usage sites from type informa-

tion, but none the less computationally relevant.)

Exercise 1.2 (vector application) Complete the implementation of

vapp : forall {n S T } → Vec (S → T) n → Vec S n → Vec T n
vapp fs ss = ?

using only control codes and arrow keys. The function should apply the functions from its
first input vector to the arguments in corresponding positions from its second input vector,
yielding values in corresponding positions in the output.

1.3. APPLICATIVE AND TRAVERSABLE STRUCTURE 7

Exercise 1.3 (vmap) Using vec and vapp, define the functorial ‘map’ operator for vectors,
applying the given function to each element.

vmap : forall {n S T } → (S → T)→ Vec S n → Vec T n
vmap f ss = ?

Note that you can make Agsy notice a defined function by writing its name as a hint in the
relevant hole before you [C − c C − a].

Exercise 1.4 (zip) Using vec and vapp, give an alternative definition of zip.

zip : forall {n S T } → Vec S n → Vec T n → Vec (S × T) n
zip ss ts = ?

Exercise 1.5 (Finite sets and projection from vectors) We may define a type of finite
sets, suitable for indexing into vectors, as follows:

data Fin : N→ Set where
zero : {n : N} → Fin (suc n)
suc : {n : N} → Fin n → Fin (suc n)

Implement projection:

proj : forall {n X } → Vec X n → Fin n → X
proj xs i = ?

Implement, tabulation, the inverse of projection.

tabulate : forall {n X } → (Fin n → X)→ Vec X n
tabulate {n } f = ?

Hint: think higher order.

1.3 Applicative and Traversable Structure

The vec and vapp operations from the previous section equip vectors with the struc-
ture of an applicative functor. Before we get to Applicative, let us first say what is an For now, I shall just

work in Set, but we
should remember to
break out and live,
categorically, later.

EndoFunctor:

Why Set1?

record EndoFunctor (F : Set→ Set) : Set1 where
field

map : forall {S T } → (S → T)→ F S → F T
open EndoFunctor {{ ...}} public

The above record declaration creates new types EndoFunctor F and a new mod-
ule, EndoFunctor, containing a function, EndoFunctor.map, which projects the map
field from a record. The open declaration brings map into top level scope, and the
{{ ...}} syntax indicates that map’s record argument is an instance argument. In-
stance arguments are found by searching the context for something of the required
type, succeeding if exactly one candidate is found.

Of course, we should ensure that such structures should obey the functor laws,
with map preserving identity and composition. Dependent types allow us to state
and prove these laws, as we shall see shortly.

First, however, let us refine EndoFunctor to Applicative.

8 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

record Applicative (F : Set→ Set) : Set1 where
infixl 2 ~
field

pure : forall {X } → X → F X
~ : forall {S T } → F (S → T)→ F S → F T

applicativeEndoFunctor : EndoFunctor F
applicativeEndoFunctor = record {map = ~ ◦ pure}

open Applicative {{ ...}} public

The Applicative F structure decomposes F ’s map as the ability to make ‘constant’
F -structures and closure under application.

Given that instance arguments are collected from the context, let us seed the
context with suitable candidates for Vec:

applicativeVec : forall {n } → Applicative λ X → Vec X n
applicativeVec = record {pure = vec; ~ = vapp}
endoFunctorVec : forall {n } → EndoFunctor λ X → Vec X n
endoFunctorVec = applicativeEndoFunctor

Indeed, the definition of endoFunctorVec already makes use of way itsEndoFunctor
searches the context and finds applicativeVec.

There are lots of applicative functors about the place. Here’s another famousproj and tabulate
turn the vec and
vapp applicative
into this one.

one:

applicativeFun : forall {S } → Applicative λ X → S → X
applicativeFun = record
{pure = λ x s → x -- also known as K (drop environment)
; ~ = λ f a s → f s (a s) -- also known as S (share environment)
}

Monadic structure induces applicative structure:

record Monad (F : Set→ Set) : Set1 where
field

return : forall {X } → X → F X
>>= : forall {S T } → F S → (S → F T)→ F T

monadApplicative : Applicative F
monadApplicative = record
{pure = return
; ~ = λ ff fs → ff >>= λ f → fs >>= λ s → return (f s)}

open Monad {{ ...}} public

Exercise 1.6 (Vec monad) Construct a Monad satisfying the Monad laws

monadVec : {n : N} → Monad λ X → Vec X n
monadVec = ?

such that monadApplicative agrees extensionally with applicativeVec.

Exercise 1.7 (Applicative identity and composition) Show by construction that the iden-
tity endofunctor is Applicative, and that the composition of Applicatives is Applicative.

applicativeId : Applicative id
applicativeId = ?

applicativeComp : forall {F G } → Applicative F → Applicative G → Applicative (F ◦ G)
applicativeComp aF aG = ?

1.3. APPLICATIVE AND TRAVERSABLE STRUCTURE 9

Exercise 1.8 (Monoid makes Applicative) Let us give the signature for a monoid thus:

record Monoid (X : Set) : Set where
infixr 4 •
field
ε : X
• : X → X → X

monoidApplicative : Applicative λ → X
monoidApplicative = ?

open Monoid {{ ...}} public -- it’s not obvious that we’ll avoid ambiguity

Complete the Applicative so that it behaves like the Monoid.

Exercise 1.9 (Applicative product) Show by construction that the pointwise product of
Applicatives is Applicative.

record Traversable (F : Set→ Set) : Set1 where
field

traverse : forall {G S T } {{AG : Applicative G }} →
(S → G T)→ F S → G (F T)

traversableEndoFunctor : EndoFunctor F
traversableEndoFunctor = record {map = traverse}

open Traversable {{ ...}} public

The explicit aG
became needed
after I introduced
the applicativeId
exercise, mak-
ing resolution
ambiguous.

traversableVec : {n : N} → Traversable λ X → Vec X n
traversableVec = record {traverse = vtr} where

vtr : forall {n G S T } {{ : Applicative G }} →
(S → G T)→ Vec S n → G (Vec T n)

vtr {{aG }} f 〈〉 = pure {{aG }} 〈〉
vtr {{aG }} f (s, ss) = pure {{aG }} , ~ f s ~ vtr f ss

Exercise 1.10 (transpose) Implement matrix transposition in one line.

transpose : forall {m n X } → Vec (Vec X n) m → Vec (Vec X m) n
transpose = ?

We may define the crush operation, accumulating values in a monoid stored in
a Traversable structure: I was going to set

this as an exercise,
but it’s mostly
instructive in how
to override im-
plicit and instance
arguments.

crush : forall {F X Y } {{TF : Traversable F }} {{M : Monoid Y }} →
(X → Y)→ F X → Y

crush {{M = M }} =
traverse {T = One} {{AG = monoidApplicative {{M }}}} -- T arbitrary

Amusingly, we must tell Agda which T is intended when viewing X → Y as
X → (λ → Y) T . In a Hindley-Milner language, such uninferred things are
unimportant because they are in any case parametric. In the dependently typed
setting, we cannot rely on quantification being parametric (although in the absence
of typecase, quantification over types cannot help so being).

Exercise 1.11 (Traversable functors) Show that Traversable is closed under identity and
composition. What other structure does it preserve?

10 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

1.4 Σ-types and Other Equipment

Before we go any further, let us establish that the type Σ (S : Set) (T : S → Set) has
elements (s : S), (t : T s), so that the type of the second component depends on
the value of the first. From p : Σ S T , we may project fst p : S and snd p : T (fst p),
but I also define V to be a low precedence uncurrying operator, so that V λ s t → ...
gives access to the components.

On the one hand, we may take S × T = Σ S λ → T and generalize the
binary product to its dependent version. On the other hand, we can see Σ S T as
generalising the binary sum to an S -ary sum, which is why the type is called Σ in
the first place.

We can recover the binary sum (coproduct) by defining a two element type:

data Two : Set where tt ff : Two

It is useful to define a conditional operator, indulging my penchant for giving
infix operators three arguments,

〈?〉 : forall { l } {P : Two→ Set l } → P tt→ P ff → (b : Two)→ P b
(t 〈?〉 f) tt = t
(t 〈?〉 f) ff = f

for we may then define:

+ : Set→ Set→ Set
S + T = Σ Two (S 〈?〉 T)

Note that 〈?〉 has been defined to work at all levels of the predicative hierarchy,
so that we can use it to choose between Sets, as well as between ordinary values.
Σ thus models both choice and pairing in data structures. That is, Σ generalizes
binary product to the dependent case, and binary sum to arbitrary arity. I advise
calling a Σ-type neither a ‘dependent sum’ nor a ‘dependent product’ (for a de-
pendent function type is a something-adic product), but rather a ‘dependent pair
type’.

1.5 Arithmetic

I don’t know about you, but I find I do a lot more arithmetic with types than I do
with numbers, which is why I have used× and + for Sets. However, we shall soon
need a little arithmetic for the sizes of things.

Exercise 1.12 (unary arithmetic) Implement addition and multiplication for numbers.

+N : N→ N→ N
x +N y = ?

×N : N→ N→ N
x ×N y = ?

1.6 Normal Functors

A normal functor is given, up to isomorphism, by a set of shapes and a function
which assigns to each shape a size. It is interpreted as the dependent pair of a shape,
s , and a vector of elements whose length is the size of s .

1.6. NORMAL FUNCTORS 11

record Normal : Set1 where
constructor /
field

Shape : Set
size : Shape→ N

J KN : Set→ Set
J KN X = Σ Shape λ s → Vec X (size s)

open Normal public
infixr 0 /

Let us have two examples. Vectors are the normal functors with a unique shape.
Lists are the normal functors whose shape is their size.

VecN : N→ Normal
VecN n = One / pure n

ListN : Normal
ListN = N / id

But let us not get ahead of ourselves. We can build a kit for normal functors cor-
responding to the type constructors that we often define, then build up composite
structures. For example, let us have that constants and the identity are Normal.

KN : Set→ Normal
KN A = A / λ → 0

IKN : Normal
IKN = VecN 1

Let us construct sums and products of normal functors.

+N : Normal→ Normal→ Normal
(ShF / szF) +N (ShG / szG) = (ShF + ShG) / V szF 〈?〉 szG

×N : Normal→ Normal→ Normal
(ShF / szF) ×N (ShG / szG) = (ShF × ShG) / V λ f g → szF f +N szG g

Of course, it is one thing to construct these binary operators on Normal, but
quite another to show they are worthy of their names.

nInj : forall {X } (F G : Normal)→ J F KN X + J G KN X → J F +N G KN X
nInj F G (tt,ShF , xs) = (tt,ShF), xs
nInj F G (ff,ShG , xs) = (ff,ShG), xs

Now, we could implement the other direction of the isomorphism, but an alter-
native is to define the inverse image.

data ˆ− 1 {S T : Set} (f : S → T) : T → Set where
from : (s : S)→ f −1 f s

Let us now show that nInj is surjective.

nCase : forall {X } F G (s : J F +N G KN X)→ nInj F G −1 s
nCase F G ((tt,ShF), xs) = from (tt,ShF , xs)
nCase F G ((ff,ShG), xs) = from (ff,ShG , xs)

That is, we have written more or less the other direction of the iso, but we have
acquired some of the correctness proof for the cost of asking. We shall check that
nInj is injective shortly, once we have suitable equipment to say so.

12 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

The inverse of ‘nInj‘ can be computed by nCase thus:

nOut : forall {X } (F G : Normal)→ J F +N G KN X → J F KN X + J G KN X
nOut F G xs ′ with nCase F G xs ′

nOut F G . (nInj F G xs) | from xs = xs

The with notation allows us to compute some useful information and add it to
the collection of things available for inspection in pattern matching. By matching
the result of nCase F G xs ′ as from xs , we discover that ipso facto, xs ′ is nInj xs .
It is in the nature of dependent types that inspecting one piece of data can refine
our knowledge of the whole programming problem, hence McKinna and I de-
signed with as a syntax for bringing new information to the problem. The usual
Burstallian ‘case expression’ focuses on one scrutinee and shows us its refinements,
but hides from us the refinement of the rest of the problem: in simply typed pro-
gramming there is no such refinement, but here there is. Agda prefixes with a dot
those parts of patterns, not necessarily linear constructor forms, which need not be
checked dynamically because the corresponding value must be as indicated in any
well typed usage.

Exercise 1.13 (normal pairing) Implement the constructor for normal functor pairs. It
may help to define vector concatenation.

++ : forall {m n X } → Vec X m → Vec X n → Vec X (m +N n)
xs ++ ys = ?

nPair : forall {X } (F G : Normal)→ J F KN X × J G KN X → J F ×N G KN X
nPair F G fxgx = ?

Show that your constructor is surjective.

Exercise 1.14 (ListN monoid) While you are in this general area, construct (from readily
available components) the usual monoid structure for our normal presentation of lists.

listNMonoid : {X : Set} → Monoid (J ListN KN X)
listNMonoid = ?

We have already seen that the identity functor VecN 1 is Normal, but can we
define composition?

◦N : Normal→ Normal→ Normal
F ◦N (ShG / szG) = ? / ?

To choose the shape for the composite, we need to know the outer shape, and then
the inner shape at each element position. That is:

◦N : Normal→ Normal→ Normal
F ◦N (ShG / szG) = J F KN ShG / { !!}

Now, the composite must have a place for each element of each inner structure,
so the size of the whole is the sum of the sizes of its parts. That is to say, we
must traverse the shape, summing the sizes of each inner shape therein. Indeed,
we can use traverse, given that N is a monoid for +N and that Normal functors are
traversable because vectors are.

sumMonoid : Monoid N
sumMonoid = record {ε = 0 ; • = +N }

1.6. NORMAL FUNCTORS 13

normalTraversable : (F : Normal)→ Traversable J F KN
normalTraversable F = record
{traverse = λ {{aG }} f → V λ s xs → pure {{aG }} (, s) ~ traverse f xs }

Armed with this structure, we can implement the composite size operator as a
crush.

◦N : Normal→ Normal→ Normal
F ◦N (ShG / szG) = J F KN ShG / crush {{normalTraversable F }} szG

The fact that we needed only the Traversable interface to F is a bit of a clue to a
connection between Traversable and Normal functors. Traversable structures have a
notion of size induced by the Monoid structure for N:

sizeT : forall {F } {{TF : Traversable F }} {X } → F X → N
sizeT = crush (λ → 1)

Hence, every Traversable functor has a Normal counterpart

normalT : forall F {{TF : Traversable F }} → Normal
normalT F = F One / sizeT

where the shape is an F with placeholder elements and the size is the number of
such places.

Can we put a Traversable structure into its Normal representation? We can cer-
tainly extract the shape:

shapeT : forall {F } {{TF : Traversable F }} {X } → F X → F One
shapeT = traverse (λ → 〈〉)

We can also define the list of elements, which should have the same length as the
size

one : forall {X } → X → J ListN KN X
one x = 1 , (x , 〈〉)
contentsT : forall {F } {{TF : Traversable F }} {X } → F X → J ListN KN X
contentsT = crush one

and then try

toNormal : forall {F } {{TF : Traversable F }} {X } → F X → J normalT F KN X
toNormal fx = BAD (shapeT fx , snd (contentsT fx))

but it fails to typecheck because the size of the shape of fx is not obviously the
length of the contents of fx . The trouble is that Traversable F is underspecified.
In due course, we shall discover that it means just that F is naturally isomorphic
to J normalT F KN. To see this, however, we shall need the capacity to reason Check this.
equationally, which must wait until the next section.

Exercise 1.15 (normal morphisms) A normal morphism is given as follows

→N : Normal→ Normal→ Set
F →N G = (s : Shape F)→ J G KN (Fin (size F s))

where any such thing determines a natural transformation from F to G .

nMorph : forall {F G } → F →N G → forall {X } → J F KN X → J G KN X
nMorph f (s, xs) with f s
... | s ′, is = s ′,map (proj xs) is

14 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

Show how to compute the normal morphism representing a given natural transformation.

morphN : forall {F G } → (forall {X } → J F KN X → J G KN X)→ F →N G
morphN f s = ?

Exercise 1.16 (Hancock’s tensor) Let

⊗ : Normal→ Normal→ Normal
(ShF / szF) ⊗ (ShG / szG) = (ShF × ShG) / V λ f g → szF f ×N szG g

Construct normal morphisms:

swap : (F G : Normal)→ (F ⊗ G)→N (G ⊗ F)
swap F G x = ?

drop : (F G : Normal)→ (F ⊗ G)→N (F ◦N G)
drop F G x = ?

Hint: for swap, you may find you need to build some operations manipulating matrices.
Hint: for drop, it may help to prove a theorem about multiplication (see next section for
details of equality), but you can get away without so doing.

1.7 Proving Equations

The best way to start a fight in a room full of type theorists is to bring up the
topic of equality. There’s a huge design space, not least because we often have twoNever trust a type

theorist who has not
changed their mind
about equality at
least once.

notions of equality to work with, so we need to design both and their interaction.
On the one hand, we have judgmental equality. Suppose you have s : S and you

want to put s where a value of type T is expected. Can you? You can if S ≡ T .
Different systems specify ≡ differently. Before dependent types arrived, syntactic
equality (perhaps up to α-conversion) was often enough.

In dependently typed languages, it is quite convenient if Vec X (2 + 2) is the
same type as Vec X 4 , so we often consider types up to the αβ-conversion of the
λ-calculus further extended by the defining equations of total functions. If we’ve
been careful enough to keep the open-terms reduction of the language strongly nor-
malizing, then ≡ is decidable, by normalize-and-compare in theory and by more
carefully tuned heuristics in practice.

Agda takes things a little further by supporting η-conversion at some ‘nega-
tive’ types—specifically, function types and record types—where a type-directed
and terminating η-expansion makes sense. Note that a syntax-directed ‘tit-for-tat’
approach, e.g. testing f ≡ λ x → t by testing x ` f x ≡ t or p ≡ (s, t) by
fst p ≡ s and snd p = t , works fine because two non-canonical functions and
pairs are equal if and only if their expansions are. But if you want the η-rule for
One, you need a cue to notice that u ≡ v when both inhabit One and neither is 〈〉.

It is always tempting (hence, dangerous) to try to extract more work from the
computer by making judgmental equality admit more equations which we con-
sider morally true, but it is clear that any decidable judgmental equality will always
disappont—extensional equality of functions is undecidable, for example. Cor-
respondingly, the equational theory of open terms (conceived as functions from
valuations of their variables) will always be to some extent beyond the ken of the
computer.

The remedy for our inevitable disappointment with judgmental equality is to
define a notion of evidence for equality. It is standard practice to establish decid-
able certificate-checking for undecidable problems, and we have a standard mech-
anism for so doing—checking types. Let us have types s ' t inhabited by proofs

1.7. PROVING EQUATIONS 15

that s and t are equal. We should ensure that t ' t for all t , and that for all P ,
s ' t → P s → P t , in accordance with the philosophy of Leibniz. On this much,
we may agree. But after that, the fight starts.

The above story is largely by way of an apology for the following declaration. The size of equality
types is also moot.
Agda would allow
us to put s ' t in
Set, however large s
and t may be...

data ' { l } {X : Set l } (x : X) : X → Set l where
refl : x ' x

infix 1 '

We may certainly implement Leibniz’s rule.

subst : forall {k l } {X : Set k } {s t : X } →
s ' t → (P : X → Set l)→ P s → P t

subst refl P p = p

The only canonical proof of s ' t is refl, available only if s ≡ t , so we have de-
clared that the equality predicate for closed terms is whatever judgmental equality
we happen to have chosen. We have sealed our disappointment in, but we have
gained the abilty to prove useful equations on open terms. Moreover, the restriction
to the judgmental equality is fundamental to the computational behaviour of our
subst implementation: we take p : P s and we return it unaltered as p : P t , so
we need to ensure that P s ≡ P t , and hence that s ≡ t . If we want to make
' larger than ≡, we need a more invasive approach to transporting data between
provably equal types. For now, let us acknowledge the problem and make do.

We may register equality with Agda, via the following pragmas, ...but for this
pragma, we need
' { l } {X } s t :
Set l

{-# BUILTIN EQUALITY _==_ #-}
{-# BUILTIN REFL refl #-}

and thus gain access to Agda’s support for equational reasoning.
Now that we have some sort of equality, we can specify laws for our structures,

e.g., for Monoid.

record MonoidOK X {{M : Monoid X }} : Set where
field

absorbL : (x : X)→ ε • x ' x
absorbR : (x : X)→ x • ε ' x
assoc : (x y z : X)→ (x • y) • z ' x • (y • z)

Let’s check that +N really gives a monoid.

natMonoidOK : MonoidOK N
natMonoidOK = record
{ absorbL = λ → refl
; absorbR = + zero
; assoc = assoc+
} where -- see below

The absorbL law follows by computation, but the other two require inductive proof.

+zero : forall x → x +N zero ' x
zero +zero = refl
suc n +zero rewrite n +zero = refl

assoc+ : forall x y z → (x +N y) +N z ' x +N (y +N z)
assoc+ zero y z = refl
assoc+ (suc x) y z rewrite assoc+ x y z = refl

16 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

The usual inductive proofs become structurally recursive functions, pattern match-
ing on the argument in which +N is strict, so that computation unfolds. Sadly, an
Agda program, seen as a proof document does not show you the subgoal struc- differently from the

way in which a Coq
script also does not

ture. However, we can see that the base case holds computationally and the step
case becomes trivial once we have rewritten the goal by the inductive hypothesis
(being the type of the structurally recursive call).

Exercise 1.17 (ListN monoid) This is a nasty little exercise. By all means warm up by
proving that List X is a monoid with respect to concatenation, but I want you to have a
crack at

listNMonoidOK : {X : Set} → MonoidOK (J ListN KN X)
listNMonoidOK {X } = ?

Hint 1: use curried helper functions to ensure structural recursion. The inductive step
cases are tricky because the hypotheses equate number-vector pairs, but the components of
those pairs are scattered in the goal, so rewrite will not help. Hint 2: use subst with a
predicate of form V λ n xs → ..., which will allow you to abstract over separated places
with n and xs .

Exercise 1.18 (a not inconsiderable problem) Find out what goes wrong when you
try to state associativity of vector ++, let alone prove it. What does it tell you about our '
setup?

A monoid homomorphism is a map between their carrier sets which respects the
operations.

record MonoidHom {X } {{MX : Monoid X }} {Y } {{MY : Monoid Y }} (f : X → Y) : Set where
field

respε : f ε ' ε
resp • : forall x x ′ → f (x • x ′) ' f x • f x ′

For example, taking the length of a list is, in the Normal representation, trivially a
homomorphism.

fstHom : forall {X } → MonoidHom {J ListN KN X } {N} fst
fstHom = record {respε = refl; resp• = λ → refl}

Moving along to functorial structures, let us explore laws about the transfor-
mation of functions. Equations at higher order mean trouble ahead!

record EndoFunctorOK F {{FF : EndoFunctor F }} : Set1 where
field

endoFunctorId : forall {X } →
map {{FF }} {X } id ' id

endoFunctorCo : forall {R S T } (f : S → T) (g : R → S)→
map {{FF }} f ◦ map g ' map (f ◦ g)

However, when we try to show,

vecEndoFunctorOK : forall {n } → EndoFunctorOK λ X → Vec X n
vecEndoFunctorOK = record
{endoFunctorId = { }0
; endoFunctorCo = λ f g → { }1
}

we see concrete goals (up to some tidying):

1.8. LAWS FOR APPLICATIVE AND TRAVERSABLE 17

?0 : vapp (vec id) ' id
?1 : vapp (vec f) ◦ vapp (vec g) ' vapp (vec (f ◦ g))

This is a fool’s errand. The pattern matching definition of vapp will not allow
these equations on functions to hold at the level of ≡. We could make them a little
more concrete by doing induction on n , but we will still not force enough compu-
tation. Our ' cannot be extensional for functions because it has canonical proofs Some see this as rea-

son enough to aban-
don decidability of
≡, thence of type-
checking.

for nothing more than ≡, and ≡ cannot incorporate extensionality and remain de-
cidable.

We can define pointwise equality,
.
= : forall { l } {S : Set l } {T : S → Set l }

(f g : (x : S)→ T x)→ Set l
f
.
= g = forall x → f x ' g x

infix 1
.
=

which is reflexive but not substitutive.
Now we can at least require:

record EndoFunctorOKP F {{FF : EndoFunctor F }} : Set1 where
field

endoFunctorId : forall {X } →
map {{FF }} {X } id

.
= id

endoFunctorCo : forall {R S T } (f : S → T) (g : R → S)→
map {{FF }} f ◦ map g

.
= map (f ◦ g)

Exercise 1.19 (Vec functor laws) Show that vectors are functorial.

vecEndoFunctorOKP : forall {n } → EndoFunctorOKP λ X → Vec X n
vecEndoFunctorOKP = ?

1.8 Laws for Applicative and Traversable

Developing the laws for Applicative and Traversable requires more substantial chains
of equational reasoning. Here are some operators which serve that purpose, in-
spired by work from Lennart Augustsson and Shin-Cheng Mu.

=[〉 : forall { l } {X : Set l } (x : X) {y z } → x ' y → y ' z → x ' z
=[refl 〉 q = q

〈]= : forall { l } {X : Set l } (x : X) {y z } → y ' x → y ' z → x ' z
〈 refl]= q = q

� : forall { l } {X : Set l } (x : X)→ x ' x
x � = refl

infixr 1 =[〉 〈]= �

These three build right-nested chains of equations. Each requires an explicit
statement of where to start. The first two step along an equation used left-to-right
or right-to-left, respectively, then continue the chain. Then, x � marks the end of
the chain.

Meanwhile, we may need to rewrite in a context whilst building these proofs.
In the expression syntax, we have nothing like rewrite.

cong : forall {k l } {X : Set k } {Y : Set l } (f : X → Y) {x y } → x ' y → f x ' f y
cong f refl = refl

18 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

Thus armed, let us specify what makes an Applicative acceptable, then show
that such a thing is certainly a Functor . I had to η-expand ◦

in lieu of subtyping.

record ApplicativeOKP F {{AF : Applicative F }} : Set1 where
field

lawId : forall {X } (x : F X)→
pure {{AF }} id ~ x ' x

lawCo : forall {R S T } (f : F (S → T)) (g : F (R → S)) (r : F R)→
pure {{AF }} (λ f g → f ◦ g) ~ f ~ g ~ r ' f ~ (g ~ r)

lawHom : forall {S T } (f : S → T) (s : S)→
pure {{AF }} f ~ pure s ' pure (f s)

lawCom : forall {S T } (f : F (S → T)) (s : S)→
f ~ pure s ' pure {{AF }} (λ f → f s) ~ f

applicativeEndoFunctorOKP : EndoFunctorOKP F {{applicativeEndoFunctor}}
applicativeEndoFunctorOKP = record
{endoFunctorId = lawId
; endoFunctorCo = λ f g r →

pure {{AF }} f ~ (pure {{AF }} g ~ r)
〈 lawCo (pure f) (pure g) r]=

pure {{AF }} (λ f g → f ◦ g) ~ pure f ~ pure g ~ r
=[cong (λ x → x ~ pure g ~ r) (lawHom (λ f g → f ◦ g) f) 〉

pure {{AF }} (o f) ~ pure g ~ r
=[cong (λ x → x ~ r) (lawHom (o f) g) 〉

pure {{AF }} (f ◦ g) ~ r
�

}

Exercise 1.20 (ApplicativeOKP for Vec) Check that vectors are properly applicative. You
can get away with rewrite for these proofs, but you might like to try the new tools.

vecApplicativeOKP : {n : N} → ApplicativeOKP λ X → Vec X n
vecApplicativeOKP = ?

Given that traverse is parametric in an Applicative, we should expect to observe
the corresponding naturality. We thus need a notion of applicative homomorphism,
being a natural transformation which respects pure and ~. That is,

→̇ : forall (F G : Set→ Set)→ Set1
F →̇ G = forall {X } → F X → G X

record AppHom {F } {{AF : Applicative F }} {G } {{AG : Applicative G }}
(k : F →̇ G) : Set1 where

field
respPure : forall {X } (x : X)→ k (pure x) ' pure x
resp~ : forall {S T } (f : F (S → T)) (s : F S)→ k (f ~ s) ' k f ~ k s

We may readily check that monoid homomorphisms lift to applicative homo-
morphisms.

monoidApplicativeHom :
forall {X } {{MX : Monoid X }} {Y } {{MY : Monoid Y }}
(f : X → Y) {{hf : MonoidHom f }} →
AppHom {{monoidApplicative {{MX }}}} {{monoidApplicative {{MY }}}} f

monoidApplicativeHom f {{hf }} = record

1.8. LAWS FOR APPLICATIVE AND TRAVERSABLE 19

{respPure = λ x → MonoidHom.respε hf
; resp~ = MonoidHom.resp • hf
}

Exercise 1.21 (homomorphism begets applicative) Show that a homomorphism from
F to G induces applicative structure on their pointwise sum.

homSum : forall {F G } {{AF : Applicative F }} {{AG : Applicative G }} →
(f : F →̇ G)→
Applicative λ X → F X + G X

homSum {{AF }} {{AG }} f = ?

Check that your solution obeys the laws.

homSumOKP : forall {F G } {{AF : Applicative F }} {{AG : Applicative G }} →
ApplicativeOKP F → ApplicativeOKP G →
(f : F →̇ G)→ AppHom f →
ApplicativeOKP {{homSum f }}

homSumOKP {{AF }} {{AG }} FOK GOK f homf = ?

Laws for Traversable functors are given thus:

record TraversableOKP F {{TF : Traversable F }} : Set1 where
field

lawId : forall {X } (xs : F X)→ traverse id xs ' xs
lawCo : forall {G } {{AG : Applicative G }} {H } {{AH : Applicative H }}

{R S T } (g : S → G T) (h : R → H S) (rs : F R)→
let EH : EndoFunctor H ; EH = applicativeEndoFunctor
in map {H } (traverse g) (traverse h rs)

'
traverse {{TF }} {{applicativeComp AH AG }} (map {H } g ◦ h) rs

lawHom : forall {G } {{AG : Applicative G }} {H } {{AH : Applicative H }}
(h : G →̇ H) {S T } (g : S → G T)→ AppHom h →
(ss : F S)→
traverse (h ◦ g) ss ' h (traverse g ss)

Let us now check the coherence property we needed earlier.

lengthContentsSizeShape :
forall {F } {{TF : Traversable F }} → TraversableOKP F →
forall {X } (fx : F X)→
fst (contentsT fx) ' sizeT (shapeT fx)

lengthContentsSizeShape tokF fx =
fst (contentsT fx)
〈 TraversableOKP.lawHom tokF {{monoidApplicative}} {{monoidApplicative}}

fst one (monoidApplicativeHom fst) fx]=
sizeT fx
〈 TraversableOKP.lawCo tokF {{monoidApplicative}} {{applicativeId}}

(λ → 1) (λ → 〈〉) fx]=
sizeT (shapeT fx) �

We may now construct

toNormal : forall {F } {{TF : Traversable F }} → TraversableOKP F →
forall {X } → F X → J normalT F KN X

20 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

toNormal tokf fx
= shapeT fx
, subst (lengthContentsSizeShape tokf fx) (Vec) (snd (contentsT fx))

Exercise 1.22 Define fromNormal, reversing the direction of toNormal. One way to do it
is to define what it means to be able to build something from a batch of contents.

Batch : Set→ Set→ Set
Batch X Y = Σ N λ n → Vec X n → Y

Show Batch X is applicative. You can then use traverse on a shape to build a Batch job
which reinserts the contents. As above, you will need to prove a coherence property to
show that the contents vector in your hand has the required length. Warning: you may
encounter a consequence of defining sizeT via crush with ignored target type One, and
need to prove that you get the same answer if you ignore something else. Agda’s ‘Toggle
display of hidden arguments’ menu option may help you detect that scenario.

Showing that toNormal and fromNormal are mutually inverse looks like a tall
order, given that the programs have been glued together with coherence condi-
tions. At time of writing, it remains undone. When I see a mess like that, I wonder
whether replacing indexing by the measure of size might help.

1.9 Fixpoints of Normal Functors

The universal first order simple datatype is given by taking the least fixpoint of a
normal functor.

data Tree (N : Normal) : Set where
〈 〉 : J N KN (Tree N)→ Tree N

We may, for example, define the natural numbers this way:

NatT : Normal
NatT = Two / 0 〈?〉 1

zeroT : Tree NatT
zeroT = 〈 tt, 〈〉 〉
sucT : Tree NatT→ Tree NatT
sucT n = 〈 ff,n, 〈〉 〉

Of course, to prove these are the natural numbers, we need the eliminator as
well as the constructors.

Exercise 1.23 Prove the principle of induction for these numbers.

NatInd : forall { l } (P : Tree NatT→ Set l)→
P zeroT→
((n : Tree NatT)→ P n → P (sucT n))→
(n : Tree NatT)→ P n

NatInd P z s n = ?

Indeed, there’s a generic induction principle for the whole lot of these types.
First, we need predicate transformer to generate the induction hypothesis.

1.9. FIXPOINTS OF NORMAL FUNCTORS 21

All : forall { l X } (P : X → Set l) {n } → Vec X n → Set l
All P 〈〉 = One
All P (x , xs) = P x × All P xs

We then acquire

induction : forall (N : Normal) { l } (P : Tree N → Set l)→
((s : Shape N) (ts : Vec (Tree N) (size N s))→ All P ts → P 〈 s, ts 〉)→
(t : Tree N)→ P t

induction N P p 〈 s, ts 〉 = p s ts (hyps ts) where
hyps : forall {n } (ts : Vec (Tree N) n)→ All P ts
hyps 〈〉 = 〈〉
hyps (t , ts) = induction N P p t , hyps ts

Exercise 1.24 (decidable equality) We say a property is decided if we know whether
it is true or false, where falsity is indicated by function to Zero, an empty type.

Dec : Set→ Set
Dec X = X + (X → Zero)

Show that if a normal functor has decidable equality for its shapes, then its fixpoint also
has decidable equality.

eq? : (N : Normal) (sheq? : (s s ′ : Shape N)→ Dec (s ' s ′))→
(t t ′ : Tree N)→ Dec (t ' t ′)

eq? N sheq? t t ′ = ?

22 CHAPTER 1. VECTORS AND NORMAL FUNCTORS

Chapter 2

Simply Typed λ-Calculus

This chapter contains some standard techniques for the representation of typed
syntax and its semantics. The joy of typed syntax is the avoidance of junk in its
interpretation. Everything fits, just so.

2.1 Syntax

Last century, I learned the following recipe for well typed terms of the simply
typed λ-calculus from Altenkirch and Reus.

First, give a syntax for types. I shall start with a base type and close under
function spaces.

data ? : Set where
ι : ?
B : ?→ ?→ ?

infixr 5 B

Next, build contexts as snoc-lists.

data Cx (X : Set) : Set where
E : Cx X

‘
: Cx X → X → Cx X

infixl 4
‘

Now, define typed de Bruijn indices to be context membership evidence.

data ∈ (τ : ?) : Cx ?→ Set where
zero : forall {Γ } → τ ∈ Γ

‘
τ

suc : forall {Γ σ} → τ ∈ Γ → τ ∈ Γ
‘
σ

infix 3 ∈

That done, we can build well typed terms by writing syntax-directed rules for
the typing judgment.

data ` (Γ : Cx ?) : ?→ Set where

var : forall {τ }
→ τ ∈ Γ

--————-
→ Γ ` τ

lam : forall {σ τ }

23

24 CHAPTER 2. SIMPLY TYPED λ-CALCULUS

→ Γ
‘
σ ` τ

--——————
→ Γ ` σ B τ

app : forall {σ τ }
→ Γ ` σ B τ → Γ ` σ

--——————————-
→ Γ ` τ

infix 3 `

2.2 Semantics

Writing an interpreter for such a calculus is an exercise also from last century, for
which we should thank Augustsson and Carlsson. Start by defining the semantics
of each type.

J K? : ?→ Set
J ι K? = N -- by way of being nontrivial
J σ B τ K? = J σ K? → J τ K?

Next, define environments for contexts, with projection. We can reuse these def-
initions in the rest of the section if we abstract over the notion of value.

J KCx : Cx ?→ (?→ Set)→ Set
J E KCx V = One
J Γ

‘
σ KCx V = J Γ KCx V × V σ

J K∈ : forall {Γ τ V } → τ ∈ Γ → J Γ KCx V → V τ
J zero K∈ (γ, t) = t
J suc i K∈ (γ, s) = J i K∈ γ

Finally, define the meaning of terms.

J K∈ : forall {Γ τ } → Γ ` τ → J Γ KCx J K? → J τ K?
J var i K` γ = J i K∈ γ
J lam t K` γ = λ s → J t K` (γ, s)
J app f s K` γ = J f K` γ (J s K` γ)

2.3 Substitution with a Friendly Fish

We may define the types of simultaneous renamings and substitutions as type-
preserving maps from variables:

Ren Sub : Cx ?→ Cx ?→ Set
Ren Γ ∆ = forall {τ } → τ ∈ Γ → τ ∈ ∆
Sub Γ ∆ = forall {τ } → τ ∈ Γ → ∆ ` τ

The trouble with defining the action of substitution for a de Bruijn represen-
tation is the need to shift indices when the context grows. Here is one way to
address that situation. First, let me define context extension as concatenation with<>< is pronounce

‘fish’, for historical
reasons.

a cons-list, using the <>< operator.

<>< : forall {X } → Cx X → List X → Cx X
xz <>< 〈〉 = xz

2.4. A MODERN CONVENIENCE 25

xz <>< (x , xs) = xz
‘

x <>< xs
infixl 4 <><

We may then define the shiftable simultaneous substitutions from Γ to ∆ as
type-preserving mappings from the variables in any extension of Γ to terms in the
same extension of ∆.

Shub : Cx ?→ Cx ?→ Set
Shub Γ ∆ = forall Ξ → Sub (Γ <>< Ξ) (∆ <>< Ξ)

By the computational behaviour of<><, a Shub Γ ∆ can be used as a Shub (Γ
‘
σ) (∆

‘
σ),

so we can push substitutions under binders very easily.

// : forall {Γ ∆} (θ : Shub Γ ∆) {τ } → Γ ` τ → ∆ ` τ
θ // var i = θ 〈〉 i
θ // lam t = lam ((θ ◦ ,) // t)
θ // app f s = app (θ // f) (θ // s)

Of course, we shall need to construct some of these joyous shubstitutions. Let
us first show that any simultaneous renaming can be made shiftable by iterative
weakening.

wkr : forall {Γ ∆ σ} → Ren Γ ∆→ Ren (Γ
‘
σ) (∆

‘
σ)

wkr r zero = zero
wkr r (suc i) = suc (r i)

ren : forall {Γ ∆} → Ren Γ ∆→ Shub Γ ∆
ren r 〈〉 = var ◦ r
ren r (,Ξ) = ren (wkr r) Ξ

With renaming available, we can play the same game for substitutions.

wks : forall {Γ ∆ σ} → Sub Γ ∆→ Sub (Γ
‘
σ) (∆

‘
σ)

wks s zero = var zero
wks s (suc i) = ren suc // s i

sub : forall {Γ ∆} → Sub Γ ∆→ Shub Γ ∆
sub s 〈〉 = s
sub s (,Ξ) = sub (wks s) Ξ

2.4 A Modern Convenience

Bob Atkey once remarked that ability to cope with de Bruijn indices was a good
reverse Turing Test, suitable for detecting humaniform robotic infiltrators. Corre-
spondingly, we might like to write terms which use real names. I had an idea about
how to do that.

We can build the renaming which shifts past any context extension.

weak : forall {Γ } Ξ → Ren Γ (Γ <>< Ξ)
weak 〈〉 i = i
weak (,Ξ) i = weak Ξ (suc i)

Then, we can observe that to build the body of a binder, it is enough to supply
a function which will deliver the term representing the variable in any suitably
extended context. The context extension is given implicitly, to be inferred from the
usage site, and then the correct weakening is applied to the bound variable.

26 CHAPTER 2. SIMPLY TYPED λ-CALCULUS

lambda : forall {Γ σ τ } →
((forall {Ξ } → Γ

‘
σ <>< Ξ ` σ)→ Γ

‘
σ ` τ)→

Γ ` σ B τ
lambda f = lam (f λ {Ξ } → var (weak Ξ zero))

But sadly, the followinf does not typecheck

myTest : E ` ι B ι
myTest = lambda λ x → x

because the following constraint is not solved:

(E
‘
ι <>< Xi 232 x) = (E

‘
ι) : Cx ?

That is, constructor-based unification is insufficient to solve for the prefix of a con-
text, given a common suffix.

By contrast, solving for a suffix is easy when the prefix is just a value: it requires
only the stripping off of matching constructors. So, we can cajole Agda into solving
the problem by working with its reversal, via the ‘chips’ operator:

<>> : forall {X } → Cx X → List X → List X
E <>> ys = ys
(xz

‘
x) <>> ys = xz <>> (x , ys)

Of course, one must prove that solving the reverse problem is good for solving
the original.

Exercise 2.1 (reversing lemma) ShowI have discovered
a truly appalling
proof of this lemma.
Fortunately, this
margin is too nar-
row to contain it.
See if you can do
better.

lem : forall {X } (∆ Γ : Cx X) Ξ →
∆ <>> 〈〉 ' Γ <>> Ξ → Γ <>< Ξ ' ∆

lem ∆ Γ Ξ q = ?

Now we can frame the constraint solve as an instance argument supplying a
proof of the relevant equation on cons-lists: Agda will try to use refl to solve the
instance argument, triggering the tractable version of the unification problem.

lambda : forall {Γ σ τ } →
((forall {∆ Ξ } {{ : ∆ <>> 〈〉 ' Γ <>> (σ,Ξ)}} → ∆ ` σ)→

Γ
‘
σ ` τ)→

Γ ` σ B τ
lambda {Γ } f =

lam (f λ {∆ Ξ } {{q }} →
subst (lem ∆ Γ (,Ξ) q) (λ Γ → Γ `) (var (weak Ξ zero)))

myTest : E ` (ι B ι) B (ι B ι)
myTest = lambda λ f → lambda λ x → app f (app f x)

2.5 Hereditary Substitution

This section is a structured series of exercises, delivering a βη-long normalization
algorithm for our λ-calculus by the method of hereditary substitution.

The target type for the algorithm is the following right-nested spine represen-
tation of β-normal η-long forms.

2.5. HEREDITARY SUBSTITUTION 27

mutual

data � (Γ : Cx ?) : ?→ Set where
lam : forall {σ τ } → Γ

‘
σ � τ → Γ � σ B τ

$: forall {τ } → τ ∈ Γ → Γ �∗ τ → Γ � ι

data �∗ (Γ : Cx ?) : ?→ Set where
〈〉 : Γ �∗ ι
, : forall {σ τ } → Γ � σ → Γ �∗ τ → Γ �∗ σ B τ

infix 3 � �∗

infix 3 $

That is Γ � τ is the type of normal forms in τ , and Γ �∗ τ is the type of spines for a
τ , delivering ι.

The operation of hereditary substitution replaces one variable with a normal
form and immediately performs all the resulting computation (i.e., more substitu-
tion), returning a normal form. You will need some equipment for talking about
individual variables.

Exercise 2.2 (thinning) Define the function−x which removes a designated entry from a
context, then implement the thinning operator, being the renaming which maps the embed
the smaller context back into the larger.

− : forall (Γ : Cx ?) {τ } (x : τ ∈ Γ)→ Cx ?
Γ −x x = ?
infixl 4 −
6= : forall {Γ σ} (x : σ ∈ Γ)→ Ren (Γ −x x) Γ
x 6= y = ?

This much will let us frame the problem. We have a candidate value for x
which does not depend on x , so we should be able to eliminate x from any term
by substituting out. If we try, we find this situation:

〈 7→ 〉 : forall {Γ σ τ } → (x : σ ∈ Γ)→ Γ −x x � σ →
Γ � τ → Γ −x x � τ

〈 x 7→ s 〉 lam t = lam (〈 suc x 7→ ? 〉 t)
〈 x 7→ s 〉 y $ ts = ?
infix 2 〈 7→ 〉

Let us now address the challenges we face.
In the application case, we shall need to test whether or not y is the x for which

we must substitute, so we need some sort of equality test. A Boolean equality test
does not generate enough useful information—if y is x , we need to know that ts
is a suitable spine for s ; if y is not x , we need to know its representation in Γ −x x .
Hence, let us rather prove that any variable is either the one we are looking for or
another. We may express this discriminability property as a predicate on variables.

data Veq? {Γ σ} (x : σ ∈ Γ) : forall {τ } → τ ∈ Γ → Set where
same : Veq? x x
diff : forall {τ } (y : τ ∈ Γ −x x)→ Veq? x (x 6= y)

Exercise 2.3 (variable equality testing) Show that every y is discriminable with re-
spect to a given x .

veq? : forall {Γ σ τ } (x : σ ∈ Γ) (y : τ ∈ Γ)→ Veq? x y
veq? x y = ?

Hint: it will help to use with in the recursive case.

28 CHAPTER 2. SIMPLY TYPED λ-CALCULUS

Meanwhile, in the lam case, we may easily shift x to account for the new vari-
able in t , but we shall also need to shift s .

Exercise 2.4 (closure under renaming) Show how to propagate a renaming through a
normal form.

mutual

renNm : forall {Γ ∆ τ } → Ren Γ ∆→ Γ � τ → ∆ � τ
renNm r t = ?

renSp : forall {Γ ∆ τ } → Ren Γ ∆→ Γ �∗ τ → ∆ �∗ τ
renSp r ss = ?

Now we have everything we need to implement hereditary substitution.

Exercise 2.5 (hereditary substitution) Implement hereditary substitution for normal
forms and spines, defined mutually with application of a normal form to a spine, per-
forming β-reduction.

mutual

〈 7→ 〉 : forall {Γ σ τ } → (x : σ ∈ Γ)→ Γ − x � σ →
Γ � τ → Γ − x � τ

〈 x 7→ s 〉 t = ?

〈 7→ 〉∗ : forall {Γ σ τ } → (x : σ ∈ Γ)→ Γ − x � σ →
Γ �∗ τ → Γ − x �∗ τ

〈 x 7→ s 〉∗ ts = ?

$$: forall {Γ τ } →
Γ � τ → Γ �∗ τ → Γ � ι

f $$ ss = ?

infix 3 $$

infix 2 〈 7→ 〉

Do you think these functions are mutually structurally recursive?

With hereditary substitution, it should be a breeze to implement normalization,
but there is one little tricky part remaining.

Exercise 2.6 (η-expansion for normalize) If we start implementing normalize, it is easy
to get this far:

normalize : forall {Γ τ } → Γ ` τ → Γ � τ
normalize (var x) = ?
normalize (lam t) = lam (normalize t)
normalize (app f s) with normalize f | normalize s
normalize (app f s) | lam t | s ′ = 〈 zero 7→ s ′ 〉 t

We can easily push under lam and implement app by hereditary substitution. However, if
we encounter a variable, x , we must deliver it in η-long form. You will need to figure out
how to expand x in a type-directed manner, which is not a trivial thing to do. Hint: if you
need to represent the prefix of a spine, it suffices to consider functions from suffices.

Here are a couple of test examples for you to try. You may need to translate
them into de Bruijn terms manually if you have not yet proven the ‘reversing
lemma’.

2.6. NORMALIZATION BY EVALUATION 29

try1 : E � ((ι B ι) B (ι B ι)) B (ι B ι) B (ι B ι)
try1 = normalize (lambda λ x → x)

church2 : forall {τ } → E ` (τ B τ) B τ B τ
church2 = lambda λ f → lambda λ x → app f (app f x)

try2 : E � (ι B ι) B (ι B ι)
try2 = normalize (app (app church2 church2) church2)

2.6 Normalization by Evaluation

Let’s cook normalization a different way, extracting more leverage from Agda’s
computation machinery. the idea is to model values as either ‘going’ (capable of
computation if applied) or ‘stopping’ (incapable of computation, but not η-long).
The latter terms look like left-nested applications of a variable.

data Stop (Γ : Cx ?) (τ : ?) : Set where
var : τ ∈ Γ → Stop Γ τ
$: forall {σ} → Stop Γ (σ B τ)→ Γ � σ → Stop Γ τ

Exercise 2.7 (Stop equipment) Show that Stop terms are closed under renaming, and
that you can apply them to a spine to get a normal form.

renSt : forall {Γ ∆ τ } → Ren Γ ∆→ Stop Γ τ → Stop ∆ τ
renSt r u = ?

stopSp : forall {Γ τ } → Stop Γ τ → Γ �∗ τ → Γ � ι
stopSp u ss = ?

Let us now give a contextualized semantics to each type. Values either Go or
Stop. Ground values cannot go: Zero is a datatype with no constructors. Functional
values have a Kripke semantics. Wherever their context is meaningful, they take
values to values.

mutual

Val : Cx ?→ ?→ Set
Val Γ τ = Go Γ τ + Stop Γ τ

Go : Cx ?→ ?→ Set
Go Γ ι = Zero
Go Γ (σ B τ) = forall {∆} → Ren Γ ∆→ Val ∆ σ → Val ∆ τ

Exercise 2.8 (renaming values and environments) Show that values admit renaming.
Extend renaming to environments storing values. Construct the identity environment,
mapping each variable to itself.

renVal : forall {Γ ∆} τ → Ren Γ ∆→ Val Γ τ → Val ∆ τ
renVal τ r v = ?

renVals : forall Θ {Γ ∆} → Ren Γ ∆→ J Θ KCx (Val Γ)→ J Θ KCx (Val ∆)
renVals Θ r θ = ?

idEnv : forall Γ → J Γ KCx (Val Γ)
idEnv Γ = ?

30 CHAPTER 2. SIMPLY TYPED λ-CALCULUS

Exercise 2.9 (application and quotation) Implement application for values. In order It seems quote is a
reserved symbol in
Agda.

to apply a stopped function, you will need to be able to extract a normal form for the
argument, so you will also need to be able to ‘quote’ values as normal forms.

mutual

apply : forall {Γ σ τ } → Val Γ (σ B τ)→ Val Γ σ → Val Γ τ
apply f s = ?

quo : forall {Γ } τ → Val Γ τ → Γ � τ
quo τ v = ?

For the last step, we need to compute values from terms.

Exercise 2.10 (evaluation) Show that every well typed term can be given a value in any
context where its free variables have values.

eval : forall {Γ ∆ τ } → Γ ` τ → J Γ KCx (Val ∆)→ Val ∆ τ
eval t γ = ?

With all the pieces in place, we get

normByEval : forall {Γ τ } → Γ ` τ → Γ � τ
normByEval {Γ } {τ } t = quo τ (eval t (idEnv Γ))

Exercise 2.11 (numbers and primitive recursion) Consider extending the term lan-
guage with constructors for numbers and a primitive recursion operator.

zero : Γ ` ι
suc : Γ ` ι→ Γ ` ι
rec : forall {τ } → Γ ` τ → Γ ` (ι B τ B τ)

→ Γ ` ι→ Γ ` τ

How should the normal forms change? How should the values change? Can you extend
the implementation of normalization?

Exercise 2.12 (adding adding) Consider making the further extension with a hardwired
addition operator.

suc : Γ ` ι→ Γ ` ι→ Γ ` ι

Can you engineer the notion of value and the evaluator so that normByEval identifies

add zero t with t
add s zero with s
add (suc s) t with suc (add s t)
add s (suc t) with suc (add s t)
add (add r s) t with add r (add s t)
add s t with add t s

and thus yields a stronger decision procedure for equality of expressions involving adding?
(This is not an easy exercise, especially if you want the last equation to hold. I must confess
I have not worked out the details.)

Chapter 3

Containers and W-types

Containers are the infinitary generalization of normal functors.

record Con : Set1 where
constructor /
field

Sh : Set -- a set of shapes
Po : Sh→ Set -- a family of positions

J K/ where : Set→ Set
J K/ where X = Σ Sh λ s → Po s → X

open Con public
infixr 1 /

Instead of having a size and a vector of contents, we represent the positions for each
shape as a set, and the contents as a function from positions.

3.1 Closure Properties

We may readily check that the polynomials are all containers.

K/ : Set→ Con
K/ A = A / λ → Zero

I/ : Con
I/ = One / λ → One

+/ : Con→ Con→ Con
(S / P) +/ (S ′ / P ′) = (S + S ′) / V P 〈?〉 P ′

×/ : Con→ Con→ Con
(S / P) ×/ (S ′ / P ′) = (S × S ′) / V λ s s ′ → P s + P ′ s ′

Moreover, we may readily close containers under dependent pairs and func-
tions, a fact which immediately tells us how to compose containers.

Σ/ : (A : Set) (C : A→ Con)→ Con
Σ/ A C = (Σ A λ a → Sh (C a)) / V λ a s → Po (C a) s

Π/ : (A : Set) (C : A→ Con)→ Con
Π/ A C = ((a : A)→ Sh (C a)) / λ f → Σ A λ a → Po (C a) (f a)

◦/ : Con→ Con→ Con
(S / P) ◦/ C = Σ/ S λ s → Π/ (P s) λ p → C

31

32 CHAPTER 3. CONTAINERS AND W-TYPES

Exercise 3.1 (containers are endofunctors) Check that containers yield endofunctors
which obey the laws.

conEndoFunctor : {C : Con} → EndoFunctor J C K/
conEndoFunctor {S / P } = ?

conEndoFunctorOKP : {C : Con} → EndoFunctorOKP J C K/
conEndoFunctorOKP {S / P } = ?

Exercise 3.2 (closure properties) Check that the meanings of the operations on contain-
ers are justified by their interpretations as functors.

3.2 Container Morphisms

A container morphism describes a natural transformation between the functors given
by containers. As the element type is abstract, there is nowhere that the elements
of the output can come from except somewhere in the input. Correspondingly, a
container morphism is given by a pair of functions, the first mapping input shapes
to output shapes, and the second mapping output positions back to the input po-
sitions from which they fetch elements.

→/ : Con→ Con→ Set
(S / P)→/ (S ′ / P ′) = Σ (S → S ′) λ f → (s : S)→ P ′ (f s)→ P s

The action of a container morphism is thus

// : forall {C C ′} → C →/ C ′ → forall {X } → J C K/ X → J C ′ K/ X
(to, fro) // (s, k) = to s, k ◦ fro s

Interactive Interpretation Peter Hancock encourages us to think of S / P as the
description of a command-response protocol, where S is a set of commands we may
invoke and P tells us which responses may be returned for each command. The
type J S / P K/ X is thus a strategy for obtaining an X by one run of the protocol.
Meanwhile, a container morphism is thus a kind of ‘device driver’, translating
commands one way, then responses the other.

Exercise 3.3 (representing natural transformations) Check that you can represent any
natural transformation between containers as a container morphism.

morph/ : forall {C C ′} → (forall {X } → J C K/ X → J C ′ K/ X)→ C →/ C ′

morph/ f = ?

Container-of-positions presentation The above exercise might suggest an equiv-
alent presentation of container morphisms, namely

(S / P)→/ C = (s : S)→ J C K/ (P s)

but the to-and-fro presentation is usually slightly easier to work with. You win
some, you lose some.

Exercise 3.4 (identity and composition) Check that you can define identity and com-
position for container morphisms.

id→/
: forall {C } → C →/ C

id→/
= ?

◦→/
: forall {C D E } → (D →/ E)→ (C →/ D)→ (C →/ E)

e ◦→/
d = ?

3.3. W-TYPES 33

3.3 W-types

The least fixpoint of a container is aW-type—W for ‘well founded’.

dataW (C : Con) : Set where
〈 〉 : J C K/ (W C)→W C

In an extensional setting, W can be used to represent a great many datatypes,
but intensional systems have some difficulties achieving faithful representations
of first order data viaW-types.

Exercise 3.5 (natural numbers) Define natural numbers as a W-type. Implement the
constructors. Hint: magic : Zero → {A : Set} → A. Implement primitive recursion
and use it to implement addition.

NatW : Set
NatW = W ?

zeroW : NatW
zeroW = 〈 ? 〉
sucW : NatW→ NatW
sucW n = 〈 ? 〉
precW : forall { l } {T : Set l } → T → (NatW→ T → T)→ NatW→ T
precW z s n = ?

addW : NatW→ NatW→ NatW
addW x y = precW ? ? x

How many different implementations of zeroW can you find? Meanwhile, discover for
yourself why an attempt to establish the induction principle is a fool’s errand.

indW : forall { l } (P : NatW→ Set l)→
P zeroW→
((n : NatW)→ P n → P (sucW n))→
(n : NatW)→ P n

indW P z s n = ?

A useful deployment of theW-type is to define the free monad for a container.

∗ : Con→ Set→ Set
C ∗ X = W (K/ X +/ C)

Exercise 3.6 (free monad) Construct the components for

freeMonad : (C : Con)→ Monad (∗ C)
freeMonad C = ?

Exercise 3.7 (free monad closure) Define an operator

∗/ : Con→ Con
∗/ C = ?

and exhibit an isomorphism
C ∗ X ∼= J C ∗/ K/ X

34 CHAPTER 3. CONTAINERS AND W-TYPES

Exercise 3.8 (general recursion) Define the monadic computation which performs one
command-response interaction:

call : forall {C } → (s : Sh C)→ C ∗ Po C s
call s = ?

We can model, the general recursive function space as the means to perform finite, on in too much detail
demand expansion of call trees.

Π⊥ : (S : Set) (T : S → Set)→ Set
Π⊥ S T = (s : S)→ (S / T) ∗ T s

Give the ‘gasoline-driven’ interpreter for this function space, delivering a result provided
the call tree does not expand more times than a given number.

gas : forall {S T } → N→ Π⊥ S T → (s : S)→ T s + One
gas n f s = ?

Feel free to implement reduction for the untyped λ-calculus, or some other model of com-
putation, as a recursive function in this way.

Turing completeness To say that Agda fails to be Turing complete is manifest
nonsense. It does not stop you writing general recursive programs. It does not
stop you feeding them to a client who is willing to risk running them. It does stop
you giving a general recursive program a type which claims it is guaranteed to
terminate, nor can you persuade Agda to execute such a program unboundedly
in the course of checking a type. It is not unusual for typecheckers to refuse to
run general recursive type-level programs. So the situation is not that we give up
power for totality. Totality buys us a degree of honesty which partial languages
just discard.

3.4 Derivatives of Containers

We have
J S / P K/ X = Σ S λ s → P s → X

but we could translate the right-hand side into a more mathematical notation and
observe that a container is something a bit like a power series:

J S / P K/ X =
∑
s:S

X (Ps)

We might imagine computing a formal derivative of such a series, ‘multiplying
down by each index, then subtracting one’, but we are not merely counting data—
they have individual existences. Let us define a kind of ‘dependent decrement’,
subtracting a particular element from a type.

− : (X : Set) (x : X)→ Set
X − x = Σ X λ x ′ → x ′ ' x → Zero

That is, an element of X − x is some element for X which is known to be other
than x .

We may now define the formal derivative of a container.

∂ : Con→ Con
∂ (S / P) = Σ S P / V λ s p → P s − p

The shape of the derivative is the pair of a shape with one position, which we call
the ‘hole’, and the positions in the derivative are ‘everywhere but the hole’.

3.5. DENORMALIZED CONTAINERS 35

Exercise 3.9 (plug) Exhibit a container morphism which witnesses the ability to fill the
hole, provided equality on positions is decidable.

plug : forall {C } → ((s : Sh C) (p p′ : Po C s)→ Dec (p ' p′))→
(∂ C ×/ I/)→/ C

plug {C } poeq? = ?

Exercise 3.10 (laws of calculus) Check that the following laws hold at the level of mu-
tually inverse container morphisms.

∂ (K/ A) ∼= K/ Zero
∂ I ∼= K/ One

∂ (C +/ D) ∼= ∂ C +/ ∂ D
∂ (C ×/ D) ∼= (∂ C ×/ D) +/ (C ×/ ∂ D)
∂ (C ◦/ D) ∼= (∂ C ◦/ D) ×/ ∂ D

What is ∂ (C ∗/) ?

3.5 Denormalized Containers

These may appear later.

36 CHAPTER 3. CONTAINERS AND W-TYPES

Chapter 4

Indexed Containers (Levitated)

There are lots of ways to present indexed containers, giving ample opportunities
for exercises, but I shall use the Hancock presentation, as it has become my pre-
ferred version, too.

The idea is to describe functors between indexed families of sets.

record . (I J : Set) : Set1 where
constructor / $

field
ShIx : J → Set
PoIx : (j : J)→ ShIx j → Set
riIx : (j : J) (s : ShIx j) (p : PoIx j s)→ I

J Ki : (I → Set)→ (J → Set)
J Ki X j = Σ (ShIx j) λ s → (p : PoIx j s)→ X (riIx j s p)

open . public

An I . J describes a J -indexed thing with places for I -indexed elements. Corre-
spondingly, some j : J tells us which sort of thing we’re making, determining
a shape set Sh j and a position family Po j , just as with plain containers. The ri
function then determines which I -index is demanded in each element position.

Interaction structures Hancock calls these indexed containers interaction struc-
tures. Consider J to be the set of possible ‘states of the world’ before an interaction,
and I the possible states afterward. The ‘before’ states will determine a choice of
commands we can issue, each of which has a set of possible responses which will
then determine the state ‘after’. An interaction structure thus describes the pred-
icate transformer which describes the precondition for achieving a postcondition
by one step of interaction. We are just using proof-relevant Hoare logic as the type
system!

Exercise 4.1 (functoriality) We have given the interpretation of indexed containers as
operations on indexed families of sets. Equip them with their functorial action for the
following notion of morphism

→̇ : forall {k l } {I : Set k } → (I → Set l)→ (I → Set l)→ Set (lmax l k)
X →̇ Y = forall i → X i → Y i

ixMap : forall {I J } {C : I . J } {X Y } → (X →̇ Y)→ J C Ki X →̇ J C Ki Y
ixMap f j xs = ?

37

38 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

4.1 Petersson-Synek Trees

Kent Petersson and Dan Synek proposed a universal inductive family, amounting
to the fixpoint of an indexed container

data ITree {J : Set} (C : J . J) (j : J) : Set where
〈 〉 : J C Ki (ITree C) j → ITree C j

The natural numbers are a friendly, if degenerate example.

NatC : One . One
NatC = (λ → Two) / (λ → Zero 〈?〉 One) $

zeroC : ITree NatC 〈〉
zeroC = 〈 tt,magic 〉
sucC : ITree NatC 〈〉 → ITree NatC 〈〉
sucC n = 〈 ff, pure n 〉

This is just the indexed version of theW-type, so the same issue with extensionality
arises.

We may also define the node structure for vectors as an instance.

VecC : Set→ N . N
VecC X = VS / VP $ Vr where -- depending on the length

VS : N→ Set
VS zero = One -- nil is unlabelled
VS (suc n) = X -- cons carried an element
VP : (n : N)→ VS n → Set
VP zero = Zero -- nil has no children
VP (suc n) = One -- cons has one child
Vr : (n : N) (s : VS n) (p : VP n s)→ N
Vr zero 〈〉 () -- nil has no children to index
Vr (suc n) x 〈〉 = n -- the tail of a cons has the length one less

Let us at least confirm that we can rebuild the constructors.

vnil : forall {X } → ITree (VecC X) zero
vnil = 〈 〈〉, (λ ()) 〉
vcons : forall {X n } → X → ITree (VecC X) n → ITree (VecC X) (suc n)
vcons x xs = 〈 (x , (λ → xs)) 〉

Why don’t you have a go at rebuilding an inductive family in this manner?

Exercise 4.2 (simply typed λ-calculus) Define the simply typed λ-terms as Petersson-
Synek trees.

STLC : (Cx ? × ?) . (Cx ? × ?)
STLC = ?

Implement the constructors.

4.2 Closure Properties

It is not difficult to show that indexed containers have an identity composition
which is compatible up to isomorphism with those of their interpretations.

4.2. CLOSURE PROPERTIES 39

Exercise 4.3 (identity and composition) Construct

IdIx : forall {I } → I . I
IdIx = ?

such that
J IdIx Ki X i ∼= X i

Similarly, construct the composition

CoIx : forall {I J K } → J . K → I . J → I . K
CoIx C C ′ = ?

such that
J CoIx C C ′ Ki X k ∼= J C Ki (J C ′ Ki X) k

It may be useful to consider constructing binary products and coproducts, but
let us chase after richer structure, exploiting dependent types to a greater extent.
We may describe a class of indexed functors, as follows. My motivation for

level polymorphism
will appear in due
course.

data Desc { l } (I : Set l) : Set (lsuc l) where
var : I → Desc I
σ π : (A : Set l) (D : A→ Desc I)→ Desc I
×D : Desc I → Desc I → Desc I
κ : Set l → Desc I

infixr 4 ×D

which admit a direct interpretation as follows

J KD : forall { l } {I : Set l } → Desc I → (I → Set l)→ Set l
J var i KD X = X i
J σ A D KD X = Σ A λ a → J D a KD X
J π A D KD X = (a : A)→ J D a KD X
J D ×D E KD X = J D KD X × J E KD X
J κ A KD X = A

A family of such descriptions in J → Desc I thus determines, pointwise, a
functor from I → Set to J → Set. It is easy to see that every indexed container has
a description.

ixConDesc : forall {I J } → I . J → J → Desc I
ixConDesc (S / P $ r) j = σ (S j) λ s → π (P j s) λ p → var (r j s p)

Meanwhile, up to isomorphism at least, we can go the other way around.

Exercise 4.4 (from J → Desc I to I . J) Construct functions

DSh : {I : Set} → Desc I → Set
DSh D = ?
DPo : forall {I } (D : Desc I)→ DSh D → Set
DPo D s = ?
Dri : forall {I } (D : Desc I) (s : DSh D)→ DPo D s → I
Dri D s p = ?

in order to compute the indexed container form of a family of descriptions.

descIxCon : forall {I J } → (J → Desc I)→ I . J
descIxCon F = (DSh ◦ F) / (DPo ◦ F) $ (Dri ◦ F)

Exhibit the isomorphism

J descIxCon F Ki X j ∼= J F j KD X

We shall find further closure properties of indexed containers later, but let us
explore description awhile.

40 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

4.3 Describing Datatypes

Descriptions are quite a lot like inductive family declarations. The traditional Vec
declaration corresponds to

vecD : Set→ N→ Desc N
vecD X n =
σ Two (κ (n ' zero)

〈?〉 σ N λ k → κ X ×D var k ×D κ (n ' suc k)
)

The choice of constructors becomes a σ-description. Indices specialized in the
return types of constructors become explicit equational constraints. However, in
defining a family of descriptions, we are free to use the full computational power
of the function space, inspecting the index, e.g.

vecD : Set→ N→ Desc N
vecD X zero = κ One
vecD X (suc n) = κ X ×D var n

To obtain a datatype from a description, we can turn it into a container and use
the Petersson-Synek tree, or we can preserve the first orderness of first order things
and use the direct interpretation.

data Data { l } {J : Set l } (F : J → Desc J) (j : J) : Set l where
〈 〉 : J F j KD (Data F)→ Data F j

For example, let us once again construct vectors.

vnil : forall {X } → Data (vecD X) zero
vnil = 〈 〈〉 〉
vcons : forall {X n } → X → Data (vecD X) n → Data (vecD X) (suc n)
vcons x xs = 〈 x , xs 〉

Exercise 4.5 (something like ‘levitation’) Construct a family of descriptions which de-
scribes a type like Desc. As Agda is not natively cumulative, you will need to shunt types
up through the Set l hierarchy by hand, with this gadget:

record ⇑ { l } (X : Set l) : Set (lsuc l) where
constructor ↑
field
↓ : X

open ⇑ public

Now implement

DescD : forall { l } (I : Set l)→ One { lsuc l } → Desc (One { lsuc l })
DescD { l } I = ?

Check that you can map your described descriptions back to descriptions.

desc : forall { l } {I : Set l } → Data (DescD I) 〈〉 → Desc I
desc D = ?

We could, if we choose, work entirely with described datatypes. Perhaps, in
some future programming language, the external Desc I type will be identified
with the internal Data (DescD I) 〈〉 so that Data is the only datatype.

4.4. SOME USEFUL PREDICATE TRANSFORMERS 41

4.4 Some Useful Predicate Transformers

A container stores a bunch of data. If we have a predicate P on data, it might
be useful to formulate the predicates on bunches of data asserting that P holds
everywhere or somewhere. But an indexed container is a predicate transformer! We
can thus close indexed containers under the formation of ‘everywhere’.

Everywhere : forall {I J } (C : I . J) (X : I → Set)→ Σ I X . Σ J (J C Ki X)
Everywhere (S / P $ r) X

= (λ → One)
/ (λ {(j , s, k) → P j s })
$ (λ {(j , s, k) p → r j s p, k p})

The witnesses to the property of the elements of the original container become
the elements of the derived container. The trivial predicate holds everywhere.

allTrivial : forall {I J } (C : I . J) (X : I → Set) jc →
J Everywhere C X Ki (λ → One) jc

allTrivial C X = 〈〉, λ p → 〈〉

If you think of simply typed λ-calculus contexts as containers of types, then an
environment is given by supplying values Everywhere.

Meanwhile, the finger now points at you, pointing a finger at an element.

Exercise 4.6 (Somewhere) Construct the transformer which takes C to the container for
witnesses that a property holds for some element of a C -structure

Somewhere : forall {I J } (C : I . J) (X : I → Set)→ Σ I X . Σ J (J C Ki X)
Somewhere (S / P $ r) X

= ?
/ ?
$?

Check that the impossible predicate cannot hold somewhere.

noMagic : forall {I J } (C : I . J) (X : I → Set) jc →
J Somewhere C X Ki (λ → Zero) jc → Zero

noMagic C X (p,m) = ?

For simply typed λ-calculus contexts, a variable of type T is just the evidence
that a type equal to T is somewhere. Environment lookup is just the obvious prop-
erty that if Q holds everywhere and R holds somewhere, then their conjunction
holds somewhere, too.

Exercise 4.7 (lookup) Implement generalized environment lookup.

lookup : forall {I J } (C : I . J) (X : I → Set) jc {Q R} →
J Everywhere C X Ki Q jc → J Somewhere C X Ki R jc →
J Somewhere C X Ki (λ ix → Q ix × R ix) jc

lookup C X jc qs r = ?

A key use of the Everywhere transformer is in the formulation of induction prin-
ciples. The induction hypotheses amount to asserting that the induction predicate
holds at every substructure..

42 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

treeInd : forall {I } (C : I . I) (P : Σ I (ITree C)→ Set)→
(J Everywhere C (ITree C) Ki P →̇
(V λ i ts → P (i , 〈 ts 〉)))→

(i : I) (t : ITree C i)→ P (i , t)
treeInd C P m i 〈 s, k 〉 = m (i , s, k) (〈〉, λ p → treeInd C P m (k p))

The step method of the above looks a bit like an algebra, modulo plumbing.

Exercise 4.8 (induction as a fold) Petersson-Synek trees come with a ‘fold’ operator,
making ITree C (weakly) initial for J C Ki. We can compute any P from a ITree C ,
given a C -algebra for P .

treeFold : forall {I } (C : I . I) (P : I → Set)→
(J C Ki P →̇ P)→
(ITree C →̇ P)

treeFold C P m i 〈 s, k 〉 = m i (s, λ p → treeFold C P m (k p))

However, treeFold does not give us dependent induction on ITree C . If al you have is a
hammer, everything looks like a nail. If we want to compute why some P : Σ I (ITree C)→ Set
always holds, we’ll need an indexed container storing Ps in positions corresponding to the
children of a given tree. The Everywhere C construct does most of the work, but you need
a little adaptor to unwrap the C container inside the ITree C .

Children : forall {I } (C : I . I)→ Σ I (ITree C) . Σ I (ITree C)
Children C = CoIx ? (Everywhere C (ITree C))

Now, you can extract a general induction principle for ITree C from treeFold (Children C),
but you will need a little construction. Finish the job.

treeFoldInd : forall {I } (C : I . I) P →
(J Children C Ki P →̇ P)→
forall it → P it

treeFoldInd C P m (i , t) = treeFold (Children C) P m (i , t) ?

Of course, you need to do what is effectively an inductive proof to fill in the hole. Induction
really does amount to more than weak initiality. But one last induction will serve for all.

What goes for containers goes for descriptions. We can build all the equipment
of this section for Desc and Data, too.

Exercise 4.9 (Everywhere and Somewhere for Desc) Define suitable description trans-
formers, capturing what it means for a predicate to hold in every or some element position
within a given described structure.

EverywhereD SomewhereD : {I : Set} (D : Desc I) (X : I → Set)→
J D KD X → Desc (Σ I X)

EverywhereD D X xs = ?
SomewhereD D X xs = ?

Now construct

dataInd : forall {I : Set} (F : I → Desc I) (P : Σ I (Data F)→ Set)→
((i : I) (ds : J F i KD (Data F))→
J EverywhereD (F i) (Data F) ds KD P → P (i , 〈 ds 〉))→

forall i d → P (i , d)
dataInd F P m i d = ?

4.5. INDEXED CONTAINERS ARE CLOSED UNDER FIXPOINTS 43

4.5 Indexed Containers are Closed Under Fixpoints

So far, we have used indexed containers to describe the node structures of recur-
sive data, but we have not considered recursive data structures to be containers
themselves. Consider, e.g., the humble vector: might we not consider the vector’s
elements to be a kind of contained thing, just as much as its subvectors? We can
just throw in an extra kind of element!

vecNodeIx : (One + N) . N
vecNodeIx = descIxCon {J = N} λ
{zero → κ One
; (suc n)→ var (tt, 〈〉) ×D var (ff,n)
}

That is enough to see vector nodes as containers of elements or subnodes, but it
still does not give vectors as containers:

vecIx : One . N
vecIx = ?

We should be able to solve this goal by taking vecNodeIx and tying a recursive
knot at positions labelled (ff,n), retaining positions labelled (tt, 〈〉). Let us try the
general case.

µIx : forall {I J } → (I + J) . J → I . J
µIx {I } {J } F = (ITree F ′ ◦ , ff) / (P ′ ◦ , ff) $ (r ′ ◦ , ff) where

The shapes of the recursive structures are themselves trees, with unlabelled leaves
at I -indexed places and F -nodes in J -indexed places. We could try to work in
J . J , cutting out the non-recursive positions. However, it is easier to shift to
(I + J) . (I + J), introducing ‘unlabelled leaf’ as the dull node structure when-
ever an I shape is requested. We may construct

F : (I + J) . (I + J)
F = (V (λ i → One) 〈?〉 ShIx F)
/ (V (λ → Zero) 〈?〉 PoIx F)
$ (V (λ t s ()) 〈?〉 riIx F)

and then choose to start with (ff, j) for the given top level j index. A position is
then a path to a leaf: either we are at a leaf already, or we must descend further.

P : (x : I + J)→ ITree F x → Set
P (tt, i) = One
P (ff, j) 〈 s, k 〉 = Σ (PoIx F j s) λ p → P (riIx F j s p) (k p)

Finally, we may follow each path to its indicated leaf and return the index which
sent us there.

r : (x : I + J) (t : ITree F x)→ P x t → I
r (tt, i) = i
r (ff, j) 〈 s, k 〉 (p, ps) = r (k p) ps

Let us check that this recipe cooks the vectors.

vecIx : One . N
vecIx = µIx vecNodeIx

44 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

Vec : Set→ N→ Set
Vec X = J vecIx Ki (λ → X)

vnil : forall {X } → Vec X zero
vnil = 〈 (〈〉, λ ()) 〉, (V λ ())

vcons : forall {X n } → X → Vec X n → Vec X (suc n)
vcons x (s, k)

= 〈 , (λ {(tt,)→ 〈 (, λ ()) 〉; (ff,)→ s }) 〉
, (λ {((tt,),)→ x ; ((ff,), p)→ k p})

4.6 Adding fixpoints to Desc

We can extend descriptions to include a fixpoint operator:

data Desc (I : Set) : Set1 where
var : I → Desc I
σ π : (A : Set) (D : A→ Desc I)→ Desc I
×D : Desc I → Desc I → Desc I
κ : Set→ Desc I
µ : (J : Set)→ (J → Desc (I + J))→ J → Desc I

The interpretation must now be defined mutuallu with the universal inductive
type.

mutual
J KD : forall {I } → Desc I → (I → Set)→ Set
J var i KD X = X i
J σ A D KD X = Σ A λ a → J D a KD X
J π A D KD X = (a : A)→ J D a KD X
J D ×D E KD X = J D KD X × J E KD X
J κ A KD X = A
J µ J F j KD X = Data F X j

data Data {I J } (F : J → Desc (I + J)) (X : I → Set) (j : J) : Set where
〈 〉 : J F j KD (V X 〈?〉 Data F X)→ Data F X j

Indeed, Desc Zero now does quite a good job of reflecting Set, except that the
domains of σ and π are not concretely represented, an issue we shall attend to in
the next chapter.

Exercise 4.10 (induction) State and prove the induction principle for Desc. (This is not
an easy exercise.)

4.7 Jacobians

I am always amused when computing people complain about being made to learn
mathematics choose calculus as their favourite example of something that is of no
use to them. I, for one, am profoundly grateful to have learned vector calculus: it
is exactly what you need to develop notions of ‘context’ for dependent datatypes.

An indexed container in I . J explains J sorts of structure in terms of I sorts
of elements, and as such, we acquire a Jacobian matrix of partial derivatives, in
I . (J × I). A (j , i) derivative is a structure of index j with a hole of index i .
Here’s how we build it.

4.8. APOCRYPHA 45

J : forall {I J } → I . J → I . (J × I)
J (S / P $ r)

= (λ {(j , i)→ Σ (S j) λ s → r j s −1 i })
/ (λ {(j , . (r j s p)) (s, from p)→ P j s − p})
$ (λ {(j , . (r j s p)) (s, from p) (p′,)→ r j s p′})

The shape of an (i , j)-derivative must select a j -indexed shape for the structure,
together with a position (the hole) whose index is i . As in the simple case, a posi-
tion in the derivative is any position other than the hole, and its index is calculated
as before.

Exercise 4.11 (plugging) Check that a decidable equality for positions is enough to define Einstein’s summa-
tion convention
might be useful
to infer the choice
and placement of
quantifiers.

the ‘plugging in’ function.

plugIx : forall {I J } (C : I . J)→
((j : J) (s : ShIx C j) (p p′ : PoIx C j s)→ Dec (p ' p′))→
forall {i j X } → J J C Ki X (j , i)→ X i → J C Ki X j

plugIx C eq? jx x = ?

Exercise 4.12 (the Zipper) For a given C : I . I , construct the indexed container
Zipper C : (I × I) . (I × I) such that ITree (Zipper C) (ir , ih) represents a one
ih-hole context in a ITree C ir , represented as a sequence of hole-to-root layers.

Zipper : forall {I } → I . I → (I × I) . (I × I)
Zipper C = ?

Check that you can zipper all the way out to the root.

zipOut : forall {I } (C : I . I) {ir ih } →
((i : I) (s : ShIx C i) (p p′ : PoIx C i s)→ Dec (p ' p′))→
ITree (Zipper C) (ir , ih)→ ITree C ih → ITree C ir

zipOut C eq? cz t = ?

Exercise 4.13 (differentiating Desc) The notion corresponding to J for descriptions is
∇, computing a ‘vector’ of partial derivatives. Define it symbolically. ”grad”

Symbolic differen-
tiation is the first
example of a pattern
matching program
in my father’s thesis
(1970).

∇ : {I : Set} → Desc I → I → Desc I
∇ D h = ?

Hence construct suitable zippering equipment for Data.

It is amusing to note that the mathematical notion of divergence, ∇ . D , corre-
sponds exactly to the choice of decompositions of a D-structure into any element-
in-context:

σ I λ i → ∇ D i ×D var i

I have not yet found a meaning for curl, ∇ × D , nor am I expecting Maxwell’s
equations to pop up anytime soon. But I live in hope for light.

4.8 Apocrypha

4.8.1 Roman Containers

A Roman container is given as follows

46 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

record Roman (I J : Set) : Set1 where
constructor SPqr
field

S : Set
P : S→ Set
q : S→ J
r : (s : S)→ P s → I

Plain : Con
Plain = S / P
J KR : (I → Set)→ (J → Set)
J KR X j = Σ (Σ S λ s → q s ' j) (V λ s → (p : P s)→ X (r s p))

Plain = Roman.Plain
J KR = Roman.J KR

It’s just a plain container, decorated by functions which attach input indices to
positions and an output index to the shape. We can turn Roman containers into
indexed containers whose meanings match on the nose.

FromRoman : forall {I J } → Roman I J → I . J
FromRoman (SPqr S P q r)

= (λ j → Σ S λ s → q s ' j)
/ (λ j → P ◦ fst)
$ (λ f → r ◦ fst)

onTheNose : forall {I J } (C : Roman I J)→ J C KR ' J FromRoman C Ki
onTheNose C = refl

Sadly, the other direction is a little more involved.

Exercise 4.14 (ToRoman) Show how to construct the Roman container isomorphic to a
given indexed container and exhibit the isomorphism.

ToRoman : forall {I J } → I . J → Roman I J
ToRoman {I } {J } (S / P $ r) = ?

toRoman : forall {I J } (C : I . J)→
forall {X j } → J C Ki X j → J ToRoman C KR X j

toRoman C xs = ?

fromRoman : forall {I J } (C : I . J)→
forall {X j } → J ToRoman C KR X j → J C Ki X j

fromRoman C xs = ?

toAndFromRoman :
forall {I J } (C : I . J) {X j }
→ (forall xs →

toRoman C {X } {j } (fromRoman C {X } {j } xs) ' xs)
× (forall xs → fromRoman C {X } {j } (toRoman C {X } {j } xs) ' xs)

toAndFromRoman C = ?

The general purpose tree type for Roman containers looks a lot like the induc-
tive families you find in Agda or the GADTs of Haskell.

data RomanData {I } (C : Roman I I) : I → Set where
, : (s : Roman.S C)→

((p : Roman.P C s)→ RomanData C (Roman.r C s p))→
RomanData C (Roman.q C s)

4.8. APOCRYPHA 47

I could have just taken the fixpoint of the interpretation, but I wanted to emphasize
that the role of Roman.q is to specialize the return type of the constructor, creating
the constraint which shows up as an explicit equation in the interpretation. The
reason Roman containers are so called is that they invoke equality and its mysteri-
ous capacity for transubstantiation.

The RomanData type looks a lot like aW-type, albeit festooned with equations.
Let us show that it is exactly that.

Exercise 4.15 (Roman containers areW-types) Construct a function which takes plain
W-type data for a Roman container and marks up each node with the index required of it,
using Roman.r.

ideology : forall {I } (C : Roman I I)→
I →W (Plain C)→W (Plain C ×/ K/ I)

ideology C i t = ?

Construct a function which takes plainW-type data for a Roman container and marks up
each node with the index delivered by it, using Roman.q.

phenomenology : forall {I } (C : Roman I I)→
W (Plain C)→W (Plain C ×/ K/ I)

phenomenology C t = ?

Take the W-type interpretation of a Roman container to be the plain data for which the
required indices are delivered.

RomanW : forall {I } → Roman I I → I → Set
RomanW C i = Σ (W (Plain C)) λ t → phenomenology C t ' ideology C i t

Now, check that you can extract RomanData from RomanW.

fromRomanW : forall {I } (C : Roman I I) {i } → RomanW C i → RomanData C i
fromRomanW C (t , good) = ?

To go the other way, it is easy to construct the plain tree, but to prove the constraint,
you will need to establish equality of functions. Using

postulate
extensionality : forall {S : Set} {T : S → Set} (f g : (s : S)→ T s)→

((s : S)→ f s ' g s)→ f ' g

construct

toRomanW : forall {I } (C : Roman I I) {i } → RomanData C i → RomanW C i
toRomanW C t = ?

4.8.2 Reflexive-Transitive closure

This does not really belong here, but it is quite fun, and something to do with
indexed somethings. Consider the reflexive transitive closure of a relation, also
known as the ‘paths in a graph’.

data ∗∗ {I : Set} (R : I × I → Set) : I × I → Set where
〈〉 : {i : I } → (R ∗∗) (i , i)
, : {i j k : I } → R (i , j)→ (R ∗∗) (j , k)→ (R ∗∗) (i , k)

infix 1 ∗∗

48 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

You can construct the natural numbers as an instance.

NAT : Set
NAT = (Loop ∗∗) where Loop : One × One→ Set; Loop = One

Exercise 4.16 (further constructions with ∗∗) Using no recursive types other than ∗∗,
construct the following

• ordinary lists

• the ≥ relation

• lists of numbers in decreasing order

• vectors

• finite sets

• a set of size n! for a given n

• ‘everywhere’ and ‘somewhere’ for edges in paths

Exercise 4.17 (monadic operations) Implement

one∗∗ : forall {I } {R : I × I → Set} → R →̇ (R ∗∗)
one∗∗ r = ?

join∗∗ : forall {I } {R : I × I → Set} → ((R ∗∗) ∗∗) →̇ (R ∗∗)
join∗∗ rss = ?

such that the monad laws hold.

4.8.3 Pow and Fam

We have two ways to formulate a notion of ‘subset’ in type theory. We can define
a subset of X as a predicate in

X → Set

giving a proof-relevant notion of evidence that a given X : X belongs, or we can
pick out some elements of X as the image of a function

Σ Set λ I → I → X

so we have a family of X s indexed by some set.
Are these notions the same? That turns out to be a subtle question. A lot turns

on the size of X , so we had best be formal about it. In general, X is large.

Pow : Set1 → Set1
Pow X = X → Set

Fam : Set1 → Set1
Fam X = Σ Set λ I → I → X

Exercise 4.18 (small Pow and Fam) Show that, given a suitable notion of propositional
equality, Pow ◦ ⇑ and Fam ◦ ⇑ capture essentially the same notion of subset.

p2f : (Pow ◦ ⇑) →̇ (Fam ◦ ⇑)
p2f X P = ?

f2p : (Fam ◦ ⇑) →̇ (Pow ◦ ⇑)
f2p X F = ?

4.8. APOCRYPHA 49

Exercise 4.19 (functoriality of Pow and Fam) Equip Pow with a contravariant functo-
rial action and Fam with a covariant functorial action.

$P : forall {I J } → (J → I)→ Pow I → Pow J
f $P P = ?

$F : forall {I J } → (I → J)→ Fam I → Fam J
f $F F = ?

Fam Set is Martin-Löf’s notion of a universe, naming a bunch of sets by the
elements of some indexing set. Meanwhile, the ‘representation type’ method of
describing types concretely in Haskell is just using Pow Set in place of Fam Set. It
is good to get used to recognizing when concepts are related just by exchanging
Fam and Pow.

Modulo currying and λ-lifting of parameters, the distinction between Roman I J
and our Hancock-style I . J is just that the former represents indexed shapes by
a Fam (so Roman.q reads off the shape) whilst the latter uses a Pow (so the shapes
pertain to a given index). Both use Fams for positions.

ROMAN : Set→ Set→ Set1
ROMAN I J = Σ (Fam (⇑ J)) λ {(S , q)→ S → Fam (⇑ I)}
HANCOCK : Set→ Set→ Set1
HANCOCK I J = Σ (Pow (⇑ J)) λ S → Σ J (S ◦ ↑)→ Fam (⇑ I)

A ‘Nottingham’ indexed container switches the positions to a Pow (see Altenkirch
and Morris).

NOTTINGHAM : Set→ Set→ Set1
NOTTINGHAM I J = Σ (Pow (⇑ J)) λ S → Σ J (S ◦ ↑)→ Pow (⇑ I)

which amounts to a presentation of shapes and positions as predicates:

NSh : J → Set
NPo : (j : J)→ NSh j → I → Set

For HANCOCK and NOTTINGHAM, we can abstract the whole construction
over J , obtaining:

HANCOCK : Set→ Set→ Set1
HANCOCK I J = J → Fam (Fam (⇑ I))

NOTTINGHAM : Set→ Set→ Set1
NOTTINGHAM I J = J → Fam (Pow (⇑ I))

Exercise 4.20 (HANCOCK to ROMAN) We have, modulo plumbing,

HANCOCK I J = J → Fam (Fam (⇑ I))
ROMAN I J = Fam (⇑ J × Fam (⇑ I))

Using Fam-Pow flips and currying, find a path from one to the other. However, see be-
low. . .

But just when we’re getting casual about Fam-Pow flipping, think about what
happens when the argument is a large.

50 CHAPTER 4. INDEXED CONTAINERS (LEVITATED)

Exercise 4.21 (fool’s errand) Construct the large version of the Fam-Pow exchange

p2f : Pow →̇ Fam
p2f X P = ?

f2p : Fam →̇ Pow
f2p X F = ?

In our study of datatypes so far, we have been constructing inductively defined
inhabitants of Pow (⇑ I). Let us now perform our own flip and consider inductive
definition in Fam I . What should we expect? Nothing much different for small I ,
of course. But for a large I , all Heaven breaks loose.

Chapter 5

Induction-Recursion

Recall that Fin n is an enumeration of n elements. We might consider how to take
these enumerations as the atomic components of a dependent type system, closed
under Σ- and Π-types. Finite sums and products of finite things are finite, so we
can compute their sizes.

sum prod : (n : N)→ (Fin n → N)→ N
sum zero = 0
sum (suc n) f = f zero +N sum n (f ◦ suc)
prod zero = 1
prod (suc n) f = f zero ×N sum n (f ◦ suc)

But can we write down a precise datatype ofthe type expressions in our finitary
system?

data FTy : Set where
fin : N→ FTy
σ π : (S : FTy) (T : Fin ?→ FTy)→ FTy

I was not quite able to finish the definition, because I could not give the domain
of T . Intutively, when we take sums or products over a domain, we should have
one summand or factor for each element of that domain. But we have only S , the
expressions which stands for the domain. We know that it is bound to be finite, so
I have filled in Fin ?, but to make further progress, we need to know the size of
S . Intuitively, it is easy to compute the size of an FTy: the base case is direct; the
structural cases are captured by sum and prod. The trouble is that we cannot wait
until after dclaring FTy to define the size, because we need size information, right
there at that ?. What can we do?

One thing that Agda lets us do is just the thing we need. We can define FTy and
its size function, #, simultaneously.

mutual

data FTy : Set where
fin : N→ FTy
σ π : (S : FTy) (T : Fin (# S)→ FTy)→ FTy

: FTy→ N
(fin n) = n
(σ S T) = sum (# S) λ s → # (T s)
(π S T) = prod (# S) λ s → # (T s)

For example, if we define the forgetful map from Fin back to N,

51

52 CHAPTER 5. INDUCTION-RECURSION

fog : forall {n } → Fin n → N
fog zero = zero
fog (suc i) = suc (fog i)

we can check thatin honour of Gauss

(σ (fin 101) λ s → fin (fog s)) = 5050

We have just seen our first example of induction-recursion. Where an inductive
definition tells us how to perform construction of data incrementally, induction-
recursion tells us how to perform construction-with-interpretation incrementally.
Together, (FTy,#) : Fam N, with the interpretation just telling us sizes, so that
Fin ◦ # gives an unstructured representation of a given FTy type. If we wanted a
structured representation, we could just as well have interpreted FTy in Set.

mutual

data FTy : Set where
fin : N→ FTy
σ π : (S : FTy) (T : FEl S → FTy)→ FTy

FEl : FTy→ Set
FEl (fin n) = Fin n
FEl (σ S T) = Σ (FEl S) λ s → FEl (T s)
FEl (π S T) = (s : FEl S)→ FEl (T s)

Now, what has happened? We have (FTy,FEl) : Fam Set, picking out a subset
of Set by choosing names for them in FTy. But FTy is small enough to be a Set
itself! IR is the Incredible Ray that shrinks large sets to small encodings of subsets
of them.

Here is a standard example of induction recursion for you to try.

Exercise 5.1 (FreshList) By means of a suitable choice of recursive interpretation, fill the
? with a condition which ensures that FreshLists have distinct elements. Try to make sure
that, for any concrete FreshList, ok can be inferred trivially.

module FRESHLIST (X : Set) (Xeq? : (x x ′ : X)→ Dec (x ' x ′)) where
mutual

data FreshList : Set where
[] : FreshList
, : (x : X) (xs : FreshList) {ok : ?} → FreshList

5.1 Records

Randy Pollack identified the task of modelling record types as a key early use of
induction-recursion, motivated to organise libraries for mathematical structure.

It doesn’t take IR to have a go at modelling records, just something a bit like
Desc, but just describing the right-nested Σ-types.

data RecR : Set1 where
〈〉 : RecR
, : (A : Set) (R : A→ RecR)→ RecR

J KRR : RecR→ Set
J 〈〉 KRR = One
J A,R KRR = Σ A λ a → J R a KRR

5.1. RECORDS 53

That gives us a very flexible, variant notion of record, where the values of ear-
lier fields can determine the entire structure of the rest of the record. Sometimes,
however, it may be too flexible: you cannot tell from a RecR description how many
fields a record has—indeed, this quantity may vary from record to record. You can,
of course, count the fields in an actual record, then define projection. You do it.

Exercise 5.2 (projection from RecR) Show how to compute the size of a record, then
define the projections, first of types, then of values.

sizeRR : (R : RecR)→ J R KRR → N
sizeRR R r = ?

TyRR : (R : RecR) (r : J R KRR)→ Fin (sizeRR R r)→ Set
TyRR R r i = ?

vaRR : (R : RecR) (r : J R KRR) (i : Fin (sizeRR R r))→ TyRR R r i
vaRR R r i = ?

Of course, we could enforce uniformity of length by indexing. But a bigger
problem with RecR is that, being right-nested, our access to it is left-anchored.
Extending a record with more fields whose types depend on existing fields (e.g.,
adding laws to a record of operations) is a difficult right-end access, as is suffix-
truncation.

Sometimes we want to know that we are writing down a signature with a fixed
set of fields, and we want easy extensibility at the dependent right end. That means
left-nested record types (also known as contexts). And that’s where we need IR.

mutual

data RecL : Set1 where
E : RecL

‘
: (R : RecL) (A : J R KRL → Set)→ RecL

J KRL : RecL→ Set
J E KRL = One
J R

‘
A KRL = Σ J R KRL A

Exercise 5.3 (projection from RecL) Show how to compute the size of a RecL without
knowing the individual record. Show how to interpret a projection as a function from a
record, first for types, then values.

sizeRL : RecL→ N
sizeRL R = ?

TyRL : (R : RecL)→ Fin (sizeRL R)→ J R KRL → Set
TyRL R i = ?

vaRL : (R : RecL) (i : Fin (sizeRL R)) (r : J R KRL)→ TyRL R i r
vaRL R i = ?

Exercise 5.4 (truncation) Show how to truncate a record signature from a given field and
compute the corresponding projection on structures.

TruncRL : (R : RecL)→ Fin (sizeRL R)→ RecL
TruncRL R i = ?

truncRL : (R : RecL) (i : Fin (sizeRL R))→ J R KRL → J TruncRL R i KRL
truncRL R i = ?

54 CHAPTER 5. INDUCTION-RECURSION

5.1.1 Manifest Fields

Pollack extends his notion of record with manifest fields, i.e., fields whose values
are computed from earlier fields. It is rather like allowing definitions in contexts.

First, I define the type of data with a manifest value (sometimes also known as
singletons). I deliberately keep the index right of the colon to force Agda to store
the singleton value in the data structure.Why is Manifest not

an Agda record?

data Manifest {A : Set} : A→ Set where
〈 〉 : (a : A)→ Manifest a

Now, I extend the notion of record signature with a constructor for manifest
fields. I could have chosen simply to omit these fields from the record structure,
but instead I make them Manifest so that projection need not involve recomputa-
tion. I also index by size, to save on measuring.

mutual

data RecM : N→ Set1 where
E : RecM zero

‘
: {n : N} (R : RecM n) (A : J R KRM → Set)→ RecM (suc n)

‘
3 : {n : N} (R : RecM n) (A : J R KRM → Set)

(a : (r : J R KRM)→ A r)→ RecM (suc n)

J KRM : {n : N} → RecM n → Set
J E KRM = One
J R

‘
A KRM = Σ J R KRM A

J R
‘

A 3 a KRM = Σ J R KRM (Manifest ◦ a)

Exercise 5.5 (projection from RecM) Implement projection for RecM.

TyRM : {n : N} (R : RecM n)→ Fin n → J R KRM → Set
TyRM R i = ?

vaRM : {n : N} (R : RecM n) (i : Fin n) (r : J R KRM)→ TyRM R i r
vaRM R i = ?

Be careful not to recompute the value of a manifest field.

Exercise 5.6 (record extension) When building libraries of structures, we are often con-
cerned with the idea of one record signature being the extension of another. The following

mutual

data REx : {n m : N} → RecM n → RecM m → Set1 where
E : REx E E

rfog : forall {n m } {R : RecM n } {R′ : RecM m } (X : REx R R′)→
J R′ KRM → J R KRM

rfog E 〈〉 = 〈〉

describes evidence REx R R′ that R′ is an extension of R, interpreted by rfog as a map
from J R′ KRM back to J R KRM. Unfortunately, it captures only the fact that the empty
record extends itself. Extend REx to allow retention of every field, insertion of new fields,
and conversion of abstract to manifest fields. (For my solution, I attempted to show that I
could always construct the identity extension. Thus far, I have been defeated by equational
reasoning in an overly intensional setting.)

5.2. A UNIVERSE 55

5.2 A Universe

We’ve already seen that we can use IR to build a little internal universe. I have
a favourite such universe, with a scattering of base types, dependent pairs and
functions, and Petersson-Synek trees. That’s quite a lot of Set, right there!

mutual
data TU : Set where

Zero′ One′ Two′ : TU
Σ′ Π′ : (S : TU) (T : J S KTU → TU)→ TU
Tree′ : (I : TU)

(F : J I KTU → Σ TU λ S →
J S KTU → Σ TU λ P →
J P KTU → J I KTU)

(i : J I KTU)→ TU

J KTU : TU→ Set
J Zero′ KTU = Zero
J One′ KTU = One
J Two′ KTU = Two
J Σ′ S T KTU = Σ J S KTU λ s → J T s KTU
J Π′ S T KTU = (s : J S KTU)→ J T s KTU
J Tree′ I F i KTU = ITree

((λ i → J fst (F i) KTU)
/ (λ i s → J fst (snd (F i) s) KTU)
$ (λ i s p → snd (snd (F i) s) p)
) i

The TU universe is not closed under a principle of inductive-recursive defini-
tion, so the shrinking ray has not shrunk the shrinking raygun.

Exercise 5.7 (TU examples) Check that you can encode natural numbers, lists and vec-
tors in TU. For an encore, try the simply typed λ-calculus.

5.3 Universe Upon Universe

Not only can you build one small universe inside Set using induction-recursion,
you can build a predicative hierarchy of them. The key is to define the ‘next universe’
operator, and then iterate it. The following construction takes a universe X and
builds another, NU X , on top.

mutual

data NU (X : Fam Set) : Set where
U′ : NU X
El′ : fst X → NU X
Nat′ : NU X
Π′ : (S : NU X) (T : J S KNU → NU X)→ NU X

J KNU : forall {X } → NU X → Set
J KNU {U ,El } U′ = U
J KNU {U ,El } (El′ T) = El T
J Nat′ KNU = N
J Π′ S T KNU = (s : J S KNU)→ J T s KNU

As you can see, NU X has names El′ T for the types in X and a name U′ for X
itself. Now we can jack up universes as far as we like.

56 CHAPTER 5. INDUCTION-RECURSION

EMPTY : Fam Set
EMPTY = Zero, λ ()

LEVEL : N→ Fam Set
LEVEL zero = NU EMPTY, J KNU
LEVEL (suc n) = NU (LEVEL n), J KNU

This hierarchy is explicitly cumulative: El′ embeds types upward without chang-
ing their meaning. One consequence is that we have a redundancy of representa-
tion:

Exercise 5.8 (N→ N) Find five names for N→ N in fst (LEVEL 1).

5.3.1 A Redundancy-Free Hierarchy

We can try to eliminate the redundancy by including only the names for lower
universes at each level: we do not need to embed N → N from LEVEL 0 , because
LEVEL 1 has a perfectly good version. This time, we parametrize the universe by
a de Bruijn indexed collection of the previous universes.

mutual

data HU {n } (U : Fin n → Set) : Set where
U′ : Fin n → HU U
Nat′ : HU U
Π′ : (S : HU U) (T : J S KHU → HU U)→ HU U

J KHU : forall {n } {U : Fin n → Set} → HU U → Set
J KHU {U = U } (U′ i) = U i
J Nat′ KHU = N
J Π′ S T KHU = (s : J S KHU)→ J T s KHU

To finish the job, we must build the collections of levels to hand to HU. At each
step, level zero is the new top level, built with a fresh appeal to HU, but lower levels
can be projected from the previous collection.

HPREDS : (n : N)→ Fin n → Set
HPREDS zero ()
HPREDS (suc n) zero = HU (HPREDS n)
HPREDS (suc n) (suc i) = HPREDS n i

HSET : N→ Set
HSET n = HU (HPREDS n)

Note that HSET n is indeed J U′ zero KHU at level suc n .
The trouble with this representation, however, is that it is not cumulative for

free. Intuitively, every type at each level has a counterpart at all higher levels, but
how can we get our hands on it?

Exercise 5.9 (fool’s errand) Find out what breaks when you try to implement cumula-
tivity. What equation do you need to hold? Can you prove it?

Cumu : (n : N) (T : HSET n)→ HSET (suc n)
Cumu n T = ?

5.4. ENCODING INDUCTION-RECURSION 57

5.4 Encoding Induction-Recursion

So far, we have been making mutual declarations of inductive types and recursive
functions to which Agda has said ‘yes’. Clearly, however, we could write down
some rather paradoxical definitions if we were not careful. Fortunately, the fol-
lowing is not permitted,

mutual -- rejected

data VV : Set where

V′ : VV

Π′ : (S : VV) (T : J S KVV → VV)→ VV

J KVV : VV → Set

J V′ KVV = VV
J Π′ S T KVV = (s : J S KVV)→ J T s KVV

but it was not always so.
It would perhaps help to make sense of what is possible, as well as to pro-

vide some sort of metaprogramming facility, to give an encoding of the permitted
inductive-recursive definitions. Such a thing was given by Peter Dybjer and An-
ton Setzer in 1999. Their encoding is (morally) as follows, describing one node of
an inductive recursive type rather in the manner of a right-nested record, but one
from which we expect to read off a J -value, and whose children allow us to read
off I -values.

data DS (I J : Set1) : Set1 where
ι : J → DS I J -- no more fields
σ : (S : Set) (T : S → DS I J)→ DS I J -- ordinary field
δ : (H : Set) (T : (H → I)→ DS I J)→ DS I J -- child field

We interpret a DS I J as a functor from Fam I to Fam J : I build the components
separately for readability.

J KDS : forall {I J } → DS I J → Fam I → Fam J
J ι j KDS Xxi

= One
, λ {〈〉 → j }

J σ S T KDS Xxi
= (Σ S λ s → fst (J T s KDS Xxi))
, λ {(s, t) → snd (J T s KDS Xxi) t }

J δ H T KDS (X , xi)
= (Σ (H → X) λ hx → fst (J T (xi ◦ hx) KDS (X , xi)))
, λ {(hx , t)→ snd (J T (xi ◦ hx) KDS (X , xi)) t }

In each case, we must say which set is being encoded and how to read off a J from
a value in that set. The ι constructor carries exactly the j required. The other two
specify a field in the node structure, from which the computation of the J gains
some information. The σ specifies a field of type S , and the rest of the structure
may depend on a value of type S .

The δ case is the clever bit. It specifies a place for an H -indexed bunch of chil-
dren, and even though we do not fix what set represents the children, we do know
that they allow us to read off an I . Correspondingly, the rest of the structure can at
least depend on knowing a function in H → I which gives access to the interpre-
tation of the children. Once we plug in a specific (X , xi) : Fam I , we represent the
field by the small function space hx : H → X , then the composition xi ◦ hx tells
us how to compute the large meaning of each child.

58 CHAPTER 5. INDUCTION-RECURSION

Exercise 5.10 (idDS) A morphism from (X , xi) to (Y , yi) in Fam I is a function f :
X → Y such that xi = yi ◦ f . Construct a code for the identity functor on Fam I , being

idDS : {I : Set1} → DS I I
idDS = ?

such that
J idDS KDS

∼= id

in the sense that both take isomorphic inputs to isomorphic outputs.

With this apparatus in place, we could now tie the recursive knot. . .

mutual -- fails positivity check and termination check
data DataDS {I } (D : DS I I) : Set where
〈 〉 : fst (J D KDS (DataDS D , J Kds))→ DataDS D

J Kds : {I : Set1} {D : DS I I } → DataDS D → I
J Kds {D = D } 〈 ds 〉 = snd (J D KDS (DataDS D , J Kds)) ds

. . . if only the positivity checker could trace the construction of the node set through
the tupled presentation of J KDS and the termination checker could accept that the
recursive invocation of J KDS is used only for the children packed up inside the
node record. Not for the first or the last time, we can only get out of the jam by
inlining the interpretation:

mutual

data DataDS {I } (D : DS I I) : Set where
〈 〉 : NoDS D D → DataDS D

J Kds : {I : Set1} {D : DS I I } → DataDS D → I
J Kds {D = D } 〈 ds 〉 = DeDS D D ds

NoDS : {I : Set1} (D D ′ : DS I I)→ Set
NoDS D (ι i) = One
NoDS D (σ S T) = Σ S λ s → NoDS D (T s)
NoDS D (δ H T) = Σ (H → DataDS D) λ hd → NoDS D (T (λ h → J hd h Kds))
DeDS : {I : Set1} (D D ′ : DS I I)→ NoDS D D ′ → I
DeDS D (ι i) 〈〉 = i
DeDS D (σ S T) (s, t) = DeDS D (T s) t
DeDS D (δ H T) (hd , t) = DeDS D (T (λ h → J hd h Kds)) t

Exercise 5.11 (encode TU) Construct an encoding of TU in DS Set Set.

If you have an eye for this sort of thing, you may have noticed that DS I is a
monad, with ι as its ‘return’.

Exercise 5.12 (bindDS and its meaning) Implement the appropriate bindDS operator,
corresponding to substitution at ι.

bindDS : forall {I J K } → DS I J → (J → DS I K)→ DS I K
bindDS T U = ?

Show that bindDS corresponds to a kind of Σ by implementing pairing and projections:

pairDS : forall {I J K } (T : DS I J) (U : J → DS I K) {X : Fam I } →
(t : fst (J T KDS X)) (u : fst (J U (snd (J T KDS X) t) KDS X))
→ fst (J bindDS T U KDS X)

5.5. IRISH INDUCTION-RECURSION 59

pairDS T U t u = ?

projDS : forall {I J K } (T : DS I J) (U : J → DS I K) {X : Fam I } →
fst (J bindDS T U KDS X)→
Σ (fst (J T KDS X)) λ t → fst (J U (snd (J T KDS X) t) KDS X)

projDS T U tu = ?

Which coherence properties hold?

There is one current snag with the DS I J coding of functors yielding inductive-
recursive definitions, as you will discover if you attempt the following exercise.

Exercise 5.13 (composition for DS) This is an open problem. Construct

coDS : forall {I J K } → DS J K → DS I J → DS I K
coDS E D = ?

such that
J coDS E D KDS

∼= J E KDS ◦ J D KDS

Alternatively, find a counterexample which wallops the very possibility of coDS.

In the next section, we can try to do something about the problem.

5.5 Irish Induction-Recursion

So I went to this meeting with some friends who like containers, induction-recursion,
and other interesting animals in the zoo of datatypes. I presented what I thought
was just a boring Desc-like rearrangement of Dybjer and Setzer’s encoding of induction-
recursion. ‘That’s not IR!’ said the audience, and it remains an open problem
whether or not they were correct: it is certainly IR-ish, but we do not yet know
whether it captures just the same class of functors as Dybjer and Setzer’s encod-
ing, or strictly more. (If the latter, we shall need a new model construction, to
ensure the system’s consistency.)

I give an inductive-recursive definition of IR. The type Irish I describes node
structures where children can be interpreted in I . Deferring the task of interpreting
such a node, let us rather compute the type of Information we can learn from it.
Note that Info {I } T is large because I is, but fear not, for it is not the type of the
nodes themselves.

mutual

data Irish (I : Set1) : Set1 where
ι : Irish I
κ : Set→ Irish I
π : (S : Set) (T : S → Irish I)→ Irish I
σ : (S : Irish I) (T : Info S → Irish I)→ Irish I

Info : forall {I } → Irish I → Set1
Info {I } ι = I
Info (κ A) = ⇑ A
Info (π S T) = (s : S)→ Info (T s)
Info (σ S T) = Σ (Info S) λ s → Info (T s)

To interpret π and σ, we shall need to equip Fam with pointwise lifting and depen-
dent pairs, respectively.

ΠF : (S : Set) {J : S → Set1} (T : (s : S)→ Fam (J s))→
Fam ((s : S)→ J s)

60 CHAPTER 5. INDUCTION-RECURSION

ΠF S T = ((s : S)→ fst (T s)), λ f s → snd (T s) (f s)

ΣF : {I : Set1} (S : Fam I) {J : I → Set1} (T : (i : I)→ Fam (J i))→
Fam (Σ I J)

ΣF S T = Σ (fst S) (fst ◦ (T ◦ snd S))
, λ {(s, t)→ snd S s, snd (T (snd S s)) t }

Now, for any T : Irish I , if someone gives us a Fam I to represent children, we can
compute a Fam (Info T) — a small node structure from which the large Info T can
be extracted.

Node : forall {I } (T : Irish I)→ Fam I → Fam (Info T)
Node ι X = X
Node (κ A) X = A, ↑
Node (π S T) X = ΠF S λ s → Node (T s) X
Node (σ S T) X = ΣF (Node S X) λ iS → Node (T iS) X

A functor from Fam I to Fam J is then given by a pair

IF : Set1 → Set1 → Set1
IF I J = Σ (Irish I) λ T → Info T → J

J KIF : forall {I J } → IF I J → Fam I → Fam J
J T , d KIF X = d $F Node T X

With a certain tedious inevitability, we find that Agda rejects the obvious at-
tempt to tie the knot.

mutual -- fails positivity and termination checks
data DataIF {I } (F : IF I I) : Set where
〈 〉 : fst (J F KIF (DataIF F , J Kif))→ DataIF F

J Kif : forall {I } {F : IF I I } → DataIF F → I
J Kif {F = F } 〈 ds 〉 = snd (J F KIF (DataIF F , J Kif)) ds

Again, specialization of Node fixes the problem

mutual

data DataIF {I } (F : IF I I) : Set where
〈 〉 : NoIF F (fst F)→ DataIF F

J Kif : forall {I } {F : IF I I } → DataIF F → I
J Kif {F = F } 〈 rs 〉 = snd F (DeIF F (fst F) rs)

NoIF : forall {I } (F : IF I I) (T : Irish I)→ Set
NoIF F ι = DataIF F
NoIF F (κ A) = A
NoIF F (π S T) = (s : S)→ NoIF F (T s)
NoIF F (σ S T) = Σ (NoIF F S) λ s → NoIF F (T (DeIF F S s))

DeIF : forall {I } (F : IF I I) (T : Irish I)→ NoIF F T → Info T
DeIF F ι r = J r Kif
DeIF F (κ A) a = ↑ a
DeIF F (π S T) f = λ s → DeIF F (T s) (f s)
DeIF F (σ S T) (s, t) = let s ′ = DeIF F S s in s ′,DeIF F (T s ′) t

Given that Agda lets
us implement Irish
IR, one wonders
whether it allows
even more.

Irish IR is a little closer to the user experience of IR in Agda, in that you give
separately a description of your data’s node structure and the ‘algebra’ which de-
codes it.

5.5. IRISH INDUCTION-RECURSION 61

Exercise 5.14 (Irish TU) Give a construction for the TU universe as a description-decoder
pair in IF Set Set.

We should check that Irish IR allows at least as much as Dybjer-Setzer.

Exercise 5.15 (Irish-to-Swedish) Show how to define

DSIF : forall {I J } → DS I J → IF I J
DSIF T = ?

such that
J DSIF T KDS

∼= J T KIF

We clearly have an identity for Irish IR.

idIF : forall {I } → IF I I
idIF = ι, id

Now, DS I J had a substitution-for-ι structure which induced a notion of pair-
ing, because ι marks ‘end of record’. What makes the Irish encoding conductive to
composition is that the ι-leaves of an Irish I mark where the children go.

Exercise 5.16 (subIF) Construct a substitution operator for Irish J with a refinement of
the following type.

subIF : forall {I J } (T : Irish J) (F : IF I J)→ Σ (Irish I) ?
subIF T F = ?

Hint: you will find out what you need in the σ case.

Exercise 5.17 (coIF) Now define composition for Irish IR functors.

coIF : forall {I J K } → IF J K → IF I J → IF I K
coIF G F = ?

Some of us are inclined to suspect that IF does admit more functors than DS,
but the exact status of Irish induction-recursion remains the stuff of future work.

62 CHAPTER 5. INDUCTION-RECURSION

Chapter 6

Observational Equality

We cannot have an equality which is both extensional and decidable. We choose
to keep judgmental equality decidable, hence it is inevitably disappointing, but we
introduce a propositional equality, allowing us to give evidence for equations on
open terms which the computer is too stupid to see. Correspondingly, we need a
substitution mechanism to transport values from P s to P t whenever s ' t . The
way subst has worked thus far is to wait at least until s ≡ t holds judgmentally,
so that p : P s implies p : P t , allowing p to be transmitted as it stands. (Waiting
for the proof of s ' t to become refl means waiting at least until s ≡ t .)

The trouble with this way to compute subst is that we have no way to explain
its computation if there are provably equal closed terms which are not judgmen-
tally equal. We can add axioms for extensionality and retain consistency, even
extracting working programs which compile subst to id and never compute under
a binder. However, such axioms impede open computation. If we want a proposi-
tional equality to make up for our disappointment with judgmental equality, and a
subst which works, we must figure out how to transport values between provably
but not judgmentally equal types.

The situation is particularly galling when you think how a type like P f could
possibly depend on a function f . If all P ever does with f is to apply it, then of
course P respects extensional equality. If types can only depend on values by ob-
serving them, then there should be a systematic way to show that transportability
between types respects equality-up-to-observation.

But does the hypothesis of the previous sentence hold? Consider

data Favourite : (N→ N)→ Set where
favourite : Favourite (λ x → zero +N x)

We may certainly prove that λ x → zero +N x and λ x → x +N zero agree on
all inputs. But is there a canonical inhabitant of Favourite (λ x → x +N zero)? If
so, it can only be favourite, for that is the only constructor, but favourite does not
have that type because the two functions are not judgmentally equal. The trouble
is that by using the power to ‘focus’ a constructor’s return type on specific indices,
Favourite is an intensional predicate, holding only for a specific implementation of
a particular function. We cannot expect a type theory with intensional predicates
to admit a sensible notion of extensional equality. Let us do away with them! If,
instead, we reformulate Favourite in the Henry Ford tradition,

data Favourite (f : N→ N) : Set where
favourite : (λ x → zero +N x) ' f → Favourite f

then our definition of Favourite becomes just as intensional as our equality. If,
somehow, ' were to admit extensionality, we could certainly show that Favourite

63

64 CHAPTER 6. OBSERVATIONAL EQUALITY

respects '. If q ′ : f ' g , then we can transport favourite q from Favourite f to
Favourite g , returning, not the original data but

favourite ((λ x → zero +N x) =[q 〉 f =[q ′ 〉 g �)

with a modified proof.

6.1 Observational Equality for Types and Values in TU

We have got as far as figuring out that a propositional equality which is more gen-
erous than the judgmental equality will require a computation mechanism which
might modify the data it transports between provably equal types, but should not
change the results of observing the data. To say what that mechanism is, we shall
need to inspect the types involved, so let us work with the types of the TU universe
and develop what equality means for its types and values by metaprogramming.

We shall need to consider when types are equal: I write X ↔ Y to indicate
that X and Y are types whose data are interchangeable. I propose the bold choice
to consider only those kinds of interchangeability which can be implemented by
the identity function at closed-run time. Enthusiasts for Voevodsky’s univalence
axiom are entitled to be disappointed by this choice, but perhaps a simple compu-
tational interpretation will prove modest consolation.

Inasmuch as types depend on values, we shall also need to say when values are
equal. There is no reason to presume that we shall be interested only to consider
the equality of values in types which are judgmentally equal, for we know that
judgmental equality is too weak to recognize the sameness of some types whose
values are interchangeable. Correspondingly, let us weaken our requirement for
the formation of value equalities and have a heterogeneous equality, Eq X x Y y .
We have some options for how to do that:

• We could make add the requirement X ↔ Y to the formation rule for Eq.

• We could allow the formation of any Eq X x Y y , but ensure that it holds
only if X ↔ Y .

• We could allow the formation of any Eq X x Y y , but ensure that proofs of
such equations are useless information unless X ↔ Y .

All three are sustainable, but I find the third is the least bureaucratic. The proposi-
tion Eq X x Y y means ‘if X is Y , then x is y ’ and should thus be considered ‘true
but dull’ if X is clearly not Y .

We need to define them by recursion on types. It’s convenient to build them
together, then project out the type and value components. Note that we work in-
ternally to the universe: we already have the types we need to descrbe the evidence
for equality of types and values in this sense.

mutual

EQ : (X Y : TU)→ TU × (J X KTU → J Y KTU → TU)

↔ : TU→ TU→ TU
X ↔ Y = fst (EQ X Y)

Eq : (X : TU) (x : J X KTU)→ (Y : TU) (y : J Y KTU)→ TU
Eq X x Y y = snd (EQ X Y) x y

We should expect, ultimately, to construct a coercion mechanism which realises
equality as transportation.

6.1. OBSERVATIONAL EQUALITY FOR TYPES AND VALUES IN TU 65

coe : (X Y : TU)→ J X ↔ Y KTU → J X KTU → J Y KTU

Moreover, we should ensure that coercion does not change the observable proper-
ties of values and is thus coherent in the sense that

coh : (X Y : TU) (Q : J X ↔ Y KTU) (x : J X KTU)→ J Eq X x Y (coe X Y Q x) KTU

Given what we want to use equality for, we should be able to figure out what it
needs to be, on a case-by-case basis.

Base types equal only themselves, and we need no help to transport a value
from a type to itself. For Zero′ and One′, all values are equal as there is at most one
value anyway. For Two′, we must actually test the values.

EQ Zero′ Zero′ = One′, λ → One′

EQ One′ One′ = One′, λ → One′

EQ Two′ Two′ = One′, λ
{tt tt → One′

; ff ff → One′

; → Zero′

}

Σ′-types are interchangable if their components are, but how are we to express
the interchangeability of the dependent second components? It is enough to con-
sider the types of the second components only when the values of the first com-
ponents agree, a situation we can consider hypothetically by abstracting not over
one value, which would need to have both first component types, but rather over
a pair of equal values drawn from each.

EQ (Σ′ S T) (Σ′ S ′ T ′)
= (Σ′ (S ↔ S ′) λ →

Π′ S λ s → Π′ S ′ λ s ′ → Π′ (Eq S s S ′ s ′) λ →
T s ↔ T ′ s ′)

, λ {(s, t) (s ′, t ′)→
Σ′ (Eq S s S ′ s ′) λ → Eq (T s) t (T ′ s ′) t ′}

Equality of pair values is straightforwardly structural. Notice that if the Σ′-types
are equal then their first component types are equal, so it is useful to know that
the first component values are equal, which in turn lets us deduce equality of the
second component types.

Equality of functions types is similar, save for the contravariant twist I have put
in the domain type equation. To coerce a function from left to right, we shall need
to coerce its input from right to left.

EQ (Π′ S T) (Π′ S ′ T ′)
= (Σ′ (S ′ ↔ S) λ →

Π′ S ′ λ s ′ → Π′ S λ s → Π′ (Eq S ′ s ′ S s) λ →
T s ↔ T ′ s ′)

, λ {f f ′ →
Π′ S λ s → Π′ S ′ λ s ′ → Π′ (Eq S s S ′ s ′) λ →
Eq (T s) (f s) (T ′ s ′) (f ′ s ′)}

Function values are considered equal if they take equal inputs to equal outputs.
Tree′ types are, again, compared structurally, with pointwise equality expressed

by abstraction over pairs of equal values.

EQ (Tree′ I F i) (Tree′ I ′ F i ′)
= (Σ′ (I ↔ I ′) λ → Σ′ (Eq I i I ′ i ′) λ →

66 CHAPTER 6. OBSERVATIONAL EQUALITY

Π′ I λ i → Π′ I ′ λ i ′ → Π′ (Eq I i I ′ i ′) λ →
let (S ,K) = F i ; S ′,K ′ = F i ′

in Σ′ (S ↔ S ′) λ →
Π′ S λ s → Π′ S ′ λ s ′ → Π′ (Eq S s S ′ s ′) λ →
let (P , r) = K s; (P , r) = K ′ s ′

in Σ′ (P ↔ P) λ →
Π′ P λ p′ → Π′ P λ p → Π′ (Eq P p′ P p) λ →
Eq I (r p) I ′ (r p′))

, teq i i ′ where
teq : (i : J I KTU)→ (i ′ : J I ′ KTU)→

J Tree′ I F i KTU → J Tree′ I ′ F i ′ KTU → TU
teq i i ′ 〈 s, k 〉 〈 s ′, k ′ 〉

= let (S ,K) = F i ; (S ′,K ′) = F i ′

(P , r) = K s ; (P , r) = K ′ s ′

in Σ′ (Eq S s S ′ s ′) λ →
Π′ P λ p → Π′ P λ p′ → Π′ (Eq P p P p′) λ →
teq (r p) (r p′) (k p) (k ′ p′)

Tree′ value equality is defined by structural recursion. At each node, we demand
equal shapes, then at equal positions, equal subtrees.

Finally, types whose head constructors disagree are considered unequal, hence
their values are vacuously equal.

EQ = Zero′, λ → One′

Exercise 6.1 (define coe, postulate coh) Implement coercion, assuming coherence.

coe : (X Y : TU)→ J X ↔ Y KTU → J X KTU → J Y KTU
postulate

coh : (X Y : TU) (Q : J X ↔ Y KTU) (x : J X KTU)→ J Eq X x Y (coe X Y Q x) KTU
coe X Y Q x = ?

If you look at the definition of EQ quite carefully, you will notice that we did
not use all of the types in TU to express equations. There is never any choice about
how to be equal, so we need never use Two′; meanwhile, we can avoid expressing
tree equality as itself a tree just by using structural recursion. As a result, the
only constructor pattern matching coe need ever perform on proofs is on pairs,
which is just sugar for the lazy use of projections. Correspondingly, the only way
coercion of canonical values between canonical types can get stuck is if those types
are conspicuously different. Although we postulated coherence, no computation
which relies on it is strict in equality proofs, so it is no source of blockage.

The only way a closed coercion can get stuck is if we can prove a false equa-
tion. The machinery works provided the theory is consistent, but we can prove no
equations which do not also hold in extensional type theories which are known to
be consistent. In general, we are free to assert consistent equations. Let us have

postulate
reflTU : (X : TU) (x : J X KTU)→ J Eq X x X x KTU

Exercise 6.2 (explore failing to prove reflTU) Try proving

reflTU : (X : TU) (x : J X KTU)→ J Eq X x X x KTU
reflTU X x = ?

Where do you get stuck?

6.2. A UNIVERSE WITH PROPOSITIONS 67

Homogeneous equations between values are made useful just by asserting that
predicates respect them. We recover the Leibniz property.

postulate
RespTU : (X : TU) (P : J X KTU → TU)

(x x ′ : J X KTU)→ J Eq X x X x ′ KTU → J P x ↔ P x ′ KTU
substTU : (X : TU) (P : J X KTU → TU)

(x x ′ : J X KTU)→ J Eq X x X x ′ KTU → J P x KTU → J P x ′ KTU
substTU X P x x ′ q = coe (P x) (P x ′) (RespTU X P x x ′ q)

It is clearly desirable to construct a model in which these postulated constructs
are given computational force, not least because such a model would yield a more
direct proof of consistency. However, we have done enough to gain a proposi-
tional equality which is extensional for functions, equipped with a mechanism for
obtaining canonical forms in ‘data’ computation.

6.2 A Universe with Propositions

We can express the observation that all of our proofs belong to lazy types by split-
ting our universe into two Sorts, corresponding to sets and propositions, embed-
ding the latter explicitly into the former with a new set-former, Prf ′.

data Sort : Set where set prop : Sort

IsSet : Sort→ Set
IsSet set = One
IsSet prop = Zero

mutual
data Set (u : Sort) : Set where

Zero′ One′ : Set u
Two′ : { : IsSet u } → Set u
Σ′ : (S : Set u) (T : J S KPU → Set u)→ Set u
Π′ : (S : Set set) (T : J S KPU → Set u)→ Set u
Tree′ : { : IsSet u }

(I : Set set)
(F : J I KPU → Σ (Set set) λ S →

J S KPU → Σ (Set set) λ P →
J P KPU → J I KPU)

(i : J I KPU)→ Set u
Prf ′ : { : IsSet u } → Set prop→ Set u

J KPU : forall {u } → Set u → Set
J Zero′ KPU = Zero
J One′ KPU = One
J Two′ KPU = Two
J Σ′ S T KPU = Σ J S KPU λ s → J T s KPU
J Π′ S T KPU = (s : J S KPU)→ J T s KPU
J Tree′ I F i KPU = ITree

((λ i → J fst (F i) KPU)
/ (λ i s → J fst (snd (F i) s) KPU)
$ (λ i s p → snd (snd (F i) s) p)
) i

J Prf ′ P KPU = J P KPU

Note that Two′ and Tree′ are excluded from Set prop and that sort is always pre-
served in covariant positions and set in contravariant positions. The interpretation

68 CHAPTER 6. OBSERVATIONAL EQUALITY

of types is just as before. One could allow the formation of inductive predicates, be-
ing Tree′ structures with propositional node shapes, but we should then be careful
not to pattern match on proofs when working with data in sets. I have chosen to
avoid the risk, allowing only propositions whose eliminators are in any case lazy.

Exercise 6.3 (observational propositional equality) Reconstruct the definition of ob-
servational equality in this more refined setting. Take equality of propositions to be mutual
implication and equality of proofs to be trivial: after all, equality for proofs of the atomic
Zero′ and One′ propositions are trivial.

∧ : Set prop→ Set prop→ Set prop
P ∧ Q = Σ′ P λ → Q

⇒ : Set prop→ Set prop→ Set prop
P ⇒ Q = Π′ (Prf ′ P) λ → Q

mutual

PEQ : (X Y : Set set)→ Set prop × (J X KPU → J Y KPU → Set prop)

⇔ : Set set→ Set set→ Set prop
X ⇔ Y = fst (PEQ X Y)

PEq : (X : Set set) (x : J X KPU)→ (Y : Set set) (y : J Y KPU)→ Set prop
PEq X x Y y = snd (PEQ X Y) x y

PEQ (Prf ′ P) (Prf ′ Q) = ((P ⇒ Q) ∧ (Q ⇒ P)), λ → One′

-- more code goes here
PEQ = Zero′, λ → One′

Chapter 7

Type Theory in Type Theory

A while ago, we defined the simply typed λ-calculus as a syntax of well scoped,
well typed terms. Can we do the same for a dependently typed calculus? Yes and
no, but not necessarily in that order.

69

70 CHAPTER 7. TYPE THEORY IN TYPE THEORY

Chapter 8

Reflections and Directions

71

72 CHAPTER 8. REFLECTIONS AND DIRECTIONS

Bibliography

Rod Burstall. Proving properties of programs by structural induction. Computer
Journal, 12(1):41–48, 1969.

Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koopman,
Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Program-
ming, volume 5832 of LNCS, pages 230–266. Springer, 2008.

73

