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Synoptic Contents

Introduction xxxv

Re-examining the history of mathematics requires also a re-examination of 
the philosophy of mathematics, since the current philosophy of mathematics- 
as-proof excludes the possibility of any mathematics in non-Western cultures.

I The Nature of Mathematical Proof

1 Euclid and Hilbert 3
History o f geometry and the genesis o f the current notion o f mathematical proof

The currently dominant notion of mathematical proof is re-examined in 
a historical perspective, to bring out the religious and political considera­
tions that have led to the present-day belief in the certainty of mathematical 
knowledge and the Greek origins of mathematics. In the absence of any 
evidence for Euclid, Proclus’ religious understanding of the Elements is con­
trasted with Hilbert’s synthetic interpretation, and with traditional Indian 
geometry—which permitted the measurement also of curved lines, facilitat­
ing the development of the calculus in India.

2 Proof vs Pramâna 59
Critique of the current notion o f mathematical proof and comparison with the tra­

ditional Indian notion o f pramâna

The currently dominant notion of mathematical proof is re-examined in a 
philosophical perspective, in comparison with the traditional Indian notion 
of pramâna. The claimed infallibility of deduction or mathematical proof 
is rejected as a cultural superstition. Logic varies with culture, so the logic 
underlying deduction can be fixed only by appealing to cultural authority or 
the empirical. In either case, deduction is more fallible than induction.

In preparation for the next chapter, a brief introduction is here provided 
also to the understanding of numbers in the context of the philosophy oi'sun- 
yavâda, which acknowledges the existence of non-representables—necessary 
also to be able to represent numbers on a computer. This is unlike Platonic 
idealism or formal mathematics, which introduces supertasks in the under­
standing of numbers, whether integers or reals.
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II The Calculus in India

3 Infinite Series and 7r 109
The thousand-year background to infinite series in India and how they were derived

The underlying philosophy of pramdna and of number is brought out 
in the context of the derivation of the Indian infinite series. The full de­
tails, which are here presented for the first time, show that there was valid 
pramdna for the Indian infinite series (in contrast to Newton etc. who could 
not provide their contemporaries with any clear proof or derivation of the 
very same infinite series). Further, unlike the abrupt appearance of infinite 
series in Europe, starting in the 1630’s, the Indian infinite series evolved over 
a thousand year period, as trigonometric precision was pushed from the first 
minute (Aryabhata 5th c. CE) to the second minute (Vatesvara 9th c. CE) to 
the third minute (attempted e.g. by Govindasvamin, 9th c. CE, and achieved 
by Madhava 14th-15th c. CE.). Aryabhata used an elegant technique of finite 
differences and numerical quadrature, the numerical counterpart of the fun­
damental theorem of calculus. The use of second differences for quadratic 
interpolation was then extended to higher orders, using the fraction series 
expansion. “Limits” were handled using order counting, and a traditional 
philosophy of neglecting non-representables. In analogy with numerical se­
ries, continued fraction expansions were used to represent an infinite series 
of rational functions.

4 Time, Latitude, Longitude and the Globe 201
Why precise trigonometric values were needed in India for determination o f time, 

latitude, longitude, and the size o f the earth

The calculus developed in India to calculate precise trigonometric val­
ues needed in connection with the calendar—(still) a critical requirement for 
monsoon-driven agriculture which has long been (and remains to this day) 
the primary means of producing wealth in India. The similarity of cultural 
practices spread over a large area, India, led to a calendar standardized for 
the prime meridian of Ujjayini, and recalibrated for the local place. Recali­
bration required determination of local latitude and longitude, early Indian 
techniques for which used the size of the globe as input. These techniques of 
determining latitude and longitude were needed also for celestial navigation 
for overseas trade, then the other important means of producing wealth in 
India.

5 Navigation: Kamal or Rapalagai 239
Precise measurement o f angles and the two-scale principle
The kamal is a traditional navigational instrument used by the Indian nav­

igator who navigated Vasco da Gama to India from Africa. Field work in 
the Lakshadweep islands led to the recovery of the instrument, used in tra­
ditional Indo-Arabic navigation, whose construction is here described. The 
kamal primarily measures angles using a harmonic scale, marked by knots on 
a string. The novel feature is the use of the two-scale (“Vernier”) principle
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for harmonic interpolation. This enabled very high accuracy in angle mea­
surements, thus explaining also the instrumental basis of the precise early 
Indo-Arabic estimates of the size of the globe, and determination of local 
latitude and longitude.

I l l  Transmission of the Calculus to Europe

6 Models of Information Transmission 267
General historiographic considerations and the nature and standards o f evidence to 

decide transmission

We re-examine and reject the racist model that all (or most) scientific 
knowledge, especially of mathematics and astronomy, has a White origin 
either in post-renaissance Europe or in early Greece, from where others 
obtained it by transmission. Alexander obtained a huge booty of books 
from Persia and Egypt, some of which were translated into Greek. The 
conjectured scientific knowledge of early Greeks could not grow in Athens, 
but could grow only in Alexandria, on African soil, since it derived from 
transmission of knowledge from Black Egypt and other non-White sources.
Since the actual evidence for the conjectured Greek knowledge in Alexandria 
comes almost wholly from very late Arabic sources, or even later Byzan­
tine Greek sources, later-day world knowledge up to the 10th c. CE has 
also been anachronistically attributed to early Greeks, and is incompatible 
with the crudeness of Greek and Roman knowledge of mathematics and 
astronomy exhibited in non-textual sources. As an example, we consider 
the evidence that significant portions of the current Almagest text attributed 
to Ptolemy, derived by such transmission from India via Jundishapur and 
Baghdad. The cases of Copernicus and the rock edicts of Ashoka the Great 
are used to show how much and how systematically the standard of evi­
dence varies with the direction of transmission. To avoid this racist double 
standard of evidence, often masked by an appeal to authority, we propose 
a new standard of evidence for transmission, involving opportunity and 
motivation, together with circumstantial, documental')', and epistemological 
evidence.

7 How and Why the Calculus was Imported into Europe 321
The European navigational problem and its solution available in Indian books 

easily accessible to Jesuits

At the beginning of the 16th c. CE, European navigators on the high 
seas could not determine any of the three “ells”—latitude, longitude and 
loxodromes—since their peculiar navigational technique was adapted to the 
Mediterranean. However, trade with India, China, and colonization of Amer­
icas was becoming the major source of wealth in Europe. This required good 
knowledge of navigation, to acquire which European governments took nu­
merous big initiatives. Celestial navigation required accurate trigonometric 
values, and astronomical data, including an accurate calendar, all of which
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were then lacking in Europe. This provided huge motivation for transmis­
sion to Europe of precise Indian trigonometric values, and through them 
the infinite series and the calculus. Coincidentally, the first Roman Catholic 
mission in India was founded in Cochin, in 1500, and later turned into a col­
lege for the indigenous Syrian Christians, in the neighbourhood, who spoke 
Malayalam. The Raja of Cochin simultaneously patronized both Portuguese 
and the authors of key texts documenting expositions of the Indian infinite 
series used to derive accurate trigonometric values. 'Phis provided a splendid 
opportunity for the Jesuits, who systematically gathered knowledge by ap­
plying the Toledo model of mass translation to Cochin, soon after they took 
over the Cochin college in 1550 CE. Apart from the local languages, the Je ­
suits were soon trained also in practical mathematics and astronomy. Also, 
sailors and travellers returning from India routinely brought back books, as 
souvenirs or to be sold to collectors in Europe. From the mid- 16th c. CE 
onwards, circumstantial evidence of the knowledge of Indian mathematical 
and astronomical works begins to appear in the works of Mercator, Clavius, 
Julius Scaliger, Tycho Brahe, de Nobili, Kepler, Cavalieri, Fermat, Pascal, etc. 
Indian sources were rarely directly acknowledged by these Europeans due 
to the terror of acknowledging “pagan” sources during the Inquisition, and 
the church doctrine of Christian Discovery, which preceded racism, ('l his is 
in striking contrast to the Arabs in the 9th c. CE who had enough religious 
freedom to acknowledge Indian sources.) The prolonged difficulties that Eu­
ropeans had in understanding the epistemological basis of the calculus fur­
ther characterizes the calculus as knowledge imported into Europe like the 
algorismus.

8 Number Representations in Calculus, Algorismus, and Computers
/

Sunyavada vs formalism,

Berkeley’s objections re ect the doubts about the nature of uxions, infin­
itesimals etc., which neither Newton, nor Leibniz, nor their supporters could 
coherently explain to sceptical contemporaries. These doubts led eventu­
ally to the formalisation of “real” numbers using Dedekind cuts and set the­
ory (itself formalised only in the 1930’s), which finally gave a formulation 
of the calculus acceptable in the West. These prolonged European diffi­
culties with the calculus arose because the Indian derivation of the infinite 
series used a philosophy of non-representables similar to sunyavada, and in­
compatible with Platonic idealism or formalism—thoughtlessly taken as the 
“universal” basis of mathematics in Europe. The central problem of rep­
resentation was left unresolved by the formalisation of real numbers, which 
achieved nothing of any practical value. A similar problem had arisen ear­
lier in Europe, in the dispute between abacus and algorismus, which involved 
zeroing of non-representables in a calculation. The sunyavada philosophy re­
gards idealistic conceptualizations (as in Platonism or formalism) as empty 
and erroneous (e.g., in direct opposition to Platonism it regards an ideal 
geometrical point as an erroneous representation of a real dot). It is also 
better suited than Platonic idealism or formalism to numbers on a computer
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which make the representation problem explicit, for both integers and real 
numbers.

IV The Contemporary Relevance of the Revised History

9 Math Wars and the Epistemic Divide in Mathematics 411
European historical difficulties with Indian mathematics and present-day learning 

difficulties in mathematics

Using the principle that phylogeny is ontogeny, the historical European 
difficulties in understanding the algorismus and the calculus are here re­
lated to difficulties that students today have in understanding elementary 
mathematics. Historically, both algorismus and calculus greatly enhanced 
the ability to calculate, but only in a way regarded as epistemologically 
insecure in Europe for periods extending to several centuries. Since, in 
fact, the formalist epistemology of mathematics is too complex to be taught 
at the elementary level, the same situation persists in “fast forward” mode 
today in the classroom. This epistemic divide has been exacerbated by 
computers which have again greatly enhanced the ability to calculate, albeit 
in a way regarded as epistemologically insecure. In view of the preceding 
considerations, it is proposed to accept mathematics-as-calculation as epis- 
temically secure, and to teach mathematics for its practical value, along 
with the related notion of number, despite Plato and assorted footnotes to 
him.

A Distributions, Renormalization, and Shocks 425
Difficulties with the continuum approach to the calculus and an example o f how 

advanced formal mathematics needs empirical inputs

The belief that the calculus found a final and satisfactory solution with the 
formalisation of real numbers is not valid. The formalisation of real numbers 
only side-stepped the central problem of representation, which persists 
even in to the present-day formal mathematical extensions of the calculus 
in the Schwartz theory of distributions. The differences between the two 
philosophies of mathematics—(a) formalism vs (b) sunyavada [empiricism + 
acceptance of non-representability]—though subtle, are here demonstrated 
to have practical applications also to areas other than computing and math 
education, particularly to physics and engineering. Thus, the alternative 
philosophy of mathematics is here related to suggested improvements in
(a) the current renormalization procedure used to tackle the problem of 
infinities in quantum field theory, to allow use of any polynomial Lagrangian, 
and (b) the theory of shock waves, to make it more accurate in real uids 
like air, water etc. The suggested improvements, however, require empirical 
inputs to finalize the mathematical derivation. Thus, the other key idea, 
like that of Sriharsa, is to bring out the limitations of formal mathematics 
also from within formal mathematics—namely, to demonstrate that formal 
mathematics, without empirical inputs, quickly reaches a sterile end.
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General Introduction

i

It is understandable that man, shaped by Nature, would like to know Nature. The human 
ways of knowing Nature are evidently diverse, theoretical and practical, scientific and tech­
nological, artistic and spiritual. This diversity has, on scrutiny, been found to be neither 
exhaustive nor exclusive. The complexity of physical nature, life-world and, particularly, 
human mind is so enormous that it is futile to follow a single method for comprehending all 
the aspects of the world in which we are situated.

One need not feel bewildered by the variety and complexity of the worldly phenomena. 
After all, both from traditional wisdom and our daily experience, we know that our own 
nature is not quite alien to the structure of the world. Positively speaking, the elements and 
forces that are out there in the world are also present in our body-mind complex, enabling 
us to adjust ourselves to our environment. Not only the natural conditions but also the social 
conditions of life have instructive similarities between them. 'Phis is not to underrate in any 
way the difference between the human ways of life all over the world. It is partly due to 
the variation in climatic conditions and partly due to the distinctness of production-related 
tradition, history and culture.

Three broad approaches are discernible in the works on historiography of civilization, 
comprising science and technology, art and architecture, social sciences and institutions. 
Firstly, some writers are primarily interested in discovering the general laws which govern 
all civilizations spread over different continents. They tend to underplay what they call the 
noisy local events of the external world and peculiarities of different languages, literatures 
and histories. Their accent is on the unity of Nature, the unity of science and the unity 
of mankind. The second group of writers, unlike the generalist or transcendentalist ones, 
attach primary importance to the distinctiveness of every culture. To these writers human 
freedom and creativity are extremely important and basic in character. Social institutions 
and the cultural articulations of human consciousness, they argue, are bound to be expressive 
of the concerned people’s consciousness. By implication they tend to reject concepts like 
archetypal consciousness, universal mind and providential history. There is a third group 
of writers who offer a composite picture of civilizations, drawing elements both from their
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local as well as common characteristics. Every culture has its local roots and peculiarities. At 
the same time, it is pointed out that due to demographic migration and immigration over 
the centuries an element of compositeness emerges almost in every culture. When, due to a 
natural calamity or political exigencies people move from one part of the world to another, 
they carry with them, among other things, their language, cultural inheritance and their 
ways of living.

In the light of the above facts, it is not at all surprising that comparative anthropolo­
gists and philologists are intrigued by the striking similarity between different language 
families and the rites, rituals and myths of different peoples. Speculative philosophers 
of history, heavily relying on the findings of epigraphy, ethnography, archaeology and 
theology, try to show in very general terms that the particulars and universals of culture 
are essentially’ or secretly’ interrelated. The spiritual aspects of culture like dance and 
music, beliefs pertaining to life, death and duties, on analysis, are found to be mediated 
by the material forms of life like weather forecasting, food production, urbanization and 
invention of script. The transition from the oral culture to the written one was made 
possible because of the mastery of symbols and rules of measurement. Speech precedes 
grammar, poetry prosody. All these show how the matters’ and forms’ of life are so 
subtly interwoven.

II

The PHISPC publications on History of Science, Philosophy and Culture in Indian Civiliza­
tion, in spite of their unitary look, do recognize the differences between the areas of material 
civilization and those of ideational culture. It is not a work of a single author. Nor is it being 
executed by a group of thinkers and writers who are methodologically uniform or ideologi­
cally identical in their commitments. In conceiving the Project we have interacted with, and 
been in uenced by, the writings and views of many Indian and non-Indian thinkers.

The attempted unity of this Project lies in its aim and inspiration. We have in India 
many scholarly works written by Indians on different aspects of our civilization and culture. 
Right from the pre-Christian era to our own time, India has drawn the attention of various 
countries of Asia, Europe and Africa. Some of these writings are objective and informative 
and many others are based on insufficient information and hearsay, and therefore not quite 
reliable, but they have their own value. Quality and view-points keep on changing not only 
because of the adequacy and inadequacy of evidence but also, and perhaps more so, because 
of the bias and prejudice, religious and political conviction, of the writers.

Besides, it is to be remembered that history, like Nature, is not an open book to be read 
alike by all. The past is mainly enclosed and only partially disclosed. History is, therefore, 
partly objective or real’ and largely a matter of construction. "Phis is one of the reasons why 
some historians themselves think that it is a form of literature or art. However, it does not

xviii
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mean that historical construction is anarchic’ and arbitrary. Certainly, imagination plays an 
important role in it.

But its character is basically dependent upon the questions which the historian raises and 
wants to understand or answer in terms of the ideas and actions of human beings in the past 
ages. In a way, history, somewhat like the natural sciences, is engaged in answering questions 
and in exploring relationships of cause and effect between events and developments across 
time. While in the natural sciences, the scientist poses questions about nature in the form of 
hypotheses, expecting to elicit authoritative answers to such questions, the historian studies 
the past, partly for the sake of understanding it for its own sake and partly also for the 
light which the past throws upon the present, and the possibilities which it opens up for 
moulding the future. But the difference between the two approaches must not be lost sight 
of. The scientist is primarily interested in discovering laws and framing theories, in terms 
of which, different events and processes can be connected and anticipated. His interest 
in the conditions or circumstances attending the concerned events is secondary. Therefore, 
scientific laws turn out to be basically abstract and easily expressible in terms of mathematical 
language. In contrast, the historian’s main interest centres round the specific events, human 
ideas and actions, not general laws. So, the historian, unlike the scientist, is obliged to 
pay primary attention to the circumstances of the events he wants to study. Consequently, 
history, like most other humanistic disciplines, is concrete and particularist. This is not to 
deny the obvious truth that historical events and processes consisting of human ideas and 
actions show some trend or other and weave some pattern or other. If these trends and 
patterns were not there at all in history, the study of history as a branch of knowledge would 
not have been profitable or instructive. But one must recognize that historical trends and 
patterns, unlike scientific laws and theories, are not general or purported to be universal in 
their scope.

Ill

The aim of this Project is to discover the main aspects of Indian culture and present them 
in an interrelated way. Since our culture has in uenced, and has been in uenced by, the 
neighbouring cultures of West Asia, Central Asia, East Asia and South-East Asia, attempts 
have been made here to trace and study these in uences in their mutuality. It is well known 
that during the last three centuries, European presence in India, both political and cultural, 
has been very widespread. In many volumes of the Project considerable attention has been 
paid to Europe and through Europe to other parts of the world. For the purpose of a 
comprehensive cultural study of India, the existing political boundaries of the South Asia 
of today are more of a hindrance than help. Cultures, like languages, often transcend the 
bounds of changing political territories.

If the inconstant political geography is not a reliable help to the understanding of the 
layered structure and spread of culture, a somewhat comparable problem is encountered in
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the area of historical periodization. Periodization or segmenting time is a very tricky affair. 
When exactly one period ends and another begins is not precisely ascertainable. The periods 
of history designated as ancient, medieval and modern are purely conventional and merely 
heuristic in character. The varying scopes of history, local, national and continental or 
universal, somewhat like the periods of history, are unavoidably fuzzy and shifting. Amidst all 
these difficulties, the volume-wise details have been planned and worked out by the editors 
in consultation with the Project Director and the General Editor. I believe that the editors of 
different volumes have also profited from the reactions and suggestions of the contributors 
of individual chapters in planning the volumes.

Another aspect of Indian history which the volume-editors and contributors of the Project 
have carefully dealt with is the distinction and relation between civilization and culture. 
The material conditions which substantially shaped Indian civilization have been discussed 
in detail. From agriculture and industry to metallurgy and technology, from physics and 
chemical practices to the life sciences and different systems of medicines—all the branches 
of knowledge and skill which directly affect human life-form the heart of this Project. Since 
the periods covered by the PHISPC are extensive—prehistory', proto-history, early history, 
medieval history and modern history of India—we do not claim to have gone into all the 
relevant material conditions of human life. We had to be selective. Therefore, one should not 
be surprised if one finds that only some material aspects of Indian civilization have received 
our pointed attention, while the rest have been dealt with in principle or only alluded to.

One of the main aims of the Project has been to spell out the first principles of the 
philosophy of different schools, both pro-Vedic and anti-Vedic. The basic ideas of Buddhism, 
Jainism and Islam have been given their due importance. The special position accorded to 
philosophy is to be understood partly in terms of its proclaimed unifying character and 
partly to be explained in terms of the fact that different philosophical systems represent 
alternative world-views, cultural perspectives, their con ict and mutual assimilation.

Most of the volume-editors and at their instance the concerned contributors have fol­
lowed a middle path between the extremes of narrativism and theoreticism. The underlying 
idea has been this: if in the process of working out a comprehensive Project like this every 
contributor attempts to narrate all those interesting things that he has in the back of his 
mind, the enterprise is likely to prove unmanageable. If, on the other hand, particular 
details are consciously forced into a fixed mould or pre-supposed theoretical structure, the 
details lose their particularity and interesting character. Therefore, depending on the nature 
of the problem of discourse, most of the writers have tried to reconcile in their presentation, 
the specificity of narrativism and the generality of theoretical orientation. This is a conscious 
editorial decision. Because, in the absence of a theory, however inarticulate it may be, the 
factual details tend to fall apart. Spiritual network or theoretical orientation makes historical 
details not only meaningful but also interesting and enjoyable.
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Another editorial decision which deserves spelling out is the necessity or avoidability of 
duplication of the same theme in different volumes or even in the same volume. Certainly, 
this Project is not an assortment of several volumes. Nor is any volume intended to be a 
miscellany. Phis Project has been designed with a definite end in view and has a structure 
of its own. The character of the structure has admittedly been in uenced by the variety of 
the themes accommodated within it. Again it must be understood that the complexity of 
structure is rooted in the aimed integrality of the Project itself.

IV

Long and in-depth editorial discussion has led us to several unanimous conclusions. 
Firstly, our Project is going to be unique, unrivalled and discursive in its attempt to inte­
grate different forms of science, technolog)', philosophy and culture. Its comprehensive 
scope, continuous character and accent on culture distinguish it from the works of such In­
dian authors as P. C. Ray, B. N. Seal, Binoy Kumar Sarkar and S. N. Sen and also from such 
Euro-American writers as Lynn Thorndike, George Sarton and Joseph Needham. Indeed, 
it would be no exaggeration to suggest that it is for the first time that an endeavour of so 
comprehensive a character, in its exploration of the social, philosophical and cultural char­
acteristics of a distinctive world civilization-that oflndia-has been attempted in the domain 
of scholarship.

Secondly, we try to show the linkages between different branches of learning as different 
modes of experience in an organic manner and without resorting to a kind of reductionism, 
materialistic or spiritualistic. The internal dialectics of organicism without reductionism 
allows fuzziness, discontinuity and discreteness within limits.

Thirdly, positively speaking, different modes of human experience-scientific, artistic, etc., 
have their own individuality, not necessarily autonomy. Since all these modes are modifica­
tion and articulation of human experience, these are bound to have between them some 
finely graded commonness. At the same time, it has been recognized that re ection on 
different areas of experience and investigation brings to light new insights and findings. 
Growth of knowledge requires humans, in general, and scholars, in particular, to identify 
the distinctness of different branches of learning.

Fourthly, to follow simultaneously the twin principles of: (a) individuality of human ex­
perience as a whole, and (b) individuality of diverse disciplines, are not at all an easy task. 
Overlap of themes and duplication of the terms of discourse become unavoidable at times. 
For example, in the context of Dharmasdstra, the writer is bound to discuss the concept of 
value. The same concept also figures in economic discourse and also occurs in a discussion 
on fine arts. The conscious editorial decision has been that, while duplication should be 
kept to its minimum, for the sake of intended clarity of the themes under discussion, their 
reiteration must not be avoided at high intellectual cost.
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Fifthly, the scholars working on the Project are drawn from widely different disciplines. 
They have brought to our notice an important fact that has clear relevance to our work. 
Many of our contemporary disciplines like economics and sociology did not exist, at least 
not in their present form, just two centuries ago or so. For example, before the middle of 
nineteenth century, sociology as a distinct branch of knowledge was unknown. The term is 
said to have been coined first by the French philosopher Auguste Comte in 1838. Obviously, 
this does not mean that the issues discussed in sociology were not there. Similarly, Adam 
Smith’s (1723-90) famous work The Wealth o f Nations is often referred to as the first authori­
tative statement of the principles of (what we now call) economics. Interestingly enough, the 
author was equally interested in ethics and jurisprudence. It is clear from history that the 
nature and scope of different disciplines undergo change, at times very radically, over time. 
For example, in India arthamstra’ does not mean the science of economics as understood to­
day. Besides the principles of economics, the arthasdstra of ancient India discusses at length 
those of governance, diplomacy and military science.

Sixthly, this brings us to the next editorial policy followed in the Project. We have tried 
to remain very conscious of what may be called indeterminacy or inexactness of transla­
tion. When a word or expression of one language is translated into another, some loss 
of meaning or exactitude seems to be unavoidable. This is true not only in the bilingual 
relations like Sanskrit-English and Sanskrit-Arabic, but also in those of Hindi-Tamil and 
Hindi-Bengali. In recognition of the importance of language-bound and context-relative 
character of meaning we have solicited from many learned scholars, contributions, written 
in vernacular languages. In order to minimize the miseffect of semantic inexactitude we 
have solicited translational help of that type of bilingual scholars who know both English 
and the concerned vernacular language, Hindi, Tamil, Telugu, Bengali or Marathi.

Seventhly and finally, perhaps the place of technology as a branch of knowledge in the 
composite universe of science and art merits some elucidation. Technology has been con­
ceived in very many ways, e.g., as autonomous, as standing reserve’, as liberating or enlarge- 
mental, and alienative or estrangemental force. The studies undertaken by the Project show 
that, in spite of its much emphasized mechanical and alienative characteristics, technolog)' 
embodies a very useful mode of knowledge that is peculiar to man. The Greek root words 
of technology are techne (art) and logos (science). This is the basic justification of recognizing 
technology as closely related to both epistemology, the discipline of valid knowledge, and 
axiology, the discipline of freedom and values. It is in this context that we are reminded of 
the definition of man as homo technikos. In Sanskrit, the word closest to techne is kal/1 which 
means any practical art, any mechanical or fine art. In the Indian tradition, in Saivatantra, 
for example, among the arts (kalà) are counted dance, drama, music, architecture, metal­
lurgy, knowledge of dictionary, encyclopaedia and prosody. The closeness of the relation 
between arts and sciences, technology and other forms of knowledge are evident from these 
examples and was known to the ancient people. The human quest for knowledge involves



the use of both head and hand. Without mind, the body is a eorpse and the disembodied 
mind is a bare abstraction. Even for our appreciation of what is beautiful and the creation of 
what is valuable, we are required to exercise both our intellectual competence and physical 
capacity. In a manner of speaking, one might rightly aff irm that our psychosomatic structure 
is a functional connector between what we are and what we could be, between the physical 
and the beyond. To suppose that there is a clear-cut distinction between the physical world 
and the psychosomatic one amounts to denial of the possible emergence of higher logico- 
mathematical, musical and other capacities. The very availability of aesthetic experience 
and creation proves that the supposed distinction is somehow overcome by what may be 
called the bodily self or embodied mind.
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V

The ways of classification of arts and sciences are neither universal nor permanent. In 
the Indian tradition, in the Rgveda, for example, vidya (or sciences) are said to be four in 
number: (i) Trayi, the triple Veda; (ii) Anviksiki, logic and metaphysics; (iii) Dandaniti, science 
of governance; (iv)Vartta, practical arts such as agriculture, commerce, medicine, etc. Manu 
speaks of a fifth vidya viz., Atma-vidya, knowledge of self or of spiritual truth. According to 
many others, vidya has fourteen divisions, viz., the four Vedas, the six Vedangas, the Puranas, 
the MImamsa, Nyaya, and Dharma or law. At times, the four Upavedas are also recognized 
by some as vidya. Kalas are said to be 33 or even 64.

In the classical tradition of India, the word sastra has at times been used as a synonym 
of vidya. Vidya denotes instrument of teaching, manual or compendium of rules, religious 
or scientific treatise. The word sastra is usually found after the word referring to the sub­
ject of the book, e.g., Dharma-sdstra, Artha-sdstra, Alamkdra-sdstra and Moksa-sdstra. Two 
other words which have been frequently used to denote different branches of knowledge 
arejnana  and vijndna. While jnana means knowing, knowledge, especially the higher form 
of it, vijndna stands for the act of distinguishing or discerning, understanding, comprehend­
ing and recognizing. It means worldly or profane knowledge as distinguished from jnana, 
knowledge of the divine.

It must be said here that the division of knowledge is partly conventional and partly 
administrative or practical. It keeps on changing from culture to culture, from age to age. 
It is difficult to claim that the distinction between jnana and vijndna or that between science 
and art is universal. It is true that even before the advent of modern age, both in the East 
and the West, two basic aspects of science started gaining recognition. One is the specialized 
character of what we call scientific knowledge. The other is the concept of trained skill 
which was brought close to scientific knowledge. In the medieval Europe, the expression 
the seven liberal sciences’ has very often been used simultaneously with the seven liberal 

arts’, meaning thereby, the group of studies by the Trivium (Grammar, Logic and Rhetoric) 
and Quadrivium (Arithmetic, Music, Geometry and Astronomy).
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It may be observed here, as has already been alluded to earlier, that the division between 
different branches of knowledge, between theory and practice, was not pushed to an ex­
treme extent in the early ages. Praxis, for example, was recognized as the prime techne. The 
Greek word, technologia stood for systematic treatment, for example, of Grammar. Praxis is 
not the mere application of theoria, unified vision or integral outlook, but it also stands for 
the active impetus and base of knowledge. In India, one often uses the terms Pmyukti-vidya 
and Prayodyogika-vidya to emphasize the practical or applicative character of knowledge. 
Prayoga or application is both the test and base of knowledge. Doing is the best way of 
knowing and learning.

That one and the same word may mean different things’ or concepts in different cul­
tures and thus create confusion has already been stated before. Two such words which in 
the context of this Project under discussion deserve special mention are dharma and itihasa. 
Ordinarily, dharma in Sanskrit-rooted languages is taken to be conceptual equivalent of the 
English word religion. But, while the meaning of religion is primarily theological, that of 
dharma seems to be manifold. Literally, dharma stands for that which is established or that 
which holds people steadfastly together. Its other meanings are law, rule, usage, practice, 
custom, ordinance and statute. Spiritual or moral merit, virtue, righteousness and good 
works are also denoted by it. Further, dharma stands for natural qualities like burning (of 
fire), liquidity (of water) and fragility (of glass). Thus one finds that meanings of dharma 
are of many types—legal, social, moral, religious or spiritual, and even ontological or phys­
ical. All these meanings of dharma have received due attention of the writers in the relevant 
contexts of different volumes.

This Project, being primarily historical as it is, has naturally paid serious attention to the 
different concepts of history-epic-mythic, artistic-narrative, scientific-causal, theoretical and 
ideological. Perhaps the point that must be mentioned first about history is that it is not 
a correct translation of the Sanskrit word itihasa. Etymologically, it means what really hap­
pened (iti-ha-dsa). But, as we know7, in the Indian tradition purdna (legend, myth, tale, etc.), 
gdithd (ballad), itivrtta (description of past occurrence, event, etc.), dkhydyika (short narrative) 
and vamsa-carita (genealogy) have been consciously accorded a very important place. Things 
started changing with the passage of time and particularly after the effective presence of Is­
lamic culture in India. Islamic historians, because of their own cultural moorings and the 
in uence of the Semitic and Graeco-Roman cultures on them, were more particular about 
their facts, figures and dates than their Indian predecessors. Their aim to bring history close 
to statecraft, social conditions and the lives and teachings of the religious leaders imparted 
a mundane character to this branch of learning. The Europeans whose political appear­
ance on the Indian scene became quite perceptible only towards the end of the eighteenth 
century' brought in with them their own view7 of historiography in their cultural baggage. 
The impact of the Newtonian Revolution in the field of history was very faithfully worked 
out, among others, by David Hume (1711-76) in History o f Great Britain from the Invasion of 
Julius Caesar to the Revolution of 1688 (6 Vols., 1754-62) and Edward Gibbon (1737-94) in
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The History o f the Decline and Fall o f the Roman Empire (6 Vols., 1776-88). Their emphasis on 
the principles of causality, datability and continuity/linearity of historical events introduced 
the spirit of scientific revolution in European historiography. The introduction of English 
education in India and the exposure of the elites of the country to it largely account for the 
decline of the traditional concept of itihdsa and the rise of the post-Newtonian scientific his­
toriography. Gradually, Indian writers of our own history and cultural heritage started using 
more and more European concepts and categories. This is not to suggest that the impact of 
the European historiography on Indian historians was entirely negative. On the contrary, it 
imparted an analytical and critical temper which motivated many Indian historians of the 
nineteenth century to try to discover and represent our heritage in a new way.

VI

The principles which have been followed for organizing the subjects of different volumes 
under this Project may be stated in this way. We have kept in view the main structures which 
are discernible in the decomposible composition of the world. The first structure may be de­
scribed as physical and chemical. The second structure consists, broadly speaking, of biology, 
psychology and epistemology. The highest and the most abstract structure nests many sub­
structures within it, for example, logic, mathematics and musical notes. It is well known that 
the substructures within each structure are interactive, i.e., not isolable. The more important 
point to be noted in this connection is that the basic three structures of the world, viz., (a) 
physico-chemical, (b) bio-psychological, and (c) logico-mathematical are all simultaneously 
open to upward and downward causation. In other words, while the physico-chemical struc­
ture can causally in uence the bio-psychological one and the latter can causally in uence 
the most abstract logico-mathematical, the reverse process of causation is also operative in 
the world. In spite of its relative abstractness and durability, the logico-mathematical world 
has its downward causal impact on our bio-psychological and epistemological processes and 
products. And the latter can also bring about change in the structures of the physical world 
and its chemical composition. Applied physics and bio-technology make the last point abun­
dantly clear.

Many philosophers, life-scientists, and social scientists highlight the point that nature 
loves hierarchies. Herbert Simon, the economist and the management scientist, speaks of 
four steps of partial ordering of our world, namely, (i) chemical substances, (ii) living or­
ganisms, tissues and organs, (iii) genes, chromosomes and DNA, and (iv) human beings, the 
social organizations, programmes and information process. All these views are in accord 
with the anti-reductionist character of our Project. Many biologists defend this approach by 
pointing out that certain characteristics of biological phenomena and process like unpre­
dictability, randomness, uniqueness, magnitude of stochastic perturbations, complexity and 
emergence cannot be reduced without recourse to physical laws.

The main subjects dealt with in different volumes of the Project are connected not only 
conceptually and synchronically but also historically or diachronically. For pressing practical
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reasons, however, we did not aim at presenting the prehistorical, proto-historical and histor­
ical past of India in a continuous or chronological manner. Besides, it has been shown in the 
presentation of the PH IS PC that the process of history is non-linear. And this process is to 
be understood in terms of human praxis and an absence of general laws in history. Another 
point which deserves special mention is that the editorial advisors have taken a conscious 
decision not to make this historical Project primarily political. We felt that this area of his­
tory has always been receiving extensive attention. Therefore, the customary discussion of 
dynastic rule and succession will not be found in a prominent way in this series. Instead, as 
said before, most of the available space has been given to social, scientific, philosophical and 
other cultural aspects oflndian civilization.

Having stated this, it must be admitted that our departure from conventional style of 
writing Indian history is not total. We have followed an inarticulate framework of time in 
organizing and presenting the results of our studies. The first volume, together with its parts, 
deals with the prehistorical period to A.D. 300. The next two volumes, together with their 
parts, deal with, among other things, the development of social and political institutions and 
philosophical and scientific ideas from A.D. 300 to the beginning of the eleventh century' A.l).

The next period with which this Project is concerned spans from the twelfth century to 
the early part of the eighteenth century. The last three centuries constitute the fourth period 
covered by this Project. But, as said before, the definition of all these periods by their very 
nature are inexact and merely indicative.

Two other points must be mentioned before I conclude this General Introduction to the 
series. The history of some of the subjects like religion, language and literature, philosophy, 
science and technology cannot for obvious reason be squeezed within the cramped space of 
the periodic moulds. Attempts to do so result in thematic distortion. Therefore, the reader 
will often see the over ow of some ideas from one period to another. I have already drawn 
attention to this tricky and fuzzy and also the misleading aspects of the periodization of 
history, if pressed beyond a point.

Secondly, strictly speaking, history knows no end. Every age rewrites its history. Every 
generation, beset with new issues, problems and questions, looks back to its history and 
reinterprets and renews its past. This shows why history is not only contemporaneous but 
also futural. Human life actually knows no separative wall between its past, present and 
future. Its cognitive enterprises, moral endeavours and practical activities are informed 
of the past, oriented by the present and addressed to the future. This process persists, 
consciously or unconsciously, wittingly or unwittingly. In the narrative of this Project, we 
have tried to represent this complex and fascinating story oflndian civilization.

Centre for Studies in Civilizations 
New7 Delhi

D. P. Chattopadhyaya 
General Editor



Preface

ACCORDING to a widespread stereotype, history is of two kinds—“mainstream” West­
ern history and assorted chauvinistic accounts. From an Indian perspective, the 

. choice is wider: for it is easier to see that recent chauvinistic Indian history is pro­
foundly imitative of chauvinistic Western history! This parallelism is readily explained since 
both attempts to manipulate history arise from the same cause: the use of religion as an 
instrument to attain and retain state power. However, historians from across the political 
spectrum have unfortunately failed to notice this parallelism earlier, and the current ac­
count of the history of science continues to be regarded as broadly representative of the 
truth.

The received account, of course, makes science entirely a domestic Western affair, starting 
from the “Greeks” and developing during the European renaissance. Therefore, it is hardly 
possible today to write a meaningful history of Indian science without contending with the 
received account and the stereotypes which reinforce it by suggesting derogatory labels for 
dissenting accounts.

A further obstacle is the way the philosophy of science reinforces the received history. As I 
have earlier remarked, science means never having to say you are sure: certitudes of any sort 
are the hallmark of religious belief. However, science is often demarcated using the criterion 
of falsifiability which supposes (as does most Western philosophy) that deduction is certain 
while induction is not. This belief in the certainty of deduction is the anchor also of the 
present-day formalist philosophy of mathematics which equates mathematics with deductive 
proof—hoping to make mathematics the currency of certainty. This certitude, one naturally 
suspects, is interlaced with theology.

To bring out the theological underpinnings of present-day formalist mathematics—or the 
theological origins of the art of theorem-proving—it is necessary, first, to trace the historical 
development of formalism from Platonism to Neoplatonism via Islamic rational theology 
to Christian rational theology to the present-day. Secondly, the theological moorings of 
formalist beliefs about logic and number come into sharper focus when we confront formal­
ism with Buddhist and Jain logic on the one hand, and the sunyavada philosophy of non- 
representables and computer technology on the other. Finally, it is helpful to demonstrate
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the practical advantages of the revised philosophy of mathematics in various contemporary 
contexts ranging from mathematics education to computer technolog)7 and quantum field 
theory.

This book brings together these diverse but interconnected streams of thought that I have 
articulated in various papers and talks over the past decade.

1. Sunya and non-representable numbers

“The Mathematical Epistemology of Sunya,” Invited paper, summarizing inter­
ventions during the Seminar on the Concept o f Sunya, INSA and IGNCA, New Delhi, 
Feb 1997. In: The Concept o f Sunya, ed. A. K. Bag and S. R. Sarma, IGNCA, INSA 
and Aryan Books International, New Delhi, 2002, pp. 168-181.

“Sunya: from Zero to Java. Number Representations in Algorismus, Formal Math­
ematics, and Computers”. Invited talk delivered at Haldwani, 8 October 2002.

2. Models of information transmission

“India’s Interactions with China, Central and West Asia, in Mathematics and As­
tronomy,” in : A. Rahman, ed., Interactions between India, Western and Central Asia, 
and China, PHISPC, Oxford University Press, New Delhi, [1998] 2002, pp. 227- 
254.

3. Navigational instruments and precise angle measurements

“Kamal or Rapalagai” [A Medieval Navigational Instrument and its Relation to 
Madhava’s Sine Series] paper presented at the Ninth Indo-Portuguese Seminar on 
History, INSA, New Delhi, Dec 1998. In: Indo-Portuguese Encounters: Journeys in 
Science, Technology and Culture, ed. Lotika Varadarajan, Indian National Science 
Academy, New Delhi, and Universidade Nova de Lisboa, Lisbon, 2006, vol. 2, 
pp. 483-504.

4. Approximation, error, and proof in the Yuktibhdsa derivation of infinite series

“Approximation and Proof in the Yuktibhdsa Derivation of Madhava’s Sine Series”, 
paper presented at the National Conference on Applied Sciences in Sanskrit, Agra, Feb 
1999. In: Proc., B. R. Ambedkar University, Agra.

5. The history and philosophy of the Elements

“Flow Should Euclidean’ Geometry be Taught”, paper presented at the Inter­
national Workshop on History o f Science, Implications for Science Education, Homi



Bhabha Centre, TIER, Bombay, Feb, 1999. In Nagarjuna G., ed., History and Phi­
losophy o f Science: Implications for Science Education, Homi Bhabha Centre, Bombay, 
2001, pp. 241-260.

6. Mathematics as social construction

“Mathematics and Culture”, in History, Culture and Truth: Essays Presented to D. P 
Chattopadhyaya, ed. Daya Krishna and K. Satchidananda Murthy, Kalki Prakash, 
New Delhi, 1999, pp. 179-193. Reprinted in Philosophy o f Mathematics Education 
11 (1999). Available online at http://www.people.ex.ac.uk/PErnest/pomel 1/artlB. 
htm.

(Book review) Social Constructivism as a Philosophy o f Mathematics (Paul Ernest), State 
University of New York, in: Journal o f Indian Council o f Philosophical Research, 18
(1) 2001, pp. 267-270.

“The Religious Roots of Mathematics”, Theory, Culture &  Society 23(1-2) Jan- 
March 2006, pp. 95-97. Spl. Issue on Problematizing Global Knowledge, ed. Mike 
Featherstone, Couze Venn, Ryan Bishop, and John Phillip. Also, “The Religious 
Roots of Western Mathematics”, invited talk at JNU seminar on “Science and 
Spirituality”, IIC, Feb 2006 (to appear) in Proc.

7. Time and logic in Buddhism, Jainism, and quantum mechanics

“Quantum Mechanical Time”, Physics Education 10 (2), 1993, pp. 143-61.

More details on the structured-time interpretation of quantum mechanics in chp. 
6b in Time: Towards a Consistent Theory, Kluwer Academic, Dordrecht, 1994.

“Some Remarks on Ontology and Logic in Buddhism, Jainism and Quantum 
Mechanics.” Invited talk at the conference on Science et engagement ontologique, 
Barbizon, October, 1999.

“Culture, logic and rationality”, postscript to chp. 10, in The Eleven Pictures o f 
Time, Sage, 2003.

“Why Deduction is MORE Fallible than Induction”, invited talk at International 
Conference on Methodology and Science, Vishwabharati, Shantiniketan, Dec 
2004. Abstract at http://www.IndianCalculus.info/Santiniketan.pdf.

8. The alternative epistemology of the calculus in the Yuktibhdsd, and its relevance to 
present-day computing, and mathematics education

“Computers, Mathematics Education, and the Alternative Epistemology of the 
Calculus in the YuktiBhasa”, invited plenary talk at the 8th East-West Conference,

http://www.people.ex.ac.uk/PErnest/pomel
http://www.IndianCalculus.info/Santiniketan.pdf
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University of Hawai’i, Jan, 2000. In Philosophy East and West, 51:3, July 2001, 
pp. 325-362.

9. The import of calculus into Europe, to overcome European ignorance of the 3 “ells” 
of navigation

“How and Why the Calculus Whs Imported into Europe.” Talk delivered at the In­
ternational Conference on Knowledge and East-West Transitions, National Institute 
of Advanced Studies, Indian Institute of Science Campus, Bangalore, Dec 2000. 
At http://www.IndianCalculus.info/Bangalore.pdf.

“The Calculus: its Indian Origins and Transmission to Europe prior to Newton 
and Leibniz”, invited talk, conference on “Indian Contributions to the Renais­
sance”, Univ. of Louisiana, Lafayette, Oct 2004. Also invited talk, Dept of Maths, 
Univ. oflowa at Ames, and public lecture with the same title, Oct 2004.

“The Calculus: its Indian Origins and Transmission to Europe prior to New­
ton and Leibniz. Part I: Series Expansions, and the Computation of 7r in India 
from Aryabhata to Yuktidlpika", and Part II: “Lessons for Mathematics Education”, 
Dept, of Maths, Univ. of Auckland, Oct 2005.

10. (Aryabhata group)

(with Dennis Almeida) “Transmission of the Calculus from India to Europe, Part 
I: Motivation and Opportunity”, Paper presented at the International Aryabhata 
Conference, Trivandrum, Jan 2000.

(with Dennis Almeida) “Transmission of the Calculus from India to Europe, Part 
II: Circumstantial and Documentary Evidence”, Paper presented at the Interna­
tional Aryabhata Conference, Trivandrum Jan 2000.

11. Relevance to present-day mathematics education

“Math Wars and the Epistemic Divide in Mathematics”, invited talk at the 
Centre for Research in Mathematics and Science Education, Univ. of San 
Diego, Oct 2004, and paper presented at Episteme-1, Goa, Dec 2004. At 
http://www.hbcse.tifr.res.in/episteme 1 /allabs/raju_abs.pdf and http://www.hbcse. 
tifr.res.in/episteme 1/themes/ ckraju_fmalpaper.

12. Products of distributions

“Products and Compositions with the Dirac Delta Function.” /. Phys. A: Math. 
Gen. 15 (1982) 381-96.

http://www.IndianCalculus.info/Bangalore.pdf
http://www.hbcse.tifr.res.in/episteme
http://www.hbcse


“Junction Conditions in General Relativity.” /. Pliys. A: Math. Gen. 15 (1982) 
1785-97.

“On the Square of x~n." J. Phys. A: Math. Gen. 16 (1983) 3739-53.

“Renormalisation, Extended Particles and Non-Locality.” Hadronic J . Suppl. 1, 
1985, pp. 352-70.

“Distributional Matter Tensors in Relativity.” In: Proc. MG5, D. Blair and M. 
J . Buckingham (eds), R. Ruffini (series ed.), World Scientific, Singapore, 1989, 
pp. 421-23.

These talks and papers on seemingly diverse topics actually pertain to a single stream of 
thought, which seamlessly relates the history and philosophy of science and mathematics 
to its contemporary practice, even though the linkages are not necessarily explicit. The 
implicit linkages may be all the harder to understand because the papers are very widely 
scattered, in publications that may not be so readily accessible. These difficulties of access 
are aggravated by what appears to be a general belief among some conference organizers in 
India—that the natural thing is for conference proceedings to appear after a delay of five or 
six years, or sometimes never at all! Consequently, even I do not know exactly how many of 
these papers, public for the last several years, are actually available in printed format.

However, I think the stream of thought that ows through these papers is of some value, 
and it should not be wasted through improper dispersal. Accordingly, the arguments in 
these papers are here collected together, appropriately rearranged, and amplified or cur­
tailed where necessary, with the aim of making them readily available, and establishing the 
links between them. The hope is that presenting a unified exposition of this important and 
fundamental aspect of the history of mathematics in relation to its contemporary practice 
would serve a useful purpose, not only to understand the past, but also to make clear the 
future directions of mathematics at the present turning point.

Considering the wide interest aroused in the topic of this book, one of the things that I 
was hoping to do was to make this book accessible to an interested layperson. However, given 
the enormity of the change in mathematics and its history the book proposes, it was hardly 
possible to avoid technicalities. Accordingly, the book for the interested layperson will have 
to wait, and the present book assumes the reader to be fully familiar with all the intricacies of 
all the subjects touched upon in this book. However, as the topics covered in this book sweep 
across from the intricacies of Buddhist, Islamic, and Christian theology to those of quantum 
field theory, I thought it prudent to allow for the horrifying possibility that there may be 
no one who is an expert in all the topics covered in the book! As a partial remedy, to make 
some of the complex interconnections clearer to a wider audience, each chapter begins with 
an extended overview, which provides a narrative-type account of the key points, without the 
supporting details. (Given the great value of this section, I intended to number it as section
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0, but according to l£X the Roman for 0 is a blank space!) The intended overall organization 
and the ow of ideas across chapters is indicated in the synoptic table of contents.

This book has been prepared under difficult circumstances. Originally visualized as a full 
time, commissioned editorial effort, to be carried out quickly with the active participation 
of a number of other scholars, it turned out to be an honorary and part time effort, over 
eight years, to bring out a single-author volume! My various other commitments inevitably 
interfered with the time I could have devoted to this book, though ideally a book that is so 
ambitious and complex should have been written single-mindedly, with no other commit­
ment, and no pre-stipulated time limits. (My inability to do so might have something to do 
with the management of science and technolog)' in post-independence India—the subject 
matter of a future volume in this series!)

I am acutely aware of the possibility that, because of this time-squeeze, some defects may 
persist in this book as it stands. For example, some arguments and references are repeated 
across chapters. With present-day technolog)' it would have been easy to identify all such 
repetitions, and replace them with cross references. However, I must admit to being inhib­
ited in this by the rationalization that redundancy improves the accuracy of communication! 
That is especially the case, given the complexity and novelty of the thesis argued in this 
book. Moreover, this fits the usual format of the PHISPC volumes, which requires individual 
chapters to be reasonably self-contained, like separate articles. It is assumed that a careful 
reader who reads the book from cover to cover will be expert enough a reader to skip over 
all such repetitions.

Again, certain important topics are not properly covered in the book: for example there 
should have been a fuller account of the current practical importance of alternative logics, 
through an exposition of how alternative logics and the structured-time interpretation of 
quantum mechanics (as in my earlier book Time: Towards a Consistent Theory, Kluwer Acad­
emic, Dordrecht, 1994) relate to quantum computing, which hopes to achieve what present- 
day computers cannot. In particular, I wished to explain how the structured-time interpre­
tation is superior to the many-worlds interpretation for purposes of quantum computing. 
Other contemporary consequences relating to mathematics education, and to renormaliza­
tion and shock waves remain summarily articulated in chapter 9, and the appendix. I have 
left things as they stand with the view that publication should be timely, especially given the 
widespread interest in this book, and given that the aim of the present book is only to indi­
cate the contemporary consequences of the revised history and philosophy of mathematics 
rather than to comprehensively resolve all issues. Hopefully, others too will take up these 
matters in more detail in future publications.

After the book was first very nearly completely typeset, I had to write a program to change 
the typesetting to TpX—a diabolical invention obviously intended to distract authors from 
the task of producing good books to the task of producing good-looking books! (When 
the author has to do his own typesetting, TpX’s philosophy of separating form and content



noticeably fails!) One reason for this shift was the difficulty with the combination of mathe­
matics, multilingual text and diacritical marks, needed also for the numerical notation.

The diacritical marks used in this book are given on p. 117, and p. 130. For anusvara and 
visarga, I have respectively used m and h. Since the English language has no consonant end­
ing (halant), the word yoga is typically mispronounced as yoga. Common practice recognizes 
this difficulty—all Jain-s I know spell their name as Jain, and not Jaina, as required by the 
current conventions, which ought to be changed. Similarly, exible word boundaries arise 
also in computer programming (self-documenting code) where they are indicated by mixed 
capitalization—occasionally used in this book. Since, however, diacritical marks are hardly 
the focus of the battle in this book, 1 have generally adhered to the stock conventions.

Given the long time taken by this effort, it is hardly possible to thank all those who have 
helped out in one way or the other. I am grateful to the Project Director, Professor D. P. 
Chattopadhyaya, for patiently waiting for this volume to come out. I am grateful to the 
Indian National Science Academy, for a partial project grant, and to the National Institute 
of Science, Technology, and Development Studies, and the Nehru Memorial Museum and 
Library, for providing a base in the early stages of the development of this line of thought. I 
would especially like to record my gratefulness to the late Professor Ravinder Kumar, whose 
ideas about the futuristic nature of history are re ected in the emphasis on contemporary 
consequences in this book.

I am grateful to the late Professor K. V. Sarma for kindly letting me have an advance 
copy of his draft translation of the Yuktibhdsd, which provided great impetus to this work in 
its early stages by helping to penetrate the primary sources. I regret that my citation of his 
unpublished (and unfinished) work created unnecessary problems for him.

I am grateful to Shri Sharad Chandra Behar, former Director General of MCRP Univer­
sity, Bhopal, for the rare act of encouraging scholarship in an Indian university, and for his 
cooperation and advice during the disturbing event of the transmission of the transmission 
thesis.

To Jay a, Suvrat, and Archishman, I owe an apology for having lavished on this book so 
much of my “spare time” that I should properly have devoted to them.

It is always a very pleasurable task to thank various people for the preparation of the final 
camera ready copy, and thus indirectly pass on to them the blame for any errors remaining in 
the book, while putting on a halo of virtue by seeming to accept the blame. However, I must 
acknowledge the many occasions on which I overruled the suggestions of the publication 
team. Given my theory of chains of causes with mundane time, which has proved to be 
especially popular with my children, it is probably best for me to say nothing further!

Preface xxxiii

C. K. Raju 
New Delhi
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Introduction

170 YEARS

IN writing the history of science in India, mathematics plays a major role—irrespective 
of whether or not one uses an Indian perspective to define the notion of science. This 
is particularly the case with the history of science in India around the 16th c. of the 

Christian Era (CE). The calculus has played (and continues to play) a major role in the 
development of present-day science. But the Indian role in the development of the calculus 
has gone almost unnoticed.

This is strange, for the calculus started with the use of infinite series, and the use of 
infinite series in India was publicly acknowledged even by Europeans some 200 years ago. 
The most well-known (though not the earliest) case of such European documentation is 
that by Charles VVhish in 1832 CE. 1 Despite the 170 years that have elapsed since then, 
the connection of these Indian series to the infinitesimal calculus, as known in Europe, 
has yet to be established. Even the philosophical and mathematical underpinnings with 
which the originators used these infinite series have never been fully explicated. This is 
an extraordinary state of affairs. Accordingly, in writing this book, I felt that an in-depth 
analysis and documentation of this one case of the calculus would do rather more for the 
history of science in India, than an extensive survey across various fields.

THE CALCULUS AND THE FOUNDATIONS OF MODERN SCIENCE

The calculus, after all, was the key input to Newtonian physics. All the mathematics needed 
for Newton’s Pr in dpi a (and for classical mechanics down to this day) is encapsulated in the 
so-called Taylor-series expansion, which is the pinnacle of the calculus. As V. I. Arnol’d puts 
it,

Newton’s basic discovery was that everything had to be expanded in infinite se­
ries__ Newton, although he did not strictly prove convergence, had no doubts
about it__ What did Newton do in analysis? What was his main mathematical
discovery? Newton invented Taylor series, the main instrument of analysis.2
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The name “Taylor series” derives from Newton’s pupil, Brook Taylor (1685-1731), whose 
work on it dates from 1715/’ These infinite series expansions are to calculus and analysis 
what decimal fractions are to arithmetic. In India these infinite series expansions were used 
by Madhava to derive trigonometric values accurate to the third sexagesimal minute, and 
by Nllakantha to develop an accurate “Tychonic” planetary model with elliptic orbits by 
1501. And it is remarkable that these very trigonometric values, astronomical models, and 
infinite series first started appearing in Europe in the works of Clavius, Tycho Brahe, Kepler, 
Cavalieri, Fermat, Pascal,4 and James Gregory,5 while Europe was still struggling to became 
acquainted with decimal fractions, with the publication in 1585 of Simon Stevin’s De Thiende, 
and its subsequent translation under the title La Disme.

It was exactly this mathematical ability to expand in infinite series that enabled Newton to 
back-calculate and establish for “Kepler’s” elliptical planetary orbits the inverse square law 
of gravitation that was widely believed by Newton’s contemporaries to be the case for circular 
planetary orbits.6 Though Newtonian physics, widely regarded as the foundation of modern 
science, today stands discredited, infinite series expansions continue to remain important in 
quantum field theory, for example. Hence, a book devoted entirely to the historical origins 
of the calculus seems worthwhile, as part of the enterprise of writing the history of modern 
science from an Indian perspective. That is especially the case since the present account of 
how the calculus actually developed in India, and was then transmitted to Europe, differs 
so vastly from the usual accounts ‘ which jump from “Archimedes” to Newton and Leibniz, 
neglecting India entirely.

WHY HISTORY AND PHILOSOPHY OF SCIENCE MUST CO TOGETHER

Such an in-depth and novel account of the history of the calculus requires, however, a sub­
stantial deviation from earlier ways of writing the history of Indian mathematics. Specifically, 
one cannot ignore the old adage that the history of science without its philosophy is blind 
(and the philosophy of science without its history is lame). Doing the history of science to­
gether with its philosophy is as common in the West as are university departments there of 
the history and philosophy of science. Unfortunately, history-writing in India has so far ig­
nored this adage, and has proceeded on the naive assumption that the philosophy of science 
or mathematics can be safely ignored for the purposes of writing its history. In a way, this 
is understandable, since there is, at present, not even a single department for the history 
and philosophy of science in any Indian university, so that work on the history of science 
has been administratively conceptualized as either a part-time hobby or a post-retirement 
pursuit. Therefore, historians of Indian mathematics remain inadequately informed about 
philosophy—not to speak of the philosophy of Indian mathematics.

If we shift our viewpoint from history to university departments of philosophy, there is 
unfortunately again a severe paucity, if not a complete absence, of people in India who have
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ventured to contribute anything fundamental to the philosophy of science or mathematics, 
that too in a historical perspective. Thus, doing the history of science together with its 
philosophy remains a pursuit as uncommon in India as university departments of the history 
and philosophy of science. Perhaps this can be put down to a colonial mentality which leads 
to a deep seated fear of challenging the cultural assumptions common to former colonial 
rulers and the present-day superpower.

1’HE DEFAULT PHILOSOPHY OF MATHEMATICS AND 
THE NEED TO RE-EXAMINE IT

While one may sociologically hope to understand why Indian scholars, in recent times, have 
been unable to put together the history and philosophy of science, there are two painful 
and unacceptable consequences of this unnatural disjunction. The first unacceptable conse­
quence is that this attitude entrenches what has euphemistically been called Eurocentrism. 
If one excludes the philosophy of science from the ambit of a study of its history, then one 
is obliged to do history with the default philosophy of science. In our case this means that 
one must then accept the present-day Western philosophy of mathematics, not only as a 
privileged philosophy, but as the only possible philosophy of mathematics.

The present-day philosophy of mathematics, on the one hand, traces its historical and 
philosophical roots to an allegedly “Greek” tradition. On the other hand, this philosophy 
pretends that mathematics is universal and one, and that this sole possible kind of mathe­
matics is the kind of formal mathematics that is today prevalent in the echelons of higher 
formal education. This attitude which equates mathematics with formalistic “rigour”, and 
rules out any alternative philosophy of mathematics, risks losing valuable insights into the 
origin of the Indian infinite series, and eliminates altogether the possibility of understand­
ing what was then regarded in India as a good mathematical calculation or a convincing 
mathematical demonstration. Using the default philosophy thus works against the grain of 
history regarded as an attempt to understand the past.

The second consequence follows from the first: for if the Indian infinite series were es­
tablished using a method of calculation and demonstration that does not constitute a formal 
mathematical proof, valid according to the present-day belief in the potency of formalism, 
then the Indian infinite series may forever have to be consigned to the status of “proto­
calculus”, or at best “pre-calculus”, for that is how Western historians of science would surely 
like to classify them, if at all they are compelled to link these Indian infinite series to the 
infinitesimal calculus in Europe. (I may add that this presupposition has been amply borne 
out in the recent discussions that transpired in the Historia Mathematica discussion list.) 
After all, Indian infinite series were very similar to, if not identical with, the series used by 
Cavalieri, Fermat, Pascal, Barrow, Gregory, and Wallis, and these efforts are already classi­
fied as “pre-calculus” by Western historians of science. While such a strategy of classification
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and labelling may suit the political interests and the morbid narcissism of the West, it works 
against the grain of history regarded as an attempt to reconstruct the past.

Hence, this book proceeds on the premise that to arrive at a proper evaluation of the 
Indian contribution to science one may need to depart radically from the way in which the 
history of science, and particularly the history of mathematics, has in the past been done in 
India, by ignoring its philosophy. In particular, I believe that traditional Indian mathemat­
ics cannot be fundamentally understood nor its history properly reconstructed without thor­
oughly re-examining the alleged universality of the current notion of mathematical proof. 
Conversely, despite Professor Daya Krishna’s suggestion to the contrary, I believe that the 
related philosophical question about the nature of mathematical proof cannot be answered 
in the abstract, in a historical vacuum, and that the fresh historical perspective on transmis­
sions in this book, throws fresh light on the nature and historical evolution of the present-day 
idea of mathematical proof, whether seen from an Indian or a European perspective.

THE DEFINITION OF MATHEMATICS AS PROOF

Indeed, it seems to me patently obvious that how one writes the history of mathematics 
naturally depends on what mathematics is. If, for example, mathematics is defined as some­
thing invented in Greece, that would make a cardinal difference to the history of Indian 
mathematics.

Defining mathematics as something invented in Greece might seem preposterous and 
unnatural. But there are two lines of thought, one from history, and one from philosophy, 
both of which implicitly converge onto the above definition of mathematics as something 
invented in Greece. For the historical line, it is adequate to examine even cursorily the 
current grand narrative of the development of science that can be found in almost any 
“standard” Western text in the history of mathematics. The overarching impression is that 
mathematics commenced in Greece, and was largely lost during the medieval period, until 
it was rediscovered in the European Renaissance. In this “standard” picture, it is accepted 
that other cultures did make a few scattered contributions here and there—for example India 
contributed exactly zero!—but these cultures remained basically clueless as to the real nature 
of mathematics.

And what is the real nature of mathematics? As any university professor of mathematics 
today would inform us, mathematics concerns theorems and proofs. That is how mathemat­
ics is today taught in the classrooms, and that is how mathematical research is presented in 
journals. "Phis is apparently also how mathematics was done in Greece (according to existing 
histories of mathematics at any rate). But that was not how mathematics was done in India 
(or China or Babylon for that matter). Accordingly, what was done in India (or China or 
Babylon for that matter) was not quite mathematics, which really began in Greece!
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This point of view is articulated explicitly by Rouse Ball who begins his “classic” account 
of the history of mathematics by triumphantly proclaiming:8

The history of mathematics cannot with certainty be traced back to any school or 
period before that of the Ionian Greeks. The subsequent history may be divided 
into three periods... the first... under Greeks... the second the mathematics of 
the middle ages and the renaissance... the third modern mathematics....

On the subject of prehistoric mathematics, we may observe in the first place 
that, though all early races which have left records behind them knew something 
of numeration and mechanics, and though the majority were also acquainted 
with the elements of land-surveying, yet the rules which they possessed were in 
general founded only on the results of observation and experiment, and were 
neither deduced from nor did they form part of any science.

Given that Westerners (and many Indians) often mistake such racist and narcissistic ac­
counts for deep historical (“classic”) scholarship, the prevailing situation is not so very dif­
ferent from the de facto definition of mathematics as something that was invented in Greece. 
For, the prevailing situation incorporates a definition of mathematics (as proof), and a defi­
nition of mathematical proof that together make it inevitable that mathematics was invented 
in Greece, and could have been developed only in Europe! To go a step further, according 
to the prevailing formalist philosophy of mathematics, definitions are arbitrary, and they are 
not required to accord with intuition or culture: all that is required is that they should be 
acceptable to people in appropriate positions of social authority (among mathematicians or 
historians of mathematics)! QED.

THE ADVANTAGES OF DOING HISTORY WITH PHILOSOPHY OF SCIENGE

Accordingly, in my opinion, a project on the history of Indian science, which seeks to write a 
proper history of science (and mathematics), must attempt to rewrite, side by side, the phi­
losophy of science (and mathematics), and the accompanying implicit definition of mathe­
matics. In doing so, if we find that we are no longer able to retain the present-day separation 
of mathematics from empirical science, we may have to accept such a conclusion.

Admittedly, this conclusion is fatal to the present-day (Western) notion of mathematics, 
just as much as the realization that deduction is more fallible than induction (Chapter 2) is 
fatal to much of Western philosophy. However, there is no remedy for it, since it emerges that 
the Western belief in the universality and infallibility of deduction is at bottom based on mere 
religious and cultural beliefs that have no place in a secular history of mathematics, or in a 
secular mathematics. In particular, to eliminate such religious bias in history, it is essential 
for us to begin by fundamentally re-examining the current definition of mathematical proof, 
and the definition of mathematics that it entails.
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There are some definite advantages to this way of doing history, with a philosophical and 
secular perspective. First, it enables us to understand better the mathematics of the Indian 
infinite series from the viewpoint of its inventors. Secondly, the revised understanding of 
the philosophy of mathematics leads to a strikingly different understanding of the historical 
development of mathematics, in a more global and multicultural context, with epistemology 
as the major driving force, especially over the last thousand years in Europe. This, in turn, 
leads to a totally different evaluation of India’s historical contribution to the development 
of modern science.

EPISTEMOLOGICAL S ERIEE AND THE MATH WARS

This idea of epistemology as a driving force in the historical development of science (and 
particularly mathematics) is so novel to the history of science that it deserves some ampli­
fication right here. W7e are all familiar with the story of how the algorismus and zero were 
transmitted from India to Europe via the Arabs, and how algorismus and zero were received 
with deep suspicion in Europe, precipitating a five century' long battle in Europe between 
algorismus and abacus. My claim here is that this battle (first math war) originated in the 
contrasting epistemology of number in Indian and European tradition, and was eventually 
settled in favour of the algorismus because of the pressure arising from the greater practical 
utility of the algorismus.

Exactly like the import of algorismus, the import of the calculus into Europe aroused deep 
epistemological suspicions about the infinities and infinitesimals that the calculus allegedly 
involved. These suspicions lasted for centuries (second math war), and could be partly 
settled only through a further transformation of the European understanding of the notion 
of number—leading to real numbers—rendered necessary' because the pressure arising from 
the great practical utility of the calculus forced a revision of epistemological dogmas about 
number. Thus, the present approach seeks to understand the last thousand years of the 
historŷ  of mathematics in terms of the epistemological strife arising from transmission across 
cultures.

CONTEMPORARY RELEVANCE

'Phis way of understanding history has immediate contemporary significance, for the recent 
rise of computer technology has precipitated a new epistemological strife (third math war) 
between mathematics as calculation and mathematics as proof, which seems to demand a 
fresh transformation of the notion of number. A better understanding of history' leaves us 
better situated to decide whether calculations done on a computer are epistemologically 
secure enough to be regarded as mathematics today.
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Another area of contemporary applications is to mathematics education. The mathemat­
ics that came to Europe over the last millennium is the same mathematics that is taught in 
schools today, from the abacus in Kindergarten through arithmetic and algebra to the calcu­
lus in the 12th standard. On the principle that phylogeny is ontogeny, some thousand years 
of epistemological strife are played out in “fast forward” mode as con icts in the minds of 
the young K-12 student who today seeks to assimilate the very same mathematics in 12 years 
rather than 1200 years. This suggests that the difficulty in learning mathematics today is 
linked to its hybrid epistemology, deriving from its multicultural origins. Thus, the revised 
account of the historical development of mathematics, over the last millennium, leads to 
a revised account of how mathematics should be taught today, in a way that can be easily 
understood.

It is interesting that we are also able to demonstrate the relevance of this new way of 
understanding mathematics to the frontier areas of present-day mathematics where formal 
mathematics has of necessity reached a sterile impasse. The suspicions about infinities and 
infinitesimals that surrounded the initial appearance of the calculus in Europe continue to 
linger in the suspicions that surround the current use of infinite series in places where the 
19th c. CE formalisation of the calculus is inadequate—e.g., the renormalization problem 
of quantum field theory. The new historical insight provides a new way of resolving these 
suspicions.

It is perhaps somewhat unexpected that discarding the filters of contemporary knowledge 
(especially the current-day definition of mathematics) to produce a better history has (in this 
case) the effect of enhancing the contemporary relevance of that historical knowledge. The 
contemporary practical relevance of the alternative philosophy of mathematics proposed 
here may perhaps be an accidental consequence of, for example, the recent rise of computer 
technolog)'. But the fact of this contemporary relevance is particularly gratifying, especially 
in view of the late Professor Ravinder Kumar’s oft-repeated assertion that history is futuristic.

TERMINOLOGY AND THE CATEGORIES OF HISTORICAL STUDY

A note about terminology. Many people have used and continue to use terms such as 
“Hindu” mathematics, and “Keralese” mathematics—problematic terms that betray the epis­
temological illiteracy of the user unless the aim is crude political mischief of the kind that 
the British systematically introduced in this subcontinent. Given that people like Nllakantha 
(from Kerala) identified themselves as followers of Aryabhata (from Bihar), how did the 
epistemology of this allegedly “Keralese” mathematics differ from the epistemology of the 
“Bihari” mathematics of Aryabhata? The term “Keralese” is as jarring and misplaced as the 
term “Telugese” logic would be, if it were to be applied to Nagarjuna’s logic.

'Ehe term “Hindu mathematics” is probably worse. For Western historians of mathemat­
ics this term has served the purpose of suggesting that whatever was done in India was
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not quite mathematics. The other purpose served by this term has been to delete the role 
of the Buddhists, in the manner in which Western historians have deleted the role of the 
non-West (perhaps because Buddhists themselves were deleted from India, so there was no 
one to represent their interest). From Chinese records of the calendrical and mathemat­
ical abilities of Buddhist monks from India, it would be hardly surprising for Nalanda to 
have played a prominent role in the time of Aryabhata, and there is no case for a specif­
ically “Hindu” mathematics, distinct from Buddhist (or Jain) mathematics. Undoubtedly, 
Naiyayika-s and Buddhists, for example, have different ideas of epistemology, and differ­
ent notion of pramdna or proof. But I have been unable to find any specific examples of 
“Naiyayika” mathematics which uses anywhere in a demonstration either sabda pramdna or 
upamdna—two key points of difference in the notion of pramdna between Naiyayika-s and 
Buddhists. Likewise, it is pointless to speak of Jain mathematics, for what Mahavira does in 
GanitaSdra-Samgraha differs little from the Pdtiganita of Srldhara, or the Lildvati of Bhaskara: 
such differences as exist are a matter of detail rather than any fundamental epistemological 
difference. Indeed, given the sort of arguments used by Sriharsa (an Advait-Vedantin whose 
aim in his Khandanakhandakhculya was to use the tools of Nyaya to destroy Nyaya, but who 
clearly uses various Buddhist arguments against Nyaya9) it seems to be deeply problematic 
to equate Naiyayika epistemology with “Hindu” mathematics.

There seems to me a stronger case for categories like “Christian mathematics” and “Gen­
tile mathematics” (of Proclus or “Euclid”) for one can very clearly identify the epistemo­
logical differences between “Neoplatonism” and Christian rational theology, and the way 
these differences historically changed the understanding of the Elements, and the notion of 
mathematical proof. Likewise, there is a stronger case for categories like “Roman Christian 
mathematics” and “Protestant mathematics” for while many mathematicians have identi­
fied their religion as Roman Christian or Protestant, no traditional Indian mathematician, 
to my knowledge, ever referred to himself as a “Hindu”—though they may have identified 
themselves as worshippers of Shiva, or Brahma, for example.

Finally, the category “Hindu” mathematics is epistemologically misleading in a serious 
way: sunya and sunyavada are generally regarded as being of Buddhist origin and the present 
history identifies a leading role for the non-representable in Indian mathematics. Nagarjuna 
refuted ideas like that of a creator-god and the soul just because his sunyavada. philosophy is 
strongly realist and anti-idealist. The non-existence of the soul was inferred not by denying 
cosmic recurrence or anything like that, but by simply denying the validity of the common 
notion of a person—for a person keeps changing from instant to instant, and there is no 
proof (on the Buddhist principles of pramdna) that anything “essential” remains constant . 
Thus, Nagarjuna’s argument is that it is the ideal that is erroneous, because any representa­
tion of reality necessarily conceals certain aspects of reality that are left unrepresented, or 
voided or zeroed. This is a very novel position from the Platonic perspective which regards 
the ideal (e.g. ideal point) as mathematically real, and the real (e.g. real dot on paper) as
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erroneous. Strangely, the Platonic perspective has remained unquestioned in the history 
of Western mathematics although it seems to me quite elementary that reality cannot be 
erroneous, though philosophers, howsoever revered, can be! In fact, it was the realist and 
practical perspective that enabled the proper handling of the non-representable, and this 
enabled Indian mathematicians to elegantly overcome the problems with infinitesimals and 
infinities which left European mathematicians befuddled for centuries about the calculus (a 
state which still lingers despite formal real numbers and non-standard analysis).

Brie y, if the object is to understand the history of mathematics, then one must use the 
appropriate categories, and these are epistemological categories rather than religious or 
geographical ones. 10

SOME MORE LABELS

There is another sort of categorization that needs to be mentioned here. This book, since 
it presents a new account of Indian history, inevitably involves a critique of Western history. 
However, some Western scholars, recognizing the intrinsic weakness of that history, tend 
to respond to any critique of Western history not by examining the evidence (which would 
expose it) but by launching personal attacks on the critic with labels—in this case, the label 
“Hindu nationalist” seems to commonly arise to the tongues of shallow scholars. Now I 
completely fail to see why the only choice one has is between different kinds of hate politics— 
why the rejection of Western racist history necessarily implies the acceptance of some other 
kind of hate politics.

My belief in the principle of universal harmony is clearly formulated and stated in my 
book The Eleven Pictures o f Time. Contrary to what many religions teach, there is no room in 
my belief system for hatred of any set of persons, and I am proud of this tradition that has 
historically been in place since Ashoka’s edicts of tolerance. The politics of religious hatred 
arises when religion is mixed with state power, and I also believe, and have also stated 
explicitly, in the above book, that those who seek to attain or retain state power in the name 
of religion are the worst enemies of that religion, regardless of what religion they claim to 
represent—whether Christianity, Islam, or Hinduism. (Thus, they continuously reinterpret 
the religion to suit the requirements of the state.) It is easy to find many people who oppose 
one kind of hate politics while being “soft” on another set: however, as stated above, I fail to 
see why one’s choice should be restricted to different brands of hate politics. I am not in any 
such camp, my stated system of ethics does not admit hate politics of any kind, and I oppose 
all attempts to mix religion with politics. I do realize that the different hate camps have 
become so widespread today that the political space for people like me is limited, and I am 
grateful especially to the late Dr Arun Ghosh for having encouraged me in this direction, 
despite the obvious difficulties involved.
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Secondly, the real concerns of “Hindu nationalists” with academics emerge from their 
actions—of starting some twenty university departments of astrology (but not a single de­
partment of the history of science), and whole universities in subjects like journalism. Obvi­
ously, financially self-sustaining superstitions, and slanted news are a better source of power 
and votes. The politics that emerges from my own actions is clear enough. As one of the 
few persons in the Indian university system to have publicly opposed such attempts, 11 I 
have twice been unceremoniously removed from academic positions when and where these 
forces were in power. I wonder whether critics who argue from thoughtless labels of this sort 
have an equally clear record of action against the superstitions and untruths systematically 
promoted by the ruling religious establishments on their own home turf.

What these defenders of Western history need to think about is this. Suppose “Hindu 
nationalists” were to seize power, strangle dissent by passing laws to kill dissenters, in painful 
ways, and then continuously expand their power through multiple genocide for the next 
1700 years. What sort of history would emerge? We do not need to imagine very hard, for 
we have a concrete model before us, in the sort of Western history that has been written 
since Eusebius! Because of the long history of brutal suppression of dissent in the West, 
various fantasies, contrary to the barest common sense, have been allowed to pile up, and 
these continue today to masquerade as the scholarly truth. The time has come for things to 
change, and this project has aimed, from its earliest conception in the early 1990’s, to bring 
about such a change by setting aside the one-sided Western accounts of history that have 
been prevalent to date, challenging Western biases where necessary, and presenting a fresh 
formulation of history, in a pluralistic way. An argument from labels is not going to halt that 
change: either hard evidence would have to be procured, at least at this late stage, for the 
myths propagated by Western history, or else these myths would have to be abandoned.

Finally, to restate a trivial point. Just as being against “Hindu nationalists” is not to 
be anti-Hindu, and being against “Islamic terrorists” is not to be anti-Islam, so also be­
ing against Christian chauvinism is not to be anti-Christian. Fortunately, there still are at 
least some enlightened people—like my esteemed friend the late Dr Paulos Mar Gregorios, 
Metropolitan of Delhi—who understand this perfectly well. Although this book is intended 
for all people interested in the history and philosophy of mathematics, it is to such people 
that this book is especially addressed in all earnestness.
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Part I

The Nature of Mathematical Proof





CHAPTER 1

Euclid and Hilbert

History o f  geometry and the genesis o f  the current notion
o f  mathematical proof

OVERVIEW

T h e  notion of mathematical proof is at the heart of the present-day socially dominant 
notion of mathematics, and the resulting notion of “mathematics” differs funda­
mentally from the notion of “mathematics” as it historically developed in India 

from the sulba sütra (ca. —500 CE) to the Yuktidïpikâ (16th c. CE). Therefore, to assess the 
worth of the Indian contribution to mathematics it is first necessary to re-examine the no- 
tion of mathematical proof, without a whole complex of cultural presuppositions. In line 
with the principle that the history and philosophy of mathematics must go together, we first 
re-examine the historical perceptions which shaped the present-day notion of mathematical 
proof.

The current notion of mathematical proof is said to have originated in Euclid’s Elements. 
To understand the genesis of the philosophy underlying the Elements, it would help to know 
the socio-political context of Euclid. The historical information about “Euclid” is, however, 
too meagre to enable us to determine this context; indeed, from the available historical in­
formation it is very doubtful that “Euclid” existed. The key historical source of information 
about “Euclid” is a single remark in a manuscript (“Monacensis 427”). Since the manuscript 
is on paper, which became prevalent in Europe only in the 13th c. CE, it is a late manu­
script, although some historians have optimistically dated it as early as the 10th c. CE. The 
manuscript relates to a commentary on the Elements attributed to Proclus, from at least 500 
years earlier. Since Proclus would have written on fragile papyri, for Proclus’ commentary 
to have survived it must have been rewritten several times, affording ample opportunity for 
interpolation.
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The Monacensis remark speculates about Euclid, stating that this “Euclid” remained un­
known to other historians of geometry for the 750 years that further separate Proclus from 
the supposed date of “Euclid”! (That “Euclid”, if he existed, was little known for at least 
seven centuries after his alleged date is corroborated by the archaeological evidence of the 
only three scientific (geometry) papyri known from Alexandria—no definitive text of the Ele­
ments was prevalent until the 4th c. CE, when the “received” text of the Elements was probably 
first put together by Theon and Hypatia.) The Monacensis remark does not fit the rest of 
Proclus’ Prologue: for it attributes to this “Euclid” a “formalist” mathematical philosophy 
(of “irrefragable demonstration”) quite at variance with the Platonic philosophy (of eternal 
truths) advocated in the rest of Proclus’ Prologue.

The Monacensis remark seeks to date “Euclid” based on the claim that Archimedes some­
where referred to “Euclid”. However, the isolated reference to the Elements (not “Euclid”) in 
the works of “Archimedes” has been regarded as spurious, since, in the absence of standard­
ized texts, it was not the custom in Archimedes’ time to make such references, especially in 
the style of Christian theology, and references could have been made at many other places. 
Furthermore, since the author of the remark in the Monacensis manuscript knew of the spu­
rious Archimedes reference, the author of the Monacensis remark must date from later— 
probably the 16th c. CE, when Byzantine Greek texts arrived in Europe. The Monacensis 
remark, therefore, is an interpolation that was no part of Proclus’ original text.

The mistaken belief in an actual person called “Euclides” may possibly have originated in 
a Toledan howler—a mistranslation of “Uclides” (meaning “key to geometry”) as referring 
to the name of a person who authored the Elements. In any case, the “irrefragable demon­
strations” of “Euclid” of Monacensis were vaguely stated to have been based on “causes and 
signs” , 1 which hardly suits the purposes of formalist philosophy! The actual philosophy and 
history of the Elements accordingly needs to be re-examined.

The arrangement of the theorems in the Elements relates better to Proclus’ explanation 
of mathematics as meaning, by derivation, the science of learning, for learning must ideally 
proceed on the basis of what the learner has previously learnt. Since Proclus, like Plato and 
Socrates, regarded all learning as reminiscence of knowledge that the soul had acquired 
in previous lives, this closely tied mathematics to his religious beliefs about the soul and 
reincarnation. Proclus thought the soul, being eternal, was sympathetically stirred by eternal 
mathematical truths—which entailed the eternity of the cosmos. These beliefs about the soul 
and cosmos, though compatible with the early Christianity of Origen, were in sharp con ict 
with the later-day Augustinian doctrines of resurrection, creation, and apocalypse.

Proclus’ philosophy of mathematics, and its linkage to religious beliefs, assumes special 
significance in his socio-political context, which was a time of intense religious turmoil. Pro­
clus sees mathematics as an instrument of religion, and uses geometry to advocate political 
equity. He explains that mathematics is valuable not so much for its practical applications 
but because it leads to knowledge of the soul and helps attain the blessed life. That is,
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Proclus’ Prologue explains mathematics as a technique (like hatha yoga) to make a person 
introspective or meditative, and links this process of meditation (induced by mathematics) 
to the ultimate religious goal—the realization of the soul as one and equal to the immanent 
Nous. Thus, Proclus writes on mathematics as someone might today write a book on yoga 
explaining that yoga is not a form of physical exercise, for the well-being of the body, but 
is, as its name shows, a technique to achieve the union (yoga) oi dtman with Brhman—the 
ultimate goal of life. For Proclus, geometry is an Egyptian form of raj yoga.

This religious doctrine of immanence or oneness (and the consequent equality of all 
souls) was explicitly and widely related to political equity also, for example, in Islamic ra­
tional theology (aql-i-kalam) advocated by the Mu’tazilah, who called themselves people of 
unity (tauhid) and justice ( adl). (The linkage of immanence to equity is also found among the 
falasifa, the sufi-s, and as in the story of Sankara and the cancldla, or in Sri Narayana Guru’s 
interpretation of Advaita Vedanta.) In fact, immanence was linked to equity and justice, even 
in the theology of early Christian teachers like Origen (who explicitly argued that God had 
demonstrated equity by creating all souls equal, and that he demonstrated his justice by re­
warding or punishing souls according to the merits or demerits earned in the previous life, 
and that all souls would again be equal at the end of time, when God would be all in all).

By Proclus’ time, however, the church had already aligned with the Roman state, and was 
dead-opposed to equity, since equating Christian souls with non-Christian souls would have 
driven it out of business. Inequity (between Christians and non-Christians) was being touted 
as the basis of a new moral doctrine, and the new source of justice that the transcendent 
Christian God would dispense on the day of judgement (ensuring, as we are reassured by 
Dante, that no non-Christians went to paradise). Naturally, the church had little hope of 
persuading people of such doctrines by straightforward argument. Accordingly, by Proclus’ 
time, in 5th c. CE Alexandria, the Christian church had long been brutally attacking all 
“pagans” and using state and mob repression to target their intellectual leadership (like 
Hypatia) especially in the school to the headship of which Proclus succeeded.

Thus, Proclus was obliged to defend his “pagan” religion, and especially the belief in 
political equity, against the communal mob violence, systematic book burning, and state re­
pression targeted especially against his school by the new ruler-priests. It is in this context 
that Proclus turns to mathematics, for he regarded mathematics, and reason generally, as 
a key instrument in persuading those who violently advocated faith and inequity. It is not 
incidental that most theorems in the book are about equality (later reinterpreted as “con­
gruence”). Read in the manner explained by Proclus, the Elements is a text which refutes 
point by subtle point all the key elements in the changed Christian doctrine of the 4th c. CE 
(reason vs faith, immanence vs transcendence, equity vs inequity, learning as reminiscence, 
hence past lives vs creation in the recent past, reincarnation vs resurrection, eternal truths 
hence an eternal cosmos vs apocalypse, images as aids to learning vs charges of idolatry). 
Naturally, Proclus was declared a heretic and Justinian (in 529 CE) declared a legal death
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penalty on heretics, and shut down all schools of philosophy in the Roman empire. A few 
years later, Justinian and the new church also cursed Origen. The Dark Age had begun.

Only when it started emerging from the Dark Age did Europe first come to know of 
the Elements—through 12th c. translations from Arabic into Latin by Adelard of Bath and 
Gerard of Cremona—after the capture of the Toledo library, and the setting up there of a 
translation factor)'. However, at this time of the Crusades, there was a strong sense of shame 
in learning from the Islamic enemy. Also at the time of the Inquisition, the fears that Toledo 
was a Trojan horse that would spread heresy could not be lightly discounted. The shame was 
contained by the strategy of “Hellenization”—all the world knowledge, up to the 1 1th c. CE 
found in the Arabic books (including, for example, Indian knowledge) was indiscriminately 
assigned an early Creek origin, with the Arabs assigned the role of mere transmitters (and 
the Indians nowhere in the picture). The fear of heresy was contained by the strategy of 
Christianization of this incoming knowledge, by reinterpreting it to bring it in line with the 
requirements of Christian theology.

1'his background helps us to understand the popularity of the Euclid myth. The mere 
name “Euclid” suggested a “theologically correct” early Creek (as opposed to an earlier 
black Egyptian or later Theonine or Hypatian) origin of the Elements, and de ected charges 
of heresy, which invited a legal death penalty from Justinian to the Inquisition.

The existence of a “Euclid” about whom we know nothing is in any case of little use 
from the present viewpoint which seeks to understand the history of mathematics. However, 
from the perspective of the church and later racist history, used as a vehicle for cultural 
glorification, the mere name “Euclid” was critical to claim a “culturally pure” Greek origin 
of geometry, and to appropriate geometry as a Western invention—Western historians have 
built a huge structure on a single name of doubtful parentage, while using it to erase the 
solid evidence that it was preceded by some two thousand years of black Egyptian geometry, 
which had both practical and religious significance, which continued until the time of Theon, 
Hypatia and Proclus, when a definitive version of the Elements came into existence.

Further, considering that all European versions of the Elements up to the 16th c. were 
translations from the Arabic, it is equally remarkable how the subsequent Arabic-Islamic 
contribution to the Elements was eliminated, by relegating the Arabs (like the later Alexan­
drian philosophers) to the status of mere transmitters. Hence, for use in later chapters of 
this book, we note here the extraordinarily imsy “evidence” on which these claims of the 
origin and transmission of geometry are based. Thus, the long-standing claim of Euclid’s 
existence also provides an example of the trick of de facto double standards of evidence in 
Western historiography, concerning transmission—an excessively lax standard of evidence 
for claims of origin and transmission from “Greeks”, and an excessively stringent standard 
of evidence for claims of origin and transmission from non-West to West. The persistent 
reliance on such shabby standards of evidence, and the corresponding over-reliance on au-
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thority, has led to the long-term Western manipulation of history as merely an instrument 
of religious and racist propaganda, unconnected with the real past.

We are now better situated to understand the real philosophy of mathematics underlying 
the Elements, and its subsequent development. Procluvian philosophy of mathematics often 
refers to Plato who thought mathematics, like music, should be taught for its beneficent 
effects on the soul. Plato rejected the empirical (as perishable), and regarded mathemat­
ics itself as an inferior discipline. Proclus concurs that all knowledge is reminiscence, that 
geometry helps evoke this reminiscence, and that geometric diagrams are the easiest way 
to remind the soul of its past knowledge. Proclus, however, only regards the applications of 
mathematics (and not mathematics itself) as inferior. Further, he permits the empirical at 
the beginning of mathematics on the ground that proof must vary with the “kinds of being”, 
thus permitting the empirical in proofs of key results in the beginning of mathematics, as in 
every text of the Elements up to the 20th c. CE, specifically in Propositions 1.1, 1.4, etc.

The connection between mathematics and religion articulated by Proclus persisted in 
the subsequent Islamic tradition of rational theology (aql-i-kalam). However, the Platonic 
or Procluvian understanding of mathematics was subsequently transformed within Islamic 
theology as follows. First, the early Islamic theological tradition used the Elements in the 
manner of Proclus’ Elements o f Theology (attributed to Aristotle), to illustrate how everything 
could be rationally deduced from the two basic principles of divine justice and divine unity 
(equity). This tradition received a boost when, under Caliph al Ma’mun, the intellectual 
diaspora of Alexandrian philosophers arrived in strength at the Baghdad Bayt al Ilikma 
(House of Wisdom) (9th c.), via Jundishapur (6th-8th c. CE). So strong was the in uence 
of the falasifa (philosophers=lovers of wisdom), and so high was their praise for reason, 
that even their theological opponents within Islam, like al Ghazall, conceded that God was 
bound by the laws of logic—a concession naturally accepted by al Ghazalfs key opponent 
Ibn Rushd, who had a decisive in uence on Western thought.

In fact, al Ghazall conceded the point about logical inference, since his real concern 
was to attack causal inference, in a way later echoed by Hume. Al Ghazall argued that 
Allah may be bound by the laws of logic but was not bound by any laws of cause and effect. 
Thus, Allah was free to (continuously) create the empirical facts of his choice in the world, 
every instant, in any sequence (e.g., smoke without fire), howsoever surprising. The believed 
necessity of mathematical truths now acquired a new meaning compatible with the belief in 
the continuous creation of the cosmos. Mathematical truths were now regarded as necessary 
truths not in the sense of being eternal (and requiring an eternal cosmos), but in the sense 
of being true in every possible world that Allah could create. Hence, also, logic which bound 
God came to be perceived as more powerful than empirical facts which did not.

The nature of mathematics was further transformed by Christian rational theology, when 
the Elements first arrived in Europe, through Latin translations of Arabic texts in the 12th
c. CE. Christian theologians were interested in persuasion and had little knowledge of cal­
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culation. They came to regard “reason” as a more powerful means of persuasion than the 
scripture since Muslims accepted reason but rejected the Christian scripture. Accordingly, 
mathematics was projected as a religious tool to teach the method of argument to theolo­
gians. They came to regard mathematical proof as providing the standard of a “universally” 
convincing argument, for it was accepted as convincing also by the Islamic theologians—the 
only other culture that Christian theologians in Europe then knew about.

It is well known that Christian rational theology, in its initial (Thomist) stages, was deeply 
in uenced by Islamic rational theology, and Ibn Rushd (Averroes) in particular. Although, 
Christian rational theology discredited al Ghazali’s idea of providential intervention (as 
echoed by Dunsmen), because it did not fit well with the belief in a transcendent God, 
and one-time creation, it accepted al Ghazali’s argument that the empirical world had to 
be regarded as contingent to allow freedom to God to create the world. Thus, on the view 
that mathematics concerns only necessary truths, which would have bound even God, the 
empirical had to he rejected in mathematics to suit the understanding of mathematics among the 
schoolmen, who advocated Christian rational theology.

That is, the rejection of the empirical in mathematics, and the belief that the empirical is 
contingent, both, ultimately depend upon religious beliefs about the soul, God, and creation. 
This belief in the contingency of the empirical world is also used today in the philosophy of 
science, in the criterion of refutability, for example.

As a further part of this Christianization process, the ideas of immanence and equity 
stressed by Proclus were dropped in Christian theology, for reasons already explained. Thus, 
only the goal o f rational deduction was retained in mathematics.

It is these narrow religious concerns and theological ideas about proof that are ultimately 
re ected in the current notion of formal mathematical proof, based on the attempt by 
Hilbert, Russell, etc. to “clarify” the foundations of geometry (i.e. Elements). This was hardly 
the first such attempt—because of the weight attached to the Elements by Proclus, and the 
subsequent state patronage extended to it by two caliphs, people have continuously sought to 
clarify the obscurities in the Elements, and bring it in line with their philosophy, since the 9th 
c. CE. The crux of the formalist “clarification” of the Elements is to eliminate the empirical 
from mathematical proof. Thus, Proposition 4 of the Elements, which appeals to an em­
pirical procedure, has been replaced by a postulate (the SAS postulate), entirely eliminating 
the empirical from the Elements. Secondly, the now-embarrassing notion of equality was re­
placed by the notion of “congruence”, eliminating the political component of equity, in line 
with the belief in inequity in Augustinian theology (which Proclus had sought to confront). 
Finally, “reason” itself was reinterpreted mechanistically to suit the new theological vision 
of the cosmos as God’s clockwork, mechanically obedient to the laws of God. (Since Au­
gustinian theology supposed a transcendent God, repeated providential intervention went 
against morality by making God too powerful. Hence, it was thought that God “remotely” 
controlled the world through rigid laws of cause and effect that came into operation after
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the creation of the cosmos.) Accordingly, rational deduction was redefined to mean not the 
application of the creative faculty of intelligence (aql), as in Islam, but a process that can be 
mechanically checked by a moron, or a machine, eliminating also the relation of mathematics 
to the human mind, as in Proclus or in Islamic rational theology. Thus, Hilbert’s notion 
of proof is derived from the Procluvian notion of proof by eliminating all empirical, polit­
ical, and human significance in the latter, and bringing it in line with later-day Christian 
theological beliefs.

Hilbert’s reinterpretation of the Elements does not, however, appear to be sound, since 
Hilbert’s synthetic axiom set for the Elements, and the reinterpretation of equality as “con­
gruence” clearly fails beyond Proposition 1.35 where equality in the Elements refers to in- 
congruent but equal areas, as in the “Pythagorean” theorem. In contrast, Birkhoff ’s metric 
axiom set for the Elements reduces to triviality the theorems in the Elements and their partic­
ular arrangement. Thus, Hilbert’s interpretation does not fit the entire Elements, while Birk­
hoff’s interpretation trivializes the Elements. Hence, neither interpretation can be regarded 
as valid. Thus, the claim that the Elements related solely to deduction is both historically and 
philosophically unsound.

The net result is the present-day definition of mathematics-as-proof that is dubiously 
“linked” to the “Greek” way of doing mathematics, although all human, religious, political, 
and empirical significance is stripped from Proclus’ approach to mathematics in the present- 
day formalistic approach which equates mathematics with a ritualistic way of manipulating 
a grammar of unreal and meaningless symbols to make rational deductions that can be 
mechanically checked by morons or machines, and are sought to be imposed as universally 
valid. All this has not only destroyed the aesthetics underlying the Neoplatonic vision of 
mathematics, but has resulted in making it near impossible to teach geometry to children, 
and these difficulties are re ected in current school texts.

Indian school texts have further confounded traditional Indian geometry with formal. 
The humble rope of traditional Indian geometry however scores over both the straight edge 
and collapsible compasses of synthetic geometry and the ruler and compasses of metric 
geometry since it enables the direct measurement of the length of curved lines—a feature 
critical to the development of the calculus.

I
INTRODUCTION

As argued in the general introduction to the book, it is imperative that the history and 
philosophy of science be considered together. To write the history of science or mathematics 
we first need to know what constitutes “science” or “mathematics”. The typical approach 
today takes the meanings of these terms as (a) unproblematic and (b) universal, at least 
so far as the historian is concerned. However, the resulting history of mathematics is as
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unsatisfactory as the history of mathematics resulting from the definition of mathematics as 
something invented in Greece.

Preposterous though it seems, we are, today, not far from such a definition. For, a natural 
way to decide the nature of mathematics is to refer to a professional mathematician (although 
few professional mathematicians spend their time re ecting upon the nature of mathematics 
engrossed as they are in doing what they consider mathematics). A professional mathemati­
cian today sees his job as that of proving theorems, so that proof is central to mathematics 
today. The current notion of mathematical proof, as proposed by Hilbert, arises from a 
reinterpretation of “proof” as understood in certain “Greek” works—particularly those at­
tributed to Euclid. A notable feature of this notion of proof is that it excludes the empirical 
from mathematics—in striking contrast to other cultures, as we shall see in the next chapter. 
Accordingly, if we accept the present-day socially dominant definition of mathematics as un­
problematic and universal, there is nothing much to write about the history of mathematics 
in other cultures, for whatever it was that transpired in other cultures, it could not have been 
mathematics as currently understood.

Hence, if at all there is anything to write about the history of mathematics in India, it is 
essential to begin it by re-examining the current notion of mathematical proof. As a first 
step to this end, the actual historical genesis of the current notion of mathematical proof 
helps to understand it better.

The Historical Origin of Mathematical Proof

The current notion of mathematical proof is regarded as having originated in

Euclid, who brought together the Elements, collecting many of Eudoxus’ the­
orems, perfecting many of Theaetetus’, and also bringing to irrefragable 
demonstration the things which were only somewhat loosely proved by his 
predecessors.2

The key point here is the “irrefragable demonstration”; for that is what a mathematical 
proof is today believed to represent—something incorporating necessary truth, universally 
valid and beyond reproach for all time to come.

This irrefragable demonstration (“as certain as 2 plus 2 is 4”) was supposed to have been 
achieved by virtue of the arrangement of the theorems in the Elements, so that the proof of 
each theorem relied only on the statements already proved in the preceding theorems. (The 
modern-day notion of mathematical proof is somewhat similar; and though mathematical 
theorems are no longer believed to incorporate necessary truth, since axioms may be arbitrary, 
mathematical proof which connects the theorems to axioms, is still believed to incorporate 
necessary truth.) It is clear from the above quote that Proclus does not regard this Euclid 
as having originated the mathematical theorems with which the name is today associated,
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but rather Proclus (or whoever it was who penned the remark) regards Euclid as chie y 
responsible for their particular arrangement.

The better to understand this remarkable philosophy, which seeks to locate truth in the 
harmonious arrangement of things, one may want to know about the socio-political context 
in which it originated. What was Euclid’s historical context?

Euclid the Geometer: A Name or a Person ?

What is known at present. . .  about. . .  “Euclid”? Nothing.

David Fowler *

Unfortunately, we seem to know nothing at all about Euclid’s historical context. Indeed, it 
is not so clear that there was any actual person called Euclid who wrote the Elements. The 
only Euclid known to classical Greek tradition was Euclid of Megara, a contemporary of 
Plato. When medieval Europe first came to know about the Elements and Aristotle from 
the Arabs, Europeans thought the term “Uelides” (which some Arab sources had explained 
as “key to geometry” from Ud.i = key + des = space, measure) was a reference to the person 
Euclid of Megara. 'Phis baseless belief about this standard text was taught in universities 
such as Paris, Oxford, and Cambridge for some live centuries: the first English translation 
of 1570, for instance, attributed the Elements to Euclid of Megara.4 The scholarship of the 
late nineteenth century has, however, veered around to the view that it was impossible that 
Euclid of Megara could have been the author. The reasons for this shift need to be made 
quite explicit.

If one discounts Arab sources and later Byzantine Greek sources, as Heath does, our belief 
in the historicity of Euclid has a very fragile basis. Whether one believes that “nothing” 
is known about Euclid or that “nothing much” is known about him depends upon how 
seriously we take the following remark about Euclid, attributed to Proclus. The remark is 
not particularly delinite about Euclid, for the language admittedly shows that the author of 
the remark is the first to speak of Euclid, and is proceeding on speculative inferences about 
events long before his time—and some 750 years before Proclus:

All those who have written histories [of geometry] bring to this point their ac­
count of the development of this science. Not long after these men [pupils of 
Plato] came Euclid... He must have been born in the time of the first Ptolemy, for 
Archimedes [who comes after the first Ptolemy] mentions Euclid; and further, 
they say that Ptolemy once asked him if there was in geometry any shorter way 
than that of the Elements, and he answered that there was no royal road to geome­
try. He is then younger than the pupils of Plato but older than Eratosthenes and 
Archimedes; for the latter were contemporary with one another, as Eratosthenes 
somewhere says.0
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Although attributed to Proclus, the actual source of this key remark about “Euclid” is a 
manuscript called “Monacensis 427”.b Since the manuscript is on paper, and since the first 
paper mills started in Europe only towards the 13th and 14th c. CE/ the manuscript is quite 
likely from a later period, as we shall see, but has been dated, with the usual optimism to the 
earliest horizon of 1 Oth c. CE. Thus our key source of information about “Euclid” is the above 
vague remark from an undated manuscript which comes realistically from 1600-1900 years 
and optimistically from 1300 years after this “Euclid” allegedly lived. Apart from just this 
one reference to “Euclid”, the rest of the text tells us nothing serious about his philosophy. 
How should this evidence be interpreted?

'l’here are two questions here:

1. Is this remark actually due to Proclus?
2. If so, why doesn’t the text contain any further elaboration of “Euclid’s” philosophy?

Heath does not raise Q. 2. He does not explicitly raise Q. 1 either, but uncritically presup­
poses its answer is in the affirmative. His concerns now are the following.

Proclus himself lived some seven hundred and fifty years after this “Euclid”. If Proclus 
is right and Euclid was much younger than the pupils of Plato, then he could not possibly 
have been Euclid of Megara, a contemporary of Plato. If, however, Proclus is wrong about 
the date of Euclid, we could well conclude that he was also confused about the person, in this 
vague paragraph, so we would be left with no basis to believe in any person called Euclid. 
(As Heath points out, the story about there being no royal road to geometry has been told 
also about Alexander and Menaechmus; the relation of this story about political equality to 
the geometric equality in the Elements is considered later.)

From the historiographic angle, the confounding of Euclid of Megara with Euclid the 
supposed author of the Elements is interesting. While the occurrence of such a mistake is 
understandable, its persistence for five centuries is not. The persistence of this error for 
centuries shows that that stories about “Euclid” were propagated, by historians in Europe, 
exactly in the uncritical manner of myth.

Prior to Proclus, this Euclid, if at all there was such a person, did not have the stature that 
he acquired in later times through the combined in uence of Islamic and Christian rational 
theology, and colonial history.

For example, Theon of Alexandria (4th century CE) does not mention Euclid, but does 
refer to his book on the Elements:

that sectors in equal circles are to one another as the angles on which they stand 
has been proved by me in my edition o f the Elements. .. f

It is believed that Theon’s work on the Elements was completed by Hypatia, and the fact is 
that almost all known texts of the Elements are “Theonine” in origin. That is, as Heath9 

points out, all Greek manuscripts of the Elements, up to the 19th c., state in their titles that
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they are either “from the edition of Theon” or “from the lectures of Theon”. The solitary 
exception is a single manuscript in the Vatican, for which we have Heiberg’s word and fertile 
imagination to establish that it derives from an earlier version (even though it comes to us 
from a manuscript physically much later than the earliest Arethas text of 888 CE).10

So, is the alleged quote from Proclus adequate to establish the historicity of Euclid or 
the antiquity of the Elements? Imagine for a minute that we are dealing with Arab tradition. 
Although the earliest Arabic sources do not mention “Euclid” at all, al Qifti informs us that 
Euclid was domiciled at Damascus, and born at 'lyre. Because this suggests that Euclid might 
have been Arabic (or horrors, a black Egyptian!) this is dismissed by Heath with some racist 
comments. More seriously, we could ask: what, after all was the source that al Qifti had? 
And in the absence of sources that can be cross checked, why should we believe al Qifti?

Considering that Proclus comes some 750 years after “Euclid”, and could not have had 
any direct knowledge of “Euclid”, the same logic can and should be applied to Proclus. 
There is no reason why we should believe this remark, without a knowledge of Proclus’ 
sources. However, Proclus has no clear cut source of information about Euclid, but is pro­
ceeding indirectly by inference.

All those who have written histories [of geometry] bring to this point their ac­
count of the development of this science. Not long after these men [pupils of 
Plato] came Euclid...

The logic is this: since this Euclid is NOT mentioned by earlier historians of geome­
try he must come after them. The only other source Proclus (or whoever authored the 
above remark) has for these events from at least 750 years before his time is the claim that 
Archimedes mentions Euclid (as the author of the remark believes), Euclid must come after 
those earlier sources, and before Archimedes.

As if this were not bad enough, it is surprising that Proclus, who dwells at great length 
on his own philosophy and that of Plato, should have nothing further to say about the phi­
losophy of this Euclid on whose book he is supposed to be writing a commentary, especially 
since the Platonic philosophy of mathematics is so very different from the philosophy of 
“irrefragable demonstration” attributed to “Euclid”. The above remark is, therefore, an 
isolated remark.

We do not have to rely entirely on this “scriptural method” of analysing stray remarks 
which allude to further stray remarks—all of which are of doubtful authenticity. There is 
the archaeological evidence of papyri. Despite the vastly in ated claims of the “Hellenic” 
scientific achievements, there is a great paucity of anything that could be called “scientific” 
in the thousands of papyri recovered from Alexandria in Africa, and apparently only some 
three papyri from these thousands (and 0 out of the 2 recovered from Greece proper) relate 
to geometry. 11 These three fragments are believed to date from the 2nd to the 4th c. CE, 
and correspond to about 60 full lines of text of the Elements, together with some fragmentary
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information on another 60 lines. However, none o f these available fragments follows the “received” 
text,v2 or the current text of the Elements. Had there really been a “Euclid”, who compiled 
a definitive book on geometry called the Elements as early as —300 CE, then a standardized 
text of the Elements ought to have been subsequently prevalent.

The evidence however suggests to the contrary that no definitive text of the Elements was 
prevalent for the next seven hundred years, until the 4th c. CE. This, of course, creates 
further problems for the “Euclid” hypothesis. If this “Euclid” was truly so little known for 
so long, how did his version of the Elements survive even until the time of Proclus? It would 
be difficult enough, even today to source a text by an obscure author from 750 years ago, 
and it was obviously more difficult in the time of Proclus who lived in the times of papyri 
technology, and repeated book burning ordered by the state.13 On the other hand, if the text 
did survive, given the fragility of papyri, the text would have had to be repeatedly copied out 
by hand, by different scribes over the centuries. Accordingly, a number of different people 
must have been willing to invest money and time in it, to have it copied out, so that this 
Euclid ought to have been famous long before Proclus.

Therefore, the archaeological evidence refutes the “Euclid” hypothesis. Of course, it 
is well known from the philosophy of science that any evidence whatsoever can be made 
consistent with any theory whatsoever by introducing enough auxiliary hypotheses—e.g., it 
has been argued that the recovered papyri relate to someone writing out the Elements for 
practice, making many mistakes (!) etc. Similarly, the discrepancy between the Monacensis 
remark about “irrefragable demonstration” and the rest of Proclus’ text is “explained” by 
saying that Proclus was a bad mathematician, or that he sought to impose his philosophy 
on Euclid’s. That is, we weigh the remark and the rest of the text side by side, and find the 
remark about “Euclid” heavier! There is not the slightest doubt that every piece of empirical 
evidence can be explained away by one who wants to hang on to the myth of Euclid, just 
as every piece of evidence against astrology can be explained away by those who make a 
living from it. The point is that this makes the claim about “Euclid” as irrefutable as any 
other myth, and each piece of contrary evidence, to be explained away, needs an auxiliary 
hypothesis, so that there is an accumulation of hypotheses.

Then there is the question of the date of this “Euclid”. First of all, this is intrinsically 
improbable. The time of Ptolemy I was a time of constant strife, and hardly conducive to 
scholarship. Ptolemy I, who became satrap of Egypt on Alexander’s death, had an army 
of only 4000 people. With this small force he was busy fighting numerous wars, and also 
placating the Egyptians whose unhappiness with the earlier Persian rulers had toppled 
them, and helped Alexander win Egypt without a blow. Since Ptolemy I remained preoc­
cupied with pressing affairs of the state, the bulk of Alexander’s loot of books lay neglected 
in Alexandria, 14 and was first catalogued only by Callimachus at the time of Ptolemy II. 
Therefore, whether the word “7  70 ” in the Monacensis remark is translated as “was born”,
or as “ ourished”, Euclid (if he existed) would probably have been drafted into Ptolemy’s
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army—for conditions were hardly appropriate in the time of Ptolemy I for scholarship to 
ourish. Interestingly, some historians have indirectly acknowledged this difficulty which so 

constrains possibilities that the only possibility that it leaves open is that Euclid was born 
exactly in —325 CE!

Secondly, the Monacensis remark fixes the date of Euclid by claiming that Archimedes 
refers to this Euclid. Of course, we know even less about the works of Archimedes, than we do 
about “Euclid”, but in the late (16th c.) text of the Sphere and the Cylinder, somehow attributed 
to Archimedes, from some 1800 years earlier, there is a reference to the Elements, though not 
to Euclid.10 This isolated reference has been regarded as spurious16 for the reason that it was 
not the custom in the time of Archimedes to make such references to texts (naturally, since 
“standard editions” did not exist prior to the use of print technology for mass producing 
books). This was also not the custom among Arab scholars (standard editions did not exist 
even in 9th c. Baghdad, as clear from the book-bazaar attempts towards standardization 
in the Fihrist), but such citations were the custom especially in later-day Christian theology. 
Moreover, there are many other occasions on which a reference could have been made. 
Therefore, whosoever may have been the author(s) of the “Archimedes” text, that reference 
to the Elements in it certainly was not due to Archimedes.

However, if the reference to the Elements in the “Archimedes” text was spurious, and the 
author of the Monacensis remark was familiar with that spurious reference, he must post­
date that spurious reference. That would place the Monacensis remark some time in the 
16th c. when Byzantine Greek texts arrived in hulk in Europe.

Therefore, from the present non-Western perspective, the least one can do is to explore 
alternatives to the traditional belief in the historicity of Euclid and thereby arrive also at the 
proper philosophy of the Elements.

The first and most likely possibility is that, since the Monacensis remark fits so uncomfort­
ably into the rest of Proclus’ text, since the earliest date we can assign to it (the manuscript 
in which the remark is found, or even the author to whom its text is attributed) is long after 
“Euclid”, and since the author of remark tries to infer the date of “Euclid” from the failure 
of earlier authors to mention “Euclid”, and since the papyri evidence gives no indication of 
a definitive text prior to the 4th c. CE, and the remark shows awareness of a late spurious in­
terpolation, the Monacensis remark must itself be an interpolation by some later-day scribe.

Such forgeries were common enough: for example, the Vatican owes its origin and special 
status to one such document, called the “Award of Constantine” today acknowledged by all 
concerned as a forgery. So unenviable was the reputation that priests had acquired in this 
matter that Isaac Newton spent 50 years of his life trying to undo the forgeries that he 
thought various priests had incorporated into the Bible, to serve their temporal ends. And 
the only answer to his scholarly and voluminous accusations was to hide them for some 250 
years—in fact they still remain secret.17
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Having been a naive victim of the trick by historians of referring to the Monacensis re­
mark as “Proclus’ remark”, I had earlier thought that Proclus himself might have invented 
“Euclid”, to escape religious persecution by Christians, but in view of the above argument, 
it now seems unlikely that Proclus was the author of that remark. It now seems that the 
author of the Monacensis remark was merely repeating, with an added dash of “expertise”, 
an earlier story about “Euclid”. However, the practical reasons for propagating this story re­
main the same—to escape religious persecution by the Christian church. Proclus had been 
declared a heretic. A death penalty was legally prescribed for heretics, since the time of Jus­
tinian, and the Inquisition made sure that the death would be painful. Mere possession of a 
heretical work was ample and complete confirmation of guilt in the days of the Inquisition, 
when a person was presumed guilty until proven innocent, and when even children were 
sentenced to death if it was discovered that they had not eaten pork on Friday. Therefore, 
even copying out a manuscript by a recognized heretical author like Proclus, during the 
thousand years from Justinian to the Inquisition, would have presented a potentially grave 
risk to a scribe, against which such an interpolation would have insured the scribe. The 
name “Euclid” made clear that Proclus’ commentary was not on the Elements collected by 
another heretical author like Hypatia, something that a scribe might have had a hard time 
convincing an Inquisitor about.

Mathematics and Religion

Why should a work on mathematics have bothered the church from Justinian to the Inquisi­
tion? This point needs to be made clear since the presumption today is that mathematics is 
secular, and universal, and unconnected with religion.

That however was not the case in the time of Proclus who clearly and explicitly relates 
mathematics to religion in his prologue. Further, we need to set off Proclus’ prologue to 
the Elements against the politics of the Roman empire in his time—with violent priest-led 
Roman-Christian mobs attacking Neoplatonists, murdering the most brilliant among them 
like Hypatia, and invoking state-support to smash or takeover Neoplatonic places of wor­
ship, 18 and burn down the Great Library of Alexandria.19

In this heated religious context, mathematics was viewed not as a “universal” or “secular” 
science, but as a key vehicle to propagate the religious and political philosophy of what is 
today called Neoplatonism. The chief aim of Proclus’ prologue to the Elements is to bring out 
this dimension of mathematics which he felt was neglected by some of his contemporaries.

Pythagoreans recognized that everything we call learning is remembering, . . .  
although evidence of such learning can come from many areas, it is especially 
from mathematics that they come, as Plato also remarks. “If you take a person to 
a diagram,” he says [Phaedo 73b], “then you can show most clearly that learning 
is recollection.” That is why Socrates in the Meno uses this kind of argument.
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This part of the soul has its essence in mathematical ideas, and it has a prior 
knowledge of them__ 20

The famous Socratic argument, which sought to establish reincarnation, using mathemat­
ics, was as follows.

The soul, then, as being immortal, and having been born again many times and 
having seen all the things that exist, whether in this world or in the world below, 
has knowledge of them all; and it is no wonder that she should be able to call to 
remembrance all that she ever knew about virtue and about everything; for as all 
nature is akin, and the soul has all things, there is no difficulty in her in eliciting 
or as men say learning out a single recollection all the rest, if a man is strenuous 
and does not faint; for all enquiry and all learning is but recollection.21

Socrates then gave a practical demonstration of this by questioning a slave boy and eliciting 
first the wrong responses, and then the right responses regarding geometry. The wrong 
responses demonstrated that the slave boy was untutored, while the right responses demon­
strated that he nevertheless had an intrinsic knowledge of mathematics. The untutored slave 
boy’s innate knowledge of mathematics, according to Socrates, thus established the existence 
of the soul and its past lives.

What Proclus is explaining here (“That is why Socrates in the Meno used this kind of 
argument.... ”) is why Socrates specifically used mathematics (and not some other form of 
knowledge) to demonstrate that learning is reminiscence—because he thought mathematics 
incorporates eternal truths, and, as in sympathetic magic, the soul being eternal is specifi­
cally attracted to these eternal truths.

This belief that knowledge of mathematics was innate, and that this demonstrated the 
past (and future) lives of the soul, or reincarnation, was embedded in the view of a recurrent 
cosmos. This cosmology directly went against the key ideas of resurrection, creation, and 
apocalypse that were the cornerstones of the new Augustinian doctrine of the state-church. 
This is why Justinian and the fifth ecumenical council pronounced it as anathema.22 And 
that is why Nietzsche (although misled by Augustine into confounding quasi-recurrence with 
eternal recurrence) made cosmic recurrence the basis of his anti-Christian stance.23

The issue of images was already so much a burning point of confrontation with Christians, 
given their attacks on idols and “idolatry”, that Porphyry had written an entire book On 
Images,24 where he sought to explain that the idols in temples are like books written in stone:

. . .  images... sketch invisible things in visible forms__  To those who have
learned to read from statues as from books I will show the things there written 
concerning the gods. Nor is it any wonder that the utterly unlearned regard the 
statues as wood and stone, just as also those who do not understand the written 
letters look upon.. .books as woven papyrus.
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By Produs’ time, after the destruction of Serapis, this issue of idols must have been a 
very sore point indeed. Look at the amount of upheaval today caused by the destruction of 
the semi-abandoned Babri Masjid—and Serapis was the most magnificent place of worship 
in the Roman empire. It is, therefore, not incidental that every known text of the Elements 
makes liberal use of images or geometrical diagrams. These images are, from the viewpoint 
of current mathematics, inessential. From the strict formalist perspective they are even 
misleading, for the images of points and lines could be replaced by those of coffee mugs 
and coffee tables. However, it would be conceded that the existence of images makes the 
proofs so much easier to follow: images help learning. For Proclus, mathematics was the 
science of learning, and the figures helped learning, just because they served to move the 
soul (in a way that the sight of coffee mugs would not). That is why, explains Proclus, Socrates 
in Meno drew a diagram.

For Proclus, then, mathematics was not a “secular” activity, but was, like hatha yoga, a key 
discipline which prepared a person for the ultimate religious experience: encounter with 
the immanent Nous within oneself. This is the concluding thought of part I of his prologue:

This, then, is what learning ( a  0 [mathesiz]) is, recollection of the eternal 
ideas in the soul; and this is why the study that especially brings us the recollec­
tion of these ideas is called the science concerned with learning ( aO a 
[mathemadke]). Its name thus makes clear what sort of function this science 
performs. It arouses our innate knowledge... takes away the forgetfulness and 
ignorance [of our former existence] that we have from birth,... fills everything 
with divine reason, moves our souls towards Nous,.. .and through the discovery 
of pure Nous leads us to the blessed life.25

'Phis belief in immanence was linked to equity as also is the case in the Mutazila or Islamic 
rational theology {aql-l-kaldm), the sufi’s, and Advaita Vedantists for that matter (as in the 
story of Sankara and the candala, or as in Sri Narayana Guru’s interpretation). Of course, the 
Mutazila described themselves as people of taulud (unity) and adl (justice). And it is hardly 
a matter of surprise that so many of the theorems in the Elements relate to the equality of 
things that are superficially different. The story of there being no royal road to geometry is 
thus a mystery story about how the key to geometry is the teaching of equity.

Accordingly, mathematics was for Proclus a key means of propagating his fundamental 
religious beliefs. The belief was that everyone had an eternal soul, and had gone through 
various earlier lives; that, in the course of mundane existence, people forgot this divine 
element within themselves; and mathematics served to remind people of their souls and 
to draw their minds inwards. Mathematics was, for Proclus, an instrument to arouse one’s 
innate spirituality—it was like an advanced Egyptian Mystery.
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Proclus and Origen

By Proclus’ time, well after Constantine, the environment for these specific religious belief's, 
within the Roman empire, had turned excessively hostile. Thus, the idea of all learning as 
recollection, as e.g. propounded by Socrates, involved the idea of a soul that had experi­
enced a variety of past lives. In the terminology of Christian theologians, this has nowadays 
come to be known as the doctrine of pre-existence, and its original form is not very different 
from what is also known as the doctrine of karma-samskara.

These very same religious beliefs (“pre-existence”, karma) were earlier championed within 
the Christian church by Origen of Alexandria. Origen believed:

Every soul... comes into this world strengthened by the victories or weakened 
by the defeats of its previous life. Its place in the world... is determined by its 
previous merits or demerits. Its work in this world determines its place in the
world which is to follow this__  The hope of freedom is entertained by the
whole of creation... ,26

He cited the scriptures in his support:

this world, which is itself called an age, is said to he the conclusion of many ages.
. . .  that after this age, which is said to be formed for the consummation of other 
ages, there will be other ages again to follow, we have clearly learned from Paul 
himself... P

Origen clearly discriminated between quasi recurrence, and its stock misrepresentation 
in the West as eternal recurrence, since Augustine:

So therefore it seems to me impossible for a world to be restored for the second 
time, with the same order and with the same amount of births, and deaths, and 
actions; but that a diversity of worlds may exist with changes of no unimportant 
kind, so that the state of another world may be for some unmistakeable reasons 
better (than this), and for others worse, and for others again intermediate. But 
what may be the number or measure of this I confess myself ignorant, although, 
if any one can tell it, I would gladly learn.28

Furthermore, though this might seem a little strange today, Origen quite explicitly related 
this belief in “cyclic” time to equity and justice:

In which certainly every principle of equity is shown, while the inequality of cir­
cumstances preserves the justice of a retribution according to merit.29
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That is, in Origen’s view, God demonstrated the principle of equity by creating all people 
equal, and also demonstrated his justice by rewarding and punishing them suitably in future 
lives, according to merit—and that accounted for the observed inequality of circumstances. 
Thus Proclus and Origen had similar beliefs, which is not surprising, since they belonged to 
the same school.

However, by Proclus’ time, these religious beliefs (“doctrine of pre-existence”, equity) 
were exactly what were being abusively targeted and cursed by the church and its key ide­
ologues (Augustine, Jerome, Justinian). Fundamental aspects of present-day Christian re­
ligious dogma, such as resurrection (as opposed to reincarnation) creation (as opposed to 
“pre-existence”), apocalypse (as opposed to an eternal cosmos), eternal (as opposed to tem­
porary) heaven and hell, inequity (as opposed to essential equity), transcendence (as op­
posed to immanence), faith (as opposed to reason) etc., came about from the rejection of 
Origen and the acceptance of Augustine during this period, starting from Constantine (4th 
c. CE) and ending with Justinian (6th c. CE).30

The reason for this theological transformation was very simple: the church had turned 
imperial, and equity (which made Christian souls equal to non-Christian souls) went against 
its imperial objectives to which its theology had to be adapted. Moreover, by the time of 
the emperor Julian, the priests, through temporary loss of power, recognized the insecurity 
of ruling without weapons. Accordingly, they converted the doctrine itself into a weapon 
intended to strike superstitious terror in the hearts of simple folk. Reincarnation (repeated 
lives after death), which guaranteed eventual “deliverance” for all, made the priest irrele­
vant, and was hence rejected in favour of resurrection (life after death just once). Immanence 
which made the priest an intruder in the communion with oneself, was rejected in favour of 
transcendence, where the priest could legitimately claim a role in brokering salvation, etc.

The educated Romans, however, simply refused to buy any of this, and refused to turn 
Christian. Instead they used reason to question the aggressive advocacy of blind faith. For 
example,

referring to Mark 16:18, Porphyry writes: In another passage Jesus says: “These 
signs shall witness to those who believe: they shall lay hands on the sick and they 
shall recover. And if they drink any deadly drug, it will hurt them in no way.”
Well then: the proper thing to do would be to use this process as a test for those 
aspiring to be priests, bishops or church officers. A deadly drug should be put in 
front of them and [only] those who survive drinking it should be elevated in the 
ranks [of the church].

If there are those who refuse to submit to such a test, they may as well admit 
that they do not believe in the things that Jesus said. For if it is a doctrine of 
[Christian] faith that men can survive being poisoned or heal the sick at will,
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then the believer who does not do such things either does not believe them, or 
else believes them so feebly that he may as well not believe them.31

Also, people like Porphyry were not intimidated by the priestcrafty trick of an assumed 
moral superiority, as in the charge of idolatry laid by Christians against them. On the con­
trary, we have seen how Porphyry responded by arguing that Christians were intent upon 
destroying idols just because they were uneducated.

The church reacted by adopting a systematic policy of inciting mob and state violence 
against non-Christians. What happened in Alexandria was no isolated or incidental out­
burst of emotion—for the same things happened across the space of the Roman empire. 
Moreover, even some twelve centuries after what happened in Alexandria, exactly the same 
policy of petitioning the state to destroy all temples, or to exile or violently torture dissenting 
individuals etc. was repeated in Goa, in the 16th c. CE.32 The policy of systematic violence 
was, in turn, morally justified by denigrating all non-Christian cultures, save only the (early) 
Greeks.

How did the Alexandrian philosophers respond to the violence incited by the priests? 
Naturally, it would have been incompatible with their philosophy to respond violently to vi­
olence. Since they regarded knowledge as the source of virtue, their natural response would 
have been to try and educate the Christians. What better way to spread knowledge than to 
use the science of learning—mathematics? Therefore, Proclus, like his predecessors Hypatia 
and Theon, in choosing to focus on the Elements, was responding to an urgent need of his 
times. Unlike Porphyry, Proclus’ approach is more indirect, in that he does not once men­
tion Christianity. However, Proclus’ commentary emphasizes how the Elements brings out, 
point by subtle point, all the key elements that refute the revised Christian doctrine: reason 
vs faith, past lives vs creation, reincarnation vs resurrection, immanence vs transcendence, 
equity vs inequity, images vs charges of idolatry.

We also know that Proclus argued explicitly against both creation and apocalypse. Proclus 
wrote a book On the Eternity o f the World giving some eighteen arguments to this effect.33 

Proclus’ notion of the soul, like Origen’s was related to the notion of “cyclic” time. What is 
the relation between cyclic time and the eternity of the soul? Proclus explains this in his book 
Elements, nowadays also called Elements o f Theology ,34

Thus, Proclus’ understanding of mathematics, as incorporating eternal truths, entailed 
also an eternal cosmos in direct con ict with the “end-of-the-world-is-near” fear of apoca­
lypse the ruler-priests wanted to peddle to promote their power.

Justinian responded by shutting down all schools of philosophy in the Roman empire, 
and instituting a legal death penalty on heretics, i.e., all those who dissented with the church. 
We also know that the Christian theologian John Philoponus responded with a book called 
On the Eternity o f the World: Against Proclus, defending the Christian view of apocalypse against 
Proclus, who had been declared a heretic.
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It is, thus, clear that the mathematics of the Elements, according to Proclus’ understanding, 
was right at the eye of the vicious religious and political storm that attended the transforma­
tion of Christianity in the two centuries between Constantine and Justinian.

The Doctrine of Cultural Purity

These circumstances also help to understand how and why the myth of “Euclid” might have 
been fabricated. The imperial church, sought universal domination, and the physical elim­
ination of all opponents. Unlike the Nazis, who did not succeed in either objective, the 
imperial church did succeed in physically liquidating a large number of people. Starting 
with the elimination of “pagans” in the Roman empire, and then in Europe, this was fol­
lowed by the elimination of Muslims in Europe, and the purges of Jews. Encouraged by 
these “successes”, the 15th c. papal bulls (still in force, see Chapter 6), explicitly called upon 
Christians, as their religious duty, to kill, enslave, and rob non-Christians, as actually hap­
pened in the subsequent multiple genocides proper in the two Americas and then Australia.

The attempts to physically liquidate all non-Christians and dissenters, were accompanied 
by the attempt to physically eliminate their thoughts. Hence, burning “heretical” books 
remained continuously on the church agenda for over a thousand years. Theodosius and 
Valens ordered the burning of “pagan” books in the Roman empire, while Louis IX in 1248 
ordered the burning of all Hebrew books in Paris, and the “Synod of Diamper” burned the 
Indian Aramaic Bibles in 1599.

It is not surprising, therefore, that church historians sought to physically eliminate from 
history any significant role for non-Christians. (This is not a medieval matter: in most 
Western universities today, the history of science means, de facto, the history of science in the 
West. 1'his is true not only of teachers, but also of researchers—most conference organizers 
quietly assume that the history and philosophy of science is synonymous with the history 
and philosophy of Western science.)

These triumphalist Christian attitudes were put to severe test at Toledo, when the works of 
Muslims in Arabic books started being translated for Christians into Latin. 'Ehis was during 
the Crusades, when the church had whipped up intense religious hatred. The church having 
proclaimed the superiority of Christians for centuries, many Christians felt ashamed about 
openly acknowledging the achievements of others, and felt embarrassed about having to 
learn from books written by Islamic Arabs. This was especially the case in learning from 
the Islamic enemy during the Crusades. This sense of shame and shock is illustrated by the 
following remark of Daniel of Morley, a Toledo translator.

Let no one be shocked if, with reference to the creation of the world, I should
invoke the testimony of pagan philosophers rather than the church fathers__
Let us then borrow from them and, with God’s help and command, rob the pagan
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philosophers of their wisdom and eloquence. Let us take from the unfaithful so 
as to enrich ourselves faithfully with the spoils.3y

An obvious strategy to remove this sense of shame was to modify history to make the ori­
gins of this knowledge more palatable. It was in this context that a systematic attempt was 
first made to fabricate ancient Greece. The early Greeks (as distinct from later Greeks like 
Theon, Proclus etc.) were regarded as the theologically correct predecessors of Christianity, 
since Eusebius. Accordingly, the story was told that Greeks were the real originators of all 
knowledge at Toledo (and elsewhere), and the Arabs were depicted as mere passive transmit­
ters. The Christians were not learning from the Muslims, they were only getting back their 
own stuff from the Greeks—knowledge which they had lost during the Dark Ages! For a 
church accustomed to propagating all sorts of fabulous and implausible propositions, it was 
no difficult task to propagate such a historical doctrine of “Hellenization”. To demonstrate 
the “Hellenic” origin of all knowledge up to the 11th c. CE, one or two talking points were 
regarded as adequate, and for such talking points, a few stray remarks here and there, forged 
where necessary, were thought to be sufficient. The church had long experience in fabricat­
ing history, since Eusebius—who openly advocated it. While adequate for the believer, the 
sort of evidence on which this history is built is obviously unacceptable to the sceptical. (For 
more details, see Appendix 1 .A.)

Apart from the shame, there was also the fear that Toledo was a Trojan horse, which would 
spread heresy, and we will see later in this chapter how this fear was handled by the addi­
tional process of Christianization of selected texts through reinterpretation. This reinterpre­
tation drastically changed the understanding of the texts, transforming also mathematical 
philosophy in the process.

A definite answer to the question of exactly when and why “Euclid” was invented, however, 
requires further historical investigation.

Under the circumstances that prevailed from roughly Justinian to the Inquisition, almost 
anybody from Proclus onwards could have invented the name “Euclid” to provide an accept­
able “Greek” ancestry to this thought, and thus de ect religious persecution.

However, to suppose that this actually happened in the Byzantine empire would be to put 
the cart before the horse. How do we know that the text of the Elements at all survived in 
the Byzantine empire between Proclus and the Arethas text of 888 CE? (The question seems 
not to have been raised earlier.) Clearly there is no evidence in this direction, and this is not 
very probable, given the repeated edicts by Christian emperors, and ecumenical councils to 
burn books and attack heretics. It is, therefore, unlikely that the Elements survived in the 
Byzantine empire, after Proclus.

It is rather more likely that the Elements followed the trail of the intellectual diaspora of 
the Alexandrian philosophers as they shifted from Alexandria to Athens, and then, after 529 
CE, relocated to Jundishapur, in Iran, under Khusrau I Anushirvan (“Immortal soul”). Here
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they stayed for over a couple of centuries, before trickling into Baghdad from the time of 
I laroun al Rashid, and then at the invitation of Khalifa al Ma’miin (9th c. CE), which is when 
we next hear of the Elements.

At Jundishapur, the Alexandrian philosophers re-established the Alexandrian model iirst 
established in the time of Ptolemy II of Alexandria, and again started importing and trans­
lating knowledge from all over the world. In particular, Khusrau sent the physician Burzoe 
(Peroze) to India to bring back Sanskrit texts for translation. Jundishapur was where the 
Pancatantra stories were first translated into Pahlavi as Kelileh va Demneh. Indian astronomy 
texts, too were imported and translated as the zij-i-Shahryar. Peroze also brought back the 
game of chess.36 Both the Pancatantra and chess were regarded as useful for the education 
of kings, the one to teach them justice, and the other to teach them strategy. Khusrau’s 
successor, Khusrau II, was also famed as a patron of culture, and continued to support the 
activity of the philosophers at Jundishapur.

Therefore, it is to be supposed that the Elements was translated from Greek to Pahlavi (in 
Jundishapur), to Arabic (in Baghdad), and then back to Byzantine Greek. It is possible that 
the Arethas text of 888 GE too is a result of such multiple translations, for the text dates 
from over half a century after the formation of the Baghdad House of Wisdom. In fact, it 
is strange that the to-be-Archbishop of Caesarea openly commissioned a scribe to copy out 
a heretical work, and even recorded this in his copy for all to see, thus endangering his 
future ambitions in the church hierarchy. Even if the Alexandrian Greek text of the Elements 
somehow survived in Greek, it is clear that the texts derived from Arabic would have been 
the ones that were more easily accessible.

The point here is, however, a bit different. Unlike the 12th c. GE translations from Arabic 
to Latin at Toledo, attributed to people like Gerard of Cremona who knew neither Ara­
bic nor mathematics, but nevertheless translated the Elements from Arabic into Latin, the 
translations at Alexandria-Jundishapur-Baghdad-Antioch were done by more knowledge­
able people. Nevertheless, these (multiple) translations did result in Toledan howlers like 
the term “sine” or the term “surd” or “deaf numbers” for numbers like \/2, as we shall see. 
Therefore, it is quite possible that, in the course of these translations, the epithet “Uclides” 
attached to the Elements was misinterpreted as the name of a Greek author.

Is the Existence of Euclid Important?

What difference does it make whether Euclid was real or invented? Whether Euclid was 
an invention or a real person makes a great deal of difference from the “cultural purity” 
angle, to those who seek to establish the Greek origin of geometry. This is the reason why 
present-day Western scholars want to hang on to this “Euclid”, and make him the star figure 
of the Elements, even though nothing definite is known about this Euclid. From the name 
we cannot, of course, decide the colour of the skin, either for Euclid or for Archimedes, but
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Arabic claims that contain anything contrary can always be hotly contested. With the same 
facility as Euclid was asserted to be from Megara, he is now asserted to be from Alexandria.

From our point of view, however, the name “Euclid”, followed by a hypothetical date 
and no further information, is of little use in understanding the historical evolution of the 
philosophy of mathematics in the Elements. Therefore, for our purpose of understanding 
the historical evolution of mathematics, rather than glorifying “culturally pure” European 
tradition, it makes little difference whether Euclid was real or invented; if we have virtually 
no information about him, then Euclid is as good as non-existent, and should be treated as 
such.

In particular, irrespective of whether Euclid was real or invented, the Monacensis remark 
about his alleged philosophy of “irrefragable demonstration” is obviously a later-day inter­
polation. On the other hand, Proclus’ philosophy of the Elements, which fits the Elements, and 
also very well fits his socio-political context, is better regarded as the “original” philosophy 
of the mathematics in the Elements.

However, for use in later chapters of the book, we note here that the long-standing claims 
of Euclid’s existence, and the surprisingly imsy evidence on which they are based, also 
provide an example of the de facto standards of evidence in historiography—standards to 
decide origin and transmission that should either be uniformly applied elsewhere or rejected 
here as well.

In particular, there is the erasure of Egypt. Herodotus informs us not only that the Greeks 
learnt geometry from Egyptians, but that they also borrowed most of their religious practices 
from the Egyptians. From this perspective, Proclus’ philosophy of the Elements makes it just 
a continuation of Egyptian mystery-geometry texts, and there is no clear evidence of what, 
if anything, the Greeks from Pythagoras onwards added to this tradition.

Can Authorship be Attributed to a Single Individual?

There is another way of looking at the question of authorship. It is clear that, from at least 
the time of Theon and Proclus, through the Arabic and European rational theologians, right 
down to the time of Hilbert, Birkhoff, and the US School Mathematics Study Group, there 
has been a continuous attempt to remove the obscurities in the Elements, and to update it, 
and bring it in line with the philosophy of the updaters. To look for a unique author of the 
Elements is like trying to trace the origin of all the water in a mighty river back to its visually 
apparent source in a small pond: this transparently neglects the vast underground drainage 
system that contributes most of the water to the river on its way to the sea.

As for the apparent source itself, Christian Europe got its knowledge of the Elements from 
the decaying Arab empire in Europe, the Arabs got their knowledge of the Elements from 
the decaying Persian empire, where the philosophers of the Roman empire had got sanctu­
ary; the Romans got their knowledge from the decaying Greek empire, and the Greeks, as
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Herodotus records, got their knowledge of geometry from the Egyptians. As 1 have argued, 
elsewhere3/ and in Chapter 6 the typical pattern is that the direction in which informa­
tion ows has been from the vanquished to the military victor, though this fact has often 
enraged the descendants of the military victors. It has been argued that 18th-20th century 
CE European historians of science reinvented history in a racist38 way to make it appear 
that this entire chain of information transmission had a unique beginning in Greece. In this 
book I argue that this process of manipulating history had already commenced at Toledo. 
At any rate, these historians did not represent the (unknown) Alexandrian Greek texts as 
merely one in a chain of translations and adaptations into English, from Latin and Byzan­
tine Greek, from Arabic, from Pahlavi, from Greek, and from Egyptian and other texts from 
across the world, but represented the Greek texts as the absolute beginning of this chain—as 
the original creative fount of practically all human thought! Since the geographical origin of 
the Elements (and all its earliest commentaries) in Alexandria, in the African continent, could 
hardly be denied, the name Euclid, suggesting a Greek legacy, was critical to the process of 
appropriation via Hellenization.39

Why was this appropriation first attempted? Why were the Elements so important to the 
rational theologians of Christianity? This is a complex issue to which we will return when 
we address the importance of the Elements for Islamic rational theology, and for education. 
However, one point is clear enough. The Elements have long formed an important part 
of the curriculum in Islamic rational theology, then Christian rational theology, and, until 
quite recently, in modern industrial capitalism. Accordingly, multiple authorship, or the 
“clarification of the obscurities”, in the Elements, has proceeded from multiple objectives, 
and these multiple objectives were often conditioned by the prevailing objectives of educa­
tion.

II
THE MOST RECENT CLARIFICATION OF OBSCURITIES IN THE ELEMENTS

Let us first examine the most recent example of clarifying obscurities in the Elements, for it 
was this process that led to the current-day notion of mathematical proof. In recent times, a 
major step to modify the text and teaching of “Euclidean” geometry was taken in 1957 when 
the US School Mathematics Study Group issued its recommendations on the teaching of 
geometry.40 Those recommendations followed the studies into the foundations of geometry 
by Hilbert,41 Russell,42 Birkhoff,43 etc. These authors addressed a variety of obscurities in 
the Elements. The most obvious of these obscurities may be put into the following classes.

1. Unsound definitions: e.g., those of point, line, plane, etc.
2. Missing definitions.
3. Hidden assumptions: e.g., the correspondence of lines with real numbers.
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In addition to these, there are subtler problems, relative to the current formalistic notion 
of mathematics, such as

4. Axioms taken as self-evident truths (about empirical reality): this is also true of the 
constructions used in proofs.

5. Redundant assumptions: e.g., the parallel postulate becomes redundant if one admits 
reals and rigid motions, or the notion of distance.

In judging these obscurities in the light of current formalistic mathematics, one must, of 
course, keep in mind that the present-day formalistic epistemology of mathematics (axiom- 
defmition-theorem-proof) itself historically originated from the analysis and clarification of 
these obscurities in the Elements. Furthermore, one must also bear in mind that there is 
nothing universal or “natural” about the formalistic approach, and that it is steeped in a 
particular theological and cultural tradition.44

The Unreal and Meaningless as the Sole Concern of Mathematics

The obscurities of type 1 are clear enough. One can define something ostensively (e.g., one 
can define the word “dog” by pointing to an instance of a dog) or one can define it in other 
words. In the case of a geometric point, an ostensive definition seems somewhat unsuitable: 
Platonic philosophy requires that geometry should deal with idealizations that have no real 
existence. Hence one cannot point to a point. One can point to a dot on a piece of paper; 
but no real entity like a dot can ever correspond to the ideal notion of a geometric point 
which is required not to have any real existence. As Proclus explicitly points out, even the 
image of the geometric dot or line that one has in one’s mind is tainted by reality.

'Fhe alternative is a verbal definition. Consider the definition in the Elements: “A point is 
that which has no part, or which has no magnitude.” (The “Heiberg” version has only the 
first part of this definition.) A person familiar with atoms and magnitudes may not question 
this definition: but it communicates nothing to anyone else. (Besides, is one talking of real 
atoms here—elementary particles of some sort? The particle which is closest to a point is 
the electron. But the electron cannot be a Euclidean point, for a circuit around a Euclidean 
point brings us back to where we started, whereas two circuits around the electron are needed 
to return to the starting point, because the electron has the paradoxical property of half­
integral spin.) Clearly, a verbal definition of a non-real notion cannot avoid an infinite 
regress, for at no point can it terminate in an ostensive definition.

Thus, Platonic philosophy, by its insistence on the non-reality of the ideal, eliminates 
both possibilities of an ostensive or a verbal definition, and the only option left is that of 
current formalistic mathematics, which regards the notions of point, line, etc. as meaning­
less, undefined notions. In other words, the current way of removing the obscurities in the 
Elements is to adopt Russell’s definition of mathematics: “Mathematics may be defined as a 
subject in which we never know what we are talking about... ”!4:)
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Real Numbers and Euclidean Proportions

Obscurities of type 2 are examined later. Obscurities of type 3 are manifest in the very first 
proposition of the Elements. The first proposition constructs an equilateral triangle on a 
given segment AB. This process involves drawing two circles, the first with centre at A and 
radius AB, the second with centre at B and radius BA. One obscurity is that the two circles 
may fail to intersect, in the sense that the point of intersection need not exist in a formal 
mathematical sense. If points on the circles correspond to (pairs of) rational numbers, there 
may be “gaps” between them, such as the gaps between the numbers 1, 2, 3. Indeed one is 
led to expect such gaps since the “Euclidean” approach to proportions suggests a reluctance 
to use irrational numbers like s/2. It was the attempt to clarify this obscurity in the first 
proposition of the Elements that led Dedekind to the idea of the real line as something 
that could be “cut” without leaving any gaps. Needless to say, the formal real numbers, as 
conceptualized by Dedekind, are something necessarily unreal, for there is no real process 
by which one can specify or fully name a real number such as 7t.

The SAS Theorem/Postulate

The other obscurity in the proof of Proposition 1.1 is this: why is the radius measured out 
twice} Can’t the first measurement of AB be re-used for BA? This is related to the key obscu­
rity concerning Proposition 1.4. This difficulty must have been noticed by every schoolchild 
who did geometry using the older “Theonine” texts, like those of Todhunter, current in In­
dia up to the end of the 1960’s. In the “Heiberg” version, Proposition 4 of the Elements states 
that

If two triangles have the two sides equal to two sides respectively, and have the 
angles contained by the equal straight lines equal, they will also have the base 
equal to the base, the triangle will be equal to the triangle, and the remaining 
angles will be equal to the remaining angles respectively, namely those which the 
equal sides subtend.46

In brief: if two sides and the included angle of one triangle are equal to those of an­
other triangle, then the two triangles are equal. We will refer to this as the side-angle-side 
proposition, or SAS for short.

The key obscurity is this. In the Elements the proof o f this proposition involves superposition: 
it involves picking up one triangle, moving it through space, rotating it as necessary, and 
applying it to the other triangle. The later theorems on the equality of triangles (with the 
exception o fl.8) do not, however, use this procedure: they rely instead on SAS.

There is no doubt at all that physical motion in space is implied, and there is a specific 
Common Notion or Axiom to enable this proof to go through. Common Notion 4 of the
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“Heiberg” version asserts: “Things which coincide with one another are equal to one an­
other” .47 For those accustomed to reinterpreting this in terms of congruence, it should be 
pointed out that this clearly applies to distinct geometrical objects that are brought into con­
tact, and superposed, through motion. Likewise, Axiom 8 of the “Theonine” version asserts: 
“Magnitudes which coincide with one another, that is, which fill the same space, are equal 
to one another.” If this is not a tautology, it must refer to distinct objects which are made to 
coincide with each other, bv moving them about.

Physical Movement and Motion Without Deformation

The doubt that must have entered the mind of every schoolchild is the following. This 
method of picking and carrying greatly simplifies the proofs of all other theorems and riders: 
if it can be used in one place, why can’t it be systematically used in other places as well? My 
teacher had no satisfactory answer why it was all right to do this in one place, but wrong to 
do it elsewhere. He simply said it is better not to do it, but could not explain why. But one 
may attempt an answer as follows.

Picking and carrying line-segments is a common enough thing: one must do this every 
time one ordinarily makes a measurement. By the late 19th century European mathemati­
cians were sceptical about the very possibility of making a measurement: moving an object 
might deform it. What sense did it make to say that a figure remained identical to itself as it 
was moved about in space? A shadow moving on uneven ground is continuously deformed; 
perhaps space itself is similarly “uneven”, so that any motion may involve deformation, and 
measurement may require more complicated notions like a metric tensor. The avoidance of 
picking and carrying in the proofs of the subsequent theorems was interpreted, by the 20th 
century, as an implicit expression of this doubt about the very possibility of measurement. It 
was argued against Helmholtz that measurement required (a) the notion of motion; further­
more this motion must be without deformation, so that it required (b) the notion of a rigid 
body, and neither of these was the proper concern of the geometer, who ought to be con­
cerned only with motionless space. (The notion of rigid body depends on physical theory; 
e.g., the Newtonian notion of rigid body has no place in relativity theory, for a Newtonian 
rigid body would allow signals to travel at infinite speed.)

Geometry and Motion

Historically, this doubt about measurement was expressed as a doubt about (a) the role of 
motion in the foundations of mathematics, and (b) the possibility and meaning of motion 
without deformation. In favour of (a) the authority of Aristotle was invoked to argue that 
motion concerned physics, and that mathematics was “in thought separable from motion”. 
Thus, “Aristotle” asserts:48



30 Cultural Foundations of Mathematics

1'he next point to consider is how the mathematician differs from the physicist. 
Obviously physical bodies contain surfaces and volumes, lines and points, and 
these are the subject matter of mathematics. . . .  Now the mathematician, though 
he too treats of these things, nevertheless... separates them; for in thought they 
are separable from motion.

The authority of Kant was implicitly invoked to argue that motion was not a priori, but 
involved the empirical, and hence could not be part of mathematics:

an empirical proposition cannot possess the qualities of necessity and absolute 
universality, which, nevertheless, are the characteristics of all geometrical propo­
sitions. .. .lake, for example, the proposition: “Two straight lines cannot enclose 
a space, and with these alone no figure is possible,” and try to deduce it from the
conception of a straight line and the number two__  All your endeavours are
in vain, and you find yourself forced to have recourse to intuition, as, in fact, 
geometry always does. You therefore give yourself an object in intuition. But of 
what kind is this intuition? Is it a pure a priori, or is it an empirical intuition? If 
the latter, then neither an universally valid much less an apodeictic proposition 
can arise from it, for experience can never give us any such proposition.49

All these worries are captured in Schopenhauer’s criticism of the “Theonine” Axiom 8 

(corresponding to the “Heiberg” Common Notion 4) which supports SAS:

. . .  coincidence is either mere tautology, or something entirely empirical, which be­
longs not to pure intuition, but to external sensuous experience. It presupposes 
in fact the mobility of figures; but that which is movable in space is matter and 
nothing else. Thus, this appeal to coincidence means leaving pure space, the 
sole element of geometry, in order to pass over to the material and empirical.00

In short, motion, with or without deformation, brought in empirical questions of physics, 
and Plato, Aristotle, and Kant, all concurred that mathematics ought not to be based on 
physics, but ought to be a priori, and that geometry ought to be concerned only with “immov­
able” or a priori space.

The Synthetic and the Metric Axiom Sets

The Hilbertian reading of the Elements hence denies the possibility of measurement, so that 
the proof of Proposition 4 (SAS) fails. To preserve the structure of the Elements it is then 
necessary to assume Proposition 4 as a postulate (the SAS postulate) that cannot be proved 
from any more basic principles. This approach is called the synthetic approach.0 1 One 
wray to describe this approach is by distinguishing synthetic instruments from those found in
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the common instrument box of school geometry. The synthetic instruments are the straight 
edge (unmarked ruler) and “collapsible compass”. The last term is De Morgan’s graphic de­
scription of the impossibility of measurement with the synthetic approach: distances cannot 
be reliably picked and carried because the synthetic compasses are loose and “collapse” as 
soon as they are lifted from the paper. (“Collapsible compasses” may well be an accurate de­
scription of the then-prevailing state of technology'!) Hence, also, the ruler is left unmarked. 
In this synthetic approach, the term equal used in the “original” Elements is changed to the 
term congruence: motion is replaced by a mapping, so that it is not necessary to transfer 
figures from one place to another; one only needs to shift one’s attention from one figure to 
the other.

The other way of clarifying the obscurity in the original Elements is to accept the possibility 
of measurement, and to accept that the proof of Proposition 4 (SAS) is valid. This is called 
the metric approach, and has been championed by Birkhoff. The main problem with a full 
metric approach is that it completely devalues the Elements. Even Proclus (i.e., the Monacen- 
sis remark) does not claim any originality for his Euclid; the value of the Elements derived 
from the nice arrangement of the theorems, so that the proof of any theorem used only the 
preceding theorems. With a full metric approach, even the arrangement of theorems in the 
Elements loses its significance: it is quite possible to prove the “Pythagorean theorem” (1.47), 
by cutting, picking and carrying, without recourse to the preceding theorems.

The synthetic and metric approaches being so different, the problem is to choose one of 
them.

It is in deference to the synthetic formulation of the Elements that proposition 4 of the 
“original” Elements is now taught as the SAS postulate. This permits one to continue teaching 
the Elements as a valid example of the deductive method of proof used in modern mathe­
matics.

This is unacceptable for several reasons.
(1) A metric approach makes “Euclidean” geometry very simple: a straightforward metric 
approach could prove the “Pythagorean” “theorem” (Proposition 1.47) in one step, as in the 
Yuktibhdsd proof.02 The synthetic approach was originally motivated by the desire to justify 
the apparently needless complexity of the proofs in the “original Euclid”. The justification 
was needed because of the importance attached to this text by Christian rational theology. 
The justification was sought by denying the possibility of picking and carrying segments 
without deformation; hence, also, the possibility of measurement was denied. Thus, the 
synthetic approach makes proofs more difficult, and is counter-intuitive—for it denies the 
everyday ability to pick and carry, and compare and measure. (The ultimate justification for 
denying the manifest ows from the Platonic-Kantian idea that mathematics is a priori, and 
so ought not to be contaminated by the empirical. The other wray of looking at this idea is 
that it demands that mathematics ought not to correspond to anything real, and hence ought 
to remain perfectly meaningless.)
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(2) The synthetic interpretation of the Elements substitutes the key term “equal” in the “origi­
nal” by the new term “congruent”. This key substitution clearly does not work beyond Propo­
sition 1.34. Thus, Proposition 1.35 states: “Parallelograms on the same base and in the same 
parallels are equal to one another.” Phis proposition asserts the equality of areas that are 
quite clearly non-congruent (when not identical). It follows that one must either abandon all 
propositions after Proposition 1.35 (including the “Pythagorean theorem” 1.47), or else one must aban­
don the synthetic interpretation of the Elements. It does not help to try to define a general area 
through triangulation, as Proclus’ contemporary, Aryabhata did03 since the notion of area is 
not defined anywhere in the Elements, and the usual formula for the area of a triangle is itself 
derived from 1.35. Some attempts have been made to supplement the synthetic approach 
by axiomatically defining area in a way analogous to the Lebesgue measure (overlooking the 
connection of the Lebesgue measure to the notion of distance). Area, however, is an intrin­
sically metric notion; indeed, it would be a rather silly enterprise to define area without first 
defining length (and, in fact, maintaining that length ought not to be defined at all).

The schizophrenic method of denying metricity until Proposition 1.35, and admitting it 
thereafter, is only confusing to young minds. The whole project is born of the compulsions 
of theology and racist history.04

Ill
THE CURRENT INDIAN SCHOOL TEXT IN GEOMETRY

It is interesting to take a short detour and brie y consider the effects of this racist history 
as they are re ected in contemporary mathematics education in India. After independence, 
we have not, of course, accepted this racist history as it stands, but we have substituted this 
with our own schizophrenic project. The schizophrenia derives from multiple inheritance.05 

The formal structure of our educational system—schools, colleges, universities—continues 
to be patterned on the system prevalent in Europe, rather than the indigenous tradition 
of pdthsdld-s or Nalanda and Taksasila. The educational system in Europe was for several 
centuries quite explicitly oriented towards theological concerns. With the rise of industrial 
capitalism, in the last hundred years or so, there was a partial shift in the West towards more 
practical and utilitarian concerns. “Euclidean” geometry, for example, is no longer taught 
in British schools.

Independent India accepted industrial capitalism, and the elite in this country still con­
tinue to regard education as a means of forging links to the metropolitan centre. Accord­
ingly, maintaining inequality has remained an important objective of education, so that even 
50 years after independence most of the country remains illiterate, and education remains 
the preserve of the elite for one excuse (shortage of government funds) or another (need 
to commercialize). Accordingly, while education has been “de-moralized”, and some of the 
theological concerns of the West have been removed, these have been substituted by elitist 
chauvinism.
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In line with the British legacy of bureaucracy, and the clerk’s dharma of evading respon­
sibility, our school texts are produced in clerkdom (which still controls education), by a duly 
constituted committee. The committee has sought to balance the requirements of industrial 
capitalism (which needs the products of education), with those of chauvinistic history (which 
seeks to correct racist history without understanding tradition).

These contradictory requirements are re ected in the earlier NCERT text56 for Class 9. 
On the one hand, this is how that NCERT text justifies the teaching of geometry: “For in­
stance, those of you who will become engineers, technicians and scientists will not only find 
all this information useful but will also realize that you cannot do without it.” (Needless 
to say, there is no other concrete instance in the “explanation” which occupies one para­
graph in this vein of redundancy improving communication!) But if practical usefulness 
were the sole justification for teaching geometry, then metric geometry ought to be taught. 
Engineers, technicians, and scientists, all, have no use for geometry without measurement. 
(Not even relativists care much for spacetime geometry based on the connection rather than 
the metric.)

On the other hand, a similar conclusion follows from the historical assertions with which 
the NCERT exposition of geometry begins (pp. 123-124).

The Baudhayana Sulbasutras... contains [sic] a clear statement of the so-called 
Pythagoras theorem. The proof of this theorem is also implicit in the construc­
tional methods of the Sulbasutras.

The subtle way in which Western historians have exploited the notion of “proof” seems to 
have quite escaped the authors of the text. Western historians have readily conceded that 
Babylonians, Egyptians, Chinese, and Indians all knew earlier that the Pythagorean theorem 
was true. They have maintained, however, that none of them had a proof; hence, none of 
them knew why it was true: they knew of the theorem only as an empirical fact which they did 
not quite comprehend, much as an ass might know the theorem without comprehending it. 
Comprehension, therefore, still dawned with the Creeks. To refer to constructional methods 
as implicit proofs is to miss the central issue clarified above: the motivation for synthetic 
geometry is that empirical knowledge is not only distinct from mathematics but that it cannot 
logically precede mathematics. Hence, if the second sentence in the above quote is true, 
then the very notion of mathematical proof would need to be changed to accept empirical 
inputs. Needless to say, the committee did not intend any such revolutionary challenge to 
mathematical authority which was entirely beyond its terms of reference!

Therefore, on the third hand (surely committees have at least three hands!), the text 
lapses back into the synthetic geometry recommended by the US School Mathematics Study 
Group. Like a proper committee report, the resulting text has included a little something to 
suit every taste. So the text introduces the SAS postulate (p. 162) as the “SAS (Side-Angle- 
Side) Congruence Axiom”, where “axiom” is to be understood as follows (p. 125): “basic 
facts which are taken for granted (without proofs) are called axioms. Axioms are sometimes
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intuitively evident.” That is, an axiom, like a fact, belongs to the domain of empirieal and 
physical, rather than the intuitively a priori—exactly the thing that was denied to motivate 
the SAS postulate and the notion of congruence in the first place! One wonders why, unlike 
most other committee reports, this report was not left to gather dust!

The natural casualty is the student who has to digest the whole thing, and so may be 
put off geometry for the rest of his life, especially if he is clear-headed. If congruence is 
explained through superposition (“Heiberg” Common Notion 4, or “Theonine” Axiom 8), 
as the text does (pp. 159-161), one has clearly a metric approach. Within a metric approach, 
it is trivial to prove the synthetic congruence results proved in the text—in fact there is then 
no need for a SAS congruence axiom, one has a SAS theorem, the way it was proved in the 
“original” Elements. To now prove these results, in the manner of synthetic geometry, on the 
ground that one is teaching the axiomatic method, is to teach the axiomatic method as a 
completely mindless and elaborate ritual that one must complete on the strength of the state 
authority that NCERT enjoys. What children are being taught is not the sceptical attitude 
which underlies the need for a proof, but its antithesis—mindless obedience to rituals that 
cannot be justified.

The khichdi geometry in the NCERT text for Class 9 is indigestible because it has mixed 
up the Elements by mixing up elements that ought not to be taken together—like diazepam 
and alcohol—unless the object is to induce a comatose state. To make the text digestible, 
one needs to sort out which geometry one wants to teach: metric, synthetic, or traditional. 
Even if one wants to teach all three one should recognize their separate identities, and keep 
them in separate compartments: it is not a good idea to make the synthetic notion of con­
gruence more intuitive by defining it metrically as the NCERT text does! The authors need 
to appreciate the incompatibility of the metric and synthetic approaches, and the way these 
differ from the traditional approach, which incorporates an altogether different notion of 
mathematical proof.57 (Needless to say, the authors, some of whom are well-known mathe­
maticians, have proceeded with the desire to “clarify the obscurities” in the Elements.)

Traditional Geometry Distinguished from the Metric and the Synthetic

Enough has been said above about the incompatibility of the metric and synthetic ap­
proaches, and I will brie y summarize the way in which both these approaches are incom­
patible with the traditional approach. (The differences are considered in more detail in the 
next chapter.)

First, the authoritative traditional literature is the sutra literature; the sutra style is well 
known for its extreme brevity—like a telegraphic message, further distilled by digital com­
pression. The sutra-s are not intended to serve primarily a pedagogical function, and they 
are not intended to be accessible to all. (Indeed, for the knowledgeable, the sutra-s could 
well serve a mnemonic function.) Consequently, the sutra-s have no place for proofs. Texts
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dealing with rationale, on the other hand, being less authoritative, have not been translated. 
The key text on rationale, available in English translation,08 is the Yuktibhdsa, which, as stated 
earlier, proves the “Pythagorean theorem” in one step, by drawing the figure on a palm leaf, 
cutting it, and rearranging the cut parts. An examination of rationale in traditional geome­
try shows the following.

What distinguishes traditional geometry from both metric and synthetic geometry is 
the traditional notion of proof (pramdna), and issue examined in greater detail in Chap­
ter 2. Brie y, though there have been many debates in Indian tradition on what constitutes 
pramdna, the one ingredient that went unchallenged was the physically manifest (pratyaksa) as 
a means of proof. The traditional notion is not embarrassed by the empirical, and does not 
regard it as intrinsically inferior to metaphysics. Both the Baudhayana and the Katyayana 
sulbasutra-s begin by explaining the use of the rope for measuring lengths and areas. On 
the other hand, Descartes who is credited with present-day metric geometry asserted that 
“geometry should not include lines that are like strings... .”°9

Asserting the sulbasutra tradition would thus clash with the entire tradition of education 
in medieval and renaissance Europe, which was geared to theological purposes, and hence 
reinforced the philosophy of authorities like Plato, and later Kant—which justified the dep­
recatory attitude towards the physical world, and glorified a mathematics divorced from the 
empirical. For Proclus, the key object of teaching mathematics was not its military or po­
litical utility, which he regarded as subsidiary, but its ability to make the student forget the 
practical concerns of everyday life and thereby discover his real self.

[T]he soul has its essence in mathematical ideas, and it has a prior knowledge 
of them.. .and brings of them to light when it is set free of the hindrances that 
arise from sensation. For our sense-perceptions engage the mind with divisible 
things... and... every divisible thing is an obstacle to our returning upon our­
selves. . . .  Consequently when we remove these hindrances.. .we become know- 
ers in actuality. . . . 60

Rejecting this attitude is not a trivial matter, for all of current-day mathematics depends 
upon the belief that mathematics is a priori and divorced from the empirical.

Nevertheless, the fact is that all traditional Indian notions of proof proceed from a re­
alistic philosophical standpoint directly opposed to Platonic idealism. Classical Indian tra­
dition saw no need to regard mathematics as something necessarily metaphysical, and con­
sequently, there was no need for two separate procedures of validation: (1) a notion of 
mathematical proof, and (2) criteria (such as logical and empirical falsifiability) to decide 
the validity of a physical theory. Therefore, though metric, traditional Indian geometry 
does not need to proceed from Birkhoff’s axioms. Against this background, the differences 
between synthetic, metric, and traditional geometry are summarized in Table 1.1.



Table 1.1: A comparison of metric, synthetic,

Type of geom- I II
etry

Metric Synthetic

Fundamental
setup

(S, L, P, d, m) (S, L, P, B, )

Distance d Not mentioned

Measure for 
angles

rn Not mentioned

Congruence 
for segments

From d Given (for segments)

Congruence From m Given (for angles)
for angles

SAS Theorem Postulate



“Euclidean”, and traditional geometry.

Ill IV

“Euclidean” Traditional

Semi-idealized (not 
real, not ideal)

Real space

Lengths Measured with a rope

Only equality and 
inequality with right 
angles

Measured physically by 
measuring the arc with 
a rope

Not mentioned (only 
equality, presumed 
pre-defined)

Equality through 
measurement

Not mentioned (only 
equality, presumed 
pre-defined)

Equality through mea­
surement

Theorem (empirically 
proved)

Similarity and rule of 
three (equality a special 
case)



Table 1.1: continued

Type of georn- I II III IV
etry

Metric Synthetic “Euclidean” Traditional

Area Additional Not defined (else Not defined (only Explicitly defined
definition length would be equality, presumed through triangulation/
needed defined) pre-defined) rectangulation

Addition/ Real numbers Congruence classes Geometric construction Eloating point
inequality arithmetic

Proportion Real numbers Congruence classes + Complex assertions Rule of 3
complex assertions using inequality and
(using “betweenness”, integer addition. Not
inequality, and integer 
addition)

in Book 1

Instruments Scale, Unmarked Not explicitly stated Rope
protractor, straight-edge and
and compass “collapsible”
(“geometry
box”)

compasses
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Indian Rope Trick

Another key distinguishing feature of traditional geometry, which will be important to us in 
what follows, is the use of the exible rope instead of the straight-edge or the ruler. The use 
of the rope enables direct measurement of the length of curved lines, hence also of angles, 
in the natural radian measure. However, this process of assigning a length to curved lines is 
very hard to understand if one is accustomed only to the ruler which can measure the length 
of only straight lines. With a ruled straight-edge, assigning a length to curved lines requires 
essentially the calculus. (This is one reason for the difficulty with the calculus that present- 
day students have.) In fact, we find the difficulty explicitly articulated by a major Western 
thinker, Descartes, who says in his Geometry that it is beyond the capacity of the human mind 
to understand the ratios between straight and curved lines!

[T]he ratios between straight and curved lines are not known, and I believe can­
not be discovered by human minds, and therefore no conclusion based upon 
such ratios can be accepted as rigorous and exact.61

By holding the rope taut, it can easily be used to draw straight lines. It can, of course, be 
calibrated by a system of knots, which can be amazingly accurate as we will see in the case of 
the kamãl (Chapter 5). By fixing one end of the rope (on the ground), the rope can also be 
used as a compass. Hence, obviously, it can also be used to construct a right angle and the 
other angles commonly found in set squares. Thus, the lowly (and low-cost) rope (or string) 
is a complete and superior substitute for the elaborate and ritualized geometry box. It does 
not even require inputs like paper and pencil (which so many school students in India can 
ill afford). Amazingly, however, this fact has not struck any of our educators so far, including 
those who never tire of referring to the sulba sütra-s, or those who keep talking of taking 
education to the masses!

IV
THE OBJECTIVES OF EDUCATION,

AND THE PHILOSOPHICAL SUBSTANCE OF THE ELEMENTS

We now have before us three distinct models of “Euclidean” geometry: synthetic, metric, 
and traditional. Which model one ought to teach depends upon the objectives of education. 
This is a question which is postponed to a later chapter.

However, with some examples of the historical transformation of the Elements, through 
a process of reinterpretation and “clarification of its obscurities”, whether due to varying 
objectives of education or otherwise, we can now proceed to answer two questions that were 
postponed earlier. Why were the Elements so important to Islamic and to Christian rational 
theology? Why were they such a necessary part of the theological curriculum? (This is
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the sort of thing that modern-day mathematicians do not usually understand, since their 
education, geared to the needs of industrial capitalism, encourages a narrow view of the 
world, together with an unquestioning acceptance of the postulates and rules of inference 
laid down by mathematical authority.) However, an understanding of this is necessary to 
understand the development of the context in which the efforts of Hilbert, Russell, and 
Birkhoff were situated.

Very brie y, to understand this, one must situate Christian rational theology in the con­
text of the two traditions which it inherited. The first is that of Arabic-Islamic rational 
theology, which reached medieval Europe through Toledo, and the works of Averroes, and 
his response to al Ghazall in the debate that preceded him in Islam,62 and deeply in uenced 
the beginnings of Christian rational theology'.

For the Arab rationalists (Mutazila and aql-l-kalam) and philosophers (falasifd) Uclides, or 
the key to geometry, became important as a demonstration of the old-Egyptian/Neoplatonic/ 
Sufi principles, related to key aspects of their theology. In fact, this theology, accepted also 
by Plotinus, Porphyry, and Proclus, was presumably carried by the intellectual diaspora of 
the Alexandrian philosophers, expelled from the Roman empire in 529, which reached the 
Bayt al Hikma via Jundishapur. Caliph al Ma’mun’s aim was quite simply to encourage an 
intelligent reading of the Koran.

Thus, al Ma’mun accepted justice as the cornerstone of a strong society; since the cor­
responding principles of Islamic jurisprudence {fiqh) derived from the Koran, al Mamun 
agreed with the Mutazila view that aql (intelligence, creative reason) should be applied to 
the reading of the Koran, against the literal interpretation, or naql (mimesis), advocated 
by the traditionalists. The Arab rationalists aimed to deduce everything from the two key 
principles of unity (tauhid) and justice (adl). The similarity with Proclus’ thinking is striking: 
and Proclus’ Elements o f Theology was one of the first books to be translated into Arabic, at 
the Bayt al Hikma as the Kalarn fi l mahd al-khair (“The Theology of the Pure Good”). Al­
though it came to be known as the “theology of Aristotle”, the Arabic or Toledan “Aristotle” 
should not be con ated with Aristotle of Stagira.63 It is, therefore, understandable that the 
Mutazila found the Elements useful for the same religious reasons as Proclus. In particular, 
the Elements, for them, provided a striking model of how even physically manifest differences 
could be reduced to equality. The book also acquired a practical use as a model for teaching 
and learning—by arranging things in a manner so as to make the teaching accessible to all 
persons, including those who might be completely ignorant. Thus, the significance of the 
arrangement of the theorems in the Elements was that it facilitated learning.

Naturally, there was a traditionalist response to the Mutazila, most persuasively by al 
Ghazall. Wisdom and medicine which went together in Alexandria, from the time of 
Ashoka’s delegation (of wise men and medicinal plants), also went together at Jundishapur, 
where the philosophers had set up not a temple but a hospital—whose great practical value 
fetched them immediate acceptance—and this was also their point of entry in Baghdad.
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Likewise, medicine and wisdom went together in Baghdad as in the word hakim (doctor, wise 
man), an epithet still applied to a Ph.D.!

A key aspect of the successful practice of medicine was the notion of cause. The idea 
was that a disease could be successfully treated only if its cause was correctly understood, 
just as a mechanic can set a machine right only if he correctly understands the cause of the 
failure. A1 Ghazalf s attack against the philosophers, widely and persistently misrepresented 
in the Western literature, was directed against this notion of cause. Ilis key worry was that 
this encouraged a mechanistic view of the cosmos: if the present state of the cosmos was 
entirely the result of past causes then there was no role left for Allah to create anything 
new. It should be pointed out here that al Ghazall, being a stiff, and accepting immanence, 
naturally regarded the creation of the cosmos as a continuous process, rather than the one 
time affair described in the Bible.64

Therefore, al Ghazall argued that Allah was not bound by any laws of cause and effect, 
and that observation could lead us to conclude merely that Allah created things in a habitual 
sequence. However, this habit was not binding. He could possibly create things in a different 
or surprising order. In modern language, all that al Ghazall was saying was that the observed 
occurrence of a sequence n times does not imply its occurrence n + 1 times. In the process 
of denying the validity of causal (or inductive) inference, al Ghazall incidentally conceded 
that Allah was bound by the laws of logic, and could not create an illogical world.

This incidental concession provided a new meaning to the idea that mathematical truths 
are necessary truths, not in the sense that they are eternal, but in the sense that they are true 
in all possible worlds—that Allah could create. It also placed logic on a pedestal: logical 
truths which bound Allah were more powerful than empirical truths which did not. This was 
a situation with which al Ghazalf s opponent Ibn Rushd concurred (although he beats about 
the bush and is unable to cogently answer al Ghazalf s primary argument against cause).

In the initial stage, after Arabic knowledge reached Europe, Ibn Rushd had many en­
thusiastic followers in the university of Paris, for example. However, these Averroists soon 
found themselves on the hit list of the Inquisition. In the resolution of the 1210 Council of 
Paris, all works of “Aristotle” were banned. In 1270 and again in 1277, some 232 proposi­
tions derived from various Arabic works were banned. Enthusiastic Averroist scholars at the 
University of Paris, like Siger of Brebant, were targeted by the Inquisition, and Siger ed but 
died mysteriously.

The fears that these teachings involved heresies—i.e., ideas that would weaken the power 
of the ruler-priests—were well founded. The notion of equality in the Elements has political 
and philosophical overtones of equity, which are quite lost upon those now accustomed to 
thinking in terms of congruence. But the proximity to Arab thinking, then, made it easier 
to understand the absence of a royal road to geometry as an assertion about the political 
content of the Elements. Equity is contrary to Platonic ideas of the republic, and Proclus’ 
stated aim in writing his commentary on the Elements was to inform people about its deep
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philosophical content—the doctrine of the oneness of humankind. While Arab rational 
theology retained this old-Egyptian/Neoplatonic aim, we have seen that equity ran counter 
to the revised Christian doctrine of the 4th c., and was consequently rejected by Christian 
rational theology.

Thus, the second thing that Christian rational theology inherited was the legacy of the 
early Roman church and its confrontation with old-Egyptianism/ Neoplatonism over the 
issue of equity. Though the very early church doctrines clearly favoured equity, and Origen’s 
theology is barely distinguishable from Neoplatonism, the state-church after Constantine 
found this doctrine of equity a gross political inconvenience. We have already noted the 
church’s confrontation with old-Egyptianism/Neoplatonism, beginning about the time of 
Augustine and ending with closure of the Alexandrian school and the formal condemnation 
of Origen by the Fifth Ecumenical Council.65

Impelled by these contradictory inheritances, Thomist philosophy

1 . retained rational deduction, but
2 . rejected equity, immanence, etc. as irrelevant.

The philosophical importance of the Christianized Elements was now confined to the 
process of rational deduction which could be used to persuade the non-believer, since both 
Islamic rationalists and al Ghazâlï accepted that God was bound by “Aristotelian” logic. The 
method of reasoning in the Elements was, therefore, projected by Christian rational theology 
as providing the universal model of necessary truth.

Exactly how universal is this model of rational deduction, which underlies present-day 
mathematics?

V
CONCLUSIONS

1. The key evidence for “Euclid” and his philosophy of “irrefragable demonstration” is 
a remark in the Monacensis manuscript of Proclus’ Commentary on the Elements. This 
isolated remark does not fit the rest of the text, and is not based on any reliable ear­
lier sources of information about events 750 years before Proclus. The remark is not 
genuine, but postdates the spurious “Archimedes” reference to which it alludes, and 
is probably from the 16th c. CE. The archaeological evidence of papyri supports the 
absence of a definitive text of the Elements up to the 4th c. CE. As such nothing is re­
liably known about “Euclid” or his philosophy, so that “Euclid” must be regarded as 
pure myth.

2. Proclus’ philosophy must be accepted as the appropriate philosophy underlying the 
Elements. Proclus’ key concern is to present mathematics as a religious instrument for 
spiritual progress through learning. On Proclus’ exposition, the Elements refutes point
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by point all the key changes in Christian doctrine carried out in the 4th and 5th c. CE 
(without ever directly referring to Christianity). Proclus was declared a heretic, and the 
like-minded Origen, the key expositor of early Christianity, was anathemized by the 
Christian church.

3. The mere name “Euclid” helped to de ect religious persecution by suggesting a “the­
ologically correct” Creek ancestry to a Neoplatonist work probably put in its present 
form by Hypatia, a key opponent of the church, and an early victim of church brutal­
ity. This “Hellenizing” process of inventing a theologically correct Greek ancestry' to all 
world knowledge commenced at Toledo, to overcome the sense of shame felt in learn­
ing from Arabic books translated into Latin during the Crusades. In turn, Helleniza- 
tion helped justify further religious persecutions, by denigrating all non-Christian cul­
tures save only the Greeks. This racist-religious doctrine is nakedly re ected in the 
claim of Western historians that mathematics (and, indeed, all knowledge) originated 
with the Greeks. This monumental and implausible claim is built, like claims about 
“Euclid”, on the excessively tenuous evidence of stray remarks of doubtful authenticity 
in very late texts, typically from ca. 12th c. CE to the 16th c. CE.

4. Islamic rational theology retained the original emphasis in the Elements on equity and 
justice, in both the religious and political sense. Its opponent, al Ghazali, incidentally 
gave a new interpretation to logical truths as necessary truths in the sense of being true 
in all possible worlds. Thus, mathematical truths could be necessary without being 
eternally true, and without con icting with continuous creation by Allah. This placed 
logical truths, which bound Allah, on a higher footing than empirical truths, which 
did not.

5. Christian rational theology accepted the above valuation of logical truths as necessary 
and binding on God, compared to contingent empirical facts, which were not, thus 
permitting God to create a world of his choice. Further, the Elements was reinterpreted 
and aligned with the prevailing Christian theology, by disregarding its linkages to im­
manence and equity, as explained by Proclus. Equality was further reinterpreted as 
congruence by Hilbert. Further, the Procluvian exposition of mathematics as a means 
of inducing meditation to elicit “the prior knowledge of the soul” and achieve union 
with Nous, was also eliminated, since anathema in the prevailing Christian theology6 7. 
Mathematics thus came to be regarded as being of theological value solely because 
mathematical proof provided a means of persuasion, accepted “universally”—since ac­
cepted also by Islamic theologians who did not accept Christian scriptures.

6 . Hilbert’s synthetic interpretation of the Elements exactly fits the concerns of Christian
rational theology, but does not fit the entire Elements, while Birkhoff’s metric inter­
pretation trivializes the Elements. Just as Hilbert regarded the original proof of SAS as
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erroneous, Hilbert’s ideas of mathematical proof must be regarded as erroneous, from 
the Procluvian point of view.

7. Though traditional Indian geometry is metric it is incommensurable with both the 
above synthetic and metric approaches, since it accepts the empirical as a perfectly 
valid means of proof within mathematics. Also it uses the rope as the primary geomet­
ric instrument, distinct from the unmarked straight edge and collapsible compasses 
of Hilbert’s synthetic interpretation, or the ruler and compasses of Birkhoff’s metric 
interpretation. The length of curved lines (hence angles) could hence be readily mea­
sured in traditional Indian geometry. The various distinct types of geometry need to 
be treated as pedagogically distinct in school texts.
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APPENDIX l.A
THE SOURCES OF “GREEK” TRADITION

The extraordinary historical theory of the Greek origin of all science, which seeks to appro­
priate all intellectual achievement to the West, though it has become quite widespread, rests 
on very shaky foundations.66 We brie y re-examine this historical theory here, for this is the 
sort of history that has provided the basis for the philosophy of mathematical proof.

There are two key textual sources of “Greek” tradition. One consisted of the Arabic 
texts that came into Europe after the fall of Toledo, and were translated into Latin in the 
12th c. The translations were carried out under the control of Dominico Gundisalvi, the 
organization of Raymond, Archbishop of Toledo, and were funded by the gold supplied by 
Peter the Venerable, Abbot of Cluny—obtained as part of the church’s |th share of the loot 
from the Crusades. A second round of translation was funded in the 13th c. CE by king 
Alfonso X. Although some translations from the Greek to Latin did take place even in the 
13th c., this was a mere trickle compared to the ood of the Byzantine Greek texts that came 
into Europe in the 15th and 16th c. GE, after the fall of Istanbul (in 1452) to Mohammed 
the Conqueror. For example, the first Latin versions of the Elements were translations from 
the Arabic by Adelard of Bath and Gerard of Cremona in the 12th c. CE. The first Latin 
translation of the Elements from Byzantine Greek was published nearly four centuries later, 
in the early 16th c.

It should be pointed out that even in the matter of allocating credits for translations, 
Western historians could not resist persistent dishonesty for centuries: we are asked to be­
lieve that Gerard translated some 87 books from the Arabic, without knowing either Arabic 
or mathematics or astronomy! The translations were actually carried out with the help of 
Mozarab and Jewish intermediaries, who remained largely nameless and disappeared from 
history since they were not theologically correct, and were regarded as non-persons. This 
already gives us a foretaste of the de facto balance between historical accuracy and theological 
correctness.

Now, how were these texts in another language, from another place, correlated with their 
alleged Greek authors from 1500 to 2000 years earlier? We have seen how this was done in 
the case of “Euclid”—on the basis of a Greek-sounding name and a stray passage here and a 
remark there, which passage or remark could date from any time in the intervening period, 
and which name might or might not correspond to any real person. If this is the situation 
with one of the best known names, then one can imagine that the situation with other authors 
like Archimedes, Aristotle, Ptolemy etc. is not likely to be very different—though Aristotle’s 
existence at least is not in doubt!

Even the terminology of “interpolations”, as in the case of the Monacensis remark, in­
volves an unacceptable underlying hypothesis of an “original text”. This hypothesis needs to 
be put on the table and made perfectly visible: the hypothesis is that as a rule the “original
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texts” were transmitted verbatim over this entire period. This is an extraordinary hypoth­
esis in itself, and one can hardly think of any situation in which this verbatim transmission 
ever actually took place. In India, a large group of people was freed from economic ne­
cessity, and given the most extreme and rigorous training to try to ensure that the Veda-s 
were transmitted verbatim. Nevertheless, differences cropped up. The Bhagvad Gita, com­
monly memorized, contains, as Kosambi pointed out, 12th c. CE interpolations. Where no 
such extreme measures were taken to preserve the text verbatim, the differences could be 
expected to be significantly larger, l’he Aramaic Bible, for instance, was so very different 
from the Bible prevalent in 16th c. Europe, that the Portuguese tricked the Indian Bishops 
in the Council of Udayamperoor (“Synod of Diamper”) to burn all the older Bibles.

If this is the extent of variation with regard to scriptures, where there is some reason 
to expect some sort of verbatim transmission, one can imagine the variation in the case of 
other books. For books pertaining to practical knowledge, there would obviously have been 
little interest in verbatim transmission, and the most natural thing would be to update them 
with the latest available knowledge. It would be rather pointless and confusing to retain in 
these books information that was incorrect or defective or inaccurate. That is to say, books 
on science and mathematics would naturally be propagated accretively, with the addition of 
numerous anonymous updates, though no one maintained a revision history. Certainly Arab 
authors in Baghdad, for example, were actively disinterested in verbatim translations, but 
were interested rather more in useful paraphrases and creative reworking.

Furthermore, Arabs were not much interested in questions of priority, so that authorship 
was loosely attributed to any famous early source. The authorship imputed in these texts 
was largely nominal and not intended to be understood literally, as in the case of the authors 
of the Pythagorean school who imputed all their writings to Pythagoras. Similarly, for the 
Arabs, “Aristotle” was merely another name for “the Greek sage”, while for Thomas Aquinas, 
he was merely “the Philosopher”, the archetypal Neoplatonist.

As a concrete example of such nominal attribution and accretive propagation, let us con­
sider a navigator’s manual, published by INSA in 1998 to throw light on “traditional” nav­
igational methods in the Lakshadweep islands. Like so many Arabic navigation manuals, 
this manual too is attributed to Ibn Majid, the most famous of Arab navigators, who lived 
in the 15th c. However, it contains updated information found in British sailing manuals of 
the 19th c. CE. The natural interpretation is that the attribution to Ibn Majid is nominal 
and symbolic, that the manual has been propagated accretively, motivated by the navigator’s 
life-and-death concern to have the best possible knowledge, and hence the manual has bor­
rowed also from British sailing manuals of the 19th c. It would he laughable to assert that 
the manual is due to Ibn Majid who had anticipated all this knowledge which was somehow 
transmitted to the British sailing manuals of the late 19th c. CE.

Nevertheless, this laughable hypothesis is exactly what has been adopted with the 12th 
and 16th c. sources of “Creek” or “Hellenic” tradition.67 Hence, virtually all the knowledge
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prevalent in the 11th c. world, as known to Indians and Arabs, is attributed to Greeks like 
Aristotle, Archimedes, and Ptolemy. The fact is that the knowledge in these 1 1 th c. texts ac­
curately re ects the knowledge that then prevailed—as is naturally to be expected. However, 
Western historians explain this fact not by the simple and natural hypothesis of accretive up­
dating of the texts, but by the extraordinary claim that all (or most of) the contemporary 
knowledge of the 11th c. world was derived by transmission from the Greeks, who had antic­
ipated these developments. There is no other, or direct, evidence that these Greek authors 
wrote anything at all. Thus, by way of evidence, this extraordinary theory of transmission 
simply begs the question! To complete the story, it is thought enough to supplement it 
with a speculative chronology, attached to Greek names, based on stray remarks of doubt­
ful authenticity in late texts. This sort of story-telling may be perfectly consonant with the 
standards of theology (and most early Western historians were priests), but is completely 
unconvincing from a somewhat more sceptical and down-to-earth point of view.

Now, the the natural thing to expect is that the (scientific) books of the 1 1th c. GE re ect 
the knowledge that prevailed in the 11th c. CE. So the issue boils down to this: should we 
interpret literally the imputed authorship in these texts? Western historians ask us to be­
lieve that all or most of a 12th c. or later text, imputed to an author, such as Archimedes, was 
actually written by the named author. However, there are well known cases where the attribu­
tions to Greek authors are regarded by Western historians as not only nominal but false, and 
where it is believed that the author had nothing whatsoever to do with the text of which he is 
alleged to have been the author. For example, Uthulijiyya Aristutelis, otherwise known as the 
Theology o f Aristotle, translated by the philosopher al Kindi, with the aid of a Syrian Christan 
intermediary Abd’ul Masih ibn Na’imah al-Himsi, was a key theology text, long attributed 
to Aristotle by the Arabs. This is today believed to be incorrectly attributed to him, and to 
be actually the Enneads of Plotinus with the commentary of Porphyry. Similarly, the Kalam 
fi l mahd al-khair (“The Theology of the Pure Good”), was also ascribed to Aristotle.68 The 
Kalam fi l mahd al-khair is today believed to be a paraphrase of 32 propositions of Proclus’ 
Elements o f Theology (Stoikheiosis Theologike).

Then there is the “dishonesty effect” of the market. Attributing a book to a famous 
early source added not only to the authority of the book, but also to its market price in 
what was evidently a ourishing book bazaar in Baghdad. That many books were fakes and 
falsely attributed to famous early sources is evident from the Fihrist of al Nadim, a Baghdad 
shopkeeper of the 10th c., who hence prepared this fihrist or list of books he regarded as 
genuine. Of course, al Nadim was a shopkeeper, not a scholar, and his concerns about 
genuineness were limited to saleability—so, common hearsay was good enough for him— 
and he is unlikely to have been bothered by a well-established fake.

But if some attributions are accepted as invalid, there may be many more such doubtful 
attributions. How does one decide which attributions are valid and which are not? Where 
is the line between “Aristotle” and “pseudo-Aristotle”? How does one separate Aristotle of
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Stagira from Aristotle of Toledo? Clearly it would be hard to find an objective basis for such 
decisions which have been based on the authority of historians, and it is remarkable how 
conveniently the “accepted” attributions line up with theological correctness! In this story 
of Greek origins, Aristotle has, by now, acquired a definite character!

Clearly, the least one can do in a critical (as opposed to a credulous and theological) 
approach to history is to try and discriminate between the two hypotheses:

1 . attributed authorship taken literally + verbatim propagation of texts + transmission 
of this knowledge to others

vs

2 . nominal and symbolic attribution of authorship + accretively updated propagation of 
texts.

Once these implicit assumptions are clearly visible, and laid out on the table, it is easy to 
see their consequences. For example, the first hypothesis would suggest that (a) there was 
no growth of knowledge outside of Greece (since 1 1 th c. world knowledge largely coincides 
with what was allegedly mostly anticipated to the Greeks), and (b) that hence we should 
find the 1 1 th c. ideas prevalent, no matter how far back we go: geometry should have 
been roughly constant since “Euclid”, astronomy since “Ptolemy”, logic since Aristotle, etc. 
Clearly enough, these consequences y in the face of the most elementary common sense— 
they are credible only to racists. Nevertheless, let us give a long rope and ask: has this really 
been the case?

Let us take, as a random example, “Aristotle’s” theory of syllogisms, which is remarkably 
similar to the Indian Naiyayika theory of the syllogism. The Naiyayika theory of the syllo­
gism could easily have been transmitted to Arabic texts via Jundishapur and/or Baghdad. 
On the other hand, the Aristotelian syllogism is certainly not prevalent in the Byzantine 
empire in its “Dark Age” between the 4th c. and 10th c. CE. So we find that, contrary to the 
expectation, the knowledge was not in fact prevalent earlier. Does that falsify the theory'? 
No! Absolutely not! Immediately, a new hypothesis is invented, and we are asked to believe 
that people in the “Dark Age” had “forgotten” all about Aristotle. Of course, the Indian 
syllogism could also quite conceivably have been transmitted to Alexandria, prior to the 
commencement of the “Dark Age”, but prior to the 4th c. CE, we find that in Alexandria the 
theory of syllogisms is attributed to Stoics like Chrysippus, and not Aristotle. So, where was 
the alleged Aristotelian syllogism hiding in the intervening fifteen centuries between Aristo­
tle and the 12th c. texts? As in the case of a definitive text of the Elements, this vanishing act 
is not credible. If the real Aristotle wrote anything at all, he would have done so on papyrus, 
and for a text on papyrus to survive, it would have had to be repeatedly copied out, a process 
that required an investment of time and money. If the time and money was invested, and 
the text was copied out, it would not have simply disappeared, but would have remained in
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circulation. So a text which did a vanishing act for so long a period, probably did not ex­
ist. Is it not more plausible to suppose that the authorship of the logic texts was incorrectly 
assigned to Aristotle in much the same way as the authorship of the theology texts was incor­
rectly assigned to him? Is this not self-evident from the large number of works assigned to 
this “Aristotle” which have made him into a theologically correct encyclopaedia—an acad­
emic superman who wrote books on poetics, rhetoric, ethics, logic, and physics—while other 
Greeks did nothing even remotely comparable!

As another example, consider “Ptolemaic” astronomy. If it was really such a well devel­
oped system, why did the Alexandrian diaspora look towards Indian astronomy in 6th c. 
Jundishapur, and again in 9th c. Baghdad? How does one reconcile the grandiose claims 
about Ptolemy’s Syntaxis with the persistent inaccuracy of the Roman calendar (until 1582) 
despite the attempts to reform it in the 5th and 6th c.—the attempts which led to the for­
mulation of the Christian Era? So, like Aristotle’s theory of the syllogism, and a definitive 
version of the Elements, Ptolemaic astronomy too did a vanishing trick, both during and be­
fore the Dark Age. Also no non-definitive texts, or texts by dissenting authors, have survived 
from that period. How did “Ptolemy” arrive at a sophisticated planetary model with neither 
any “Hellenic” predecessors nor successors who wrote books on astronomy? Why was the 
Greek calendar so hopelessly bad? And if the Greeks were not motivated to do astronomy, 
for whom did Ptolemy write a book on astronomy? (There are many other points here, and 
these are discussed in more detail later on in Chapters 3 and 6 .) Therefore, it is hard to 
believe that there really was a 2nd c. Roman citizen called Claudius Ptolemy who could be 
regarded as the author of the 11th c. Arabic Almagest.

One can go on in this fashion. However, any number of facts and objections can be 
overcome by the stock trick of theology which is this: by inventing enough auxiliary hy­
potheses, any facts can be made compatible with any theory. Therefore, theology proceeds 
by first telling a convenient story, and then defending that story by piling on the auxiliary 
hypotheses, like dung in a pigeon’s nest. However, it is evident that, prima facie, the verbatim 
propagation + transmission hypothesis cannot be defended without violating the elemen­
tary principles of clear thought. If, on the other hand, a given text was not propagated 
verbatim, but was repeatedly updated by anonymous contributions by later authors, how can 
we infer its original contents? The whole theory of the “Greek” or “Hellenic” origins of 11th 
c. world knowledge is an implausible hoax—or a fabrication as Bernal has called it.

W'e can approach the matter from another angle. 'Phis implausible theory of Greek ori­
gins has resulted in an image of the Greeks as an extraordinary culture. Phis may be true of 
their artistic or literary achievements, which are not my concern. However, so far as scien­
tific achievements are concerned, this is an image that is intrinsically shaky in many respects. 
First of all, even on the stock accounts, a remarkably large number of “Greek” mathemati­
cians (and scientists) hail from Alexandria, which is physically located in the African conti­
nent, and culturally located in Egypt. As for religion and philosophy, Egypt being the older
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of the two civilizations, it was natural for the Greeks to have borrowed extensively from 
Egypt. Herodotus attests to this, pointing out that the basic elements of Greek religious 
belief and many Greek cultural practices were borrowed from the Egyptians.

Almost all the names of the gods came into Greece from Egypt... Besides these 
which have been here mentioned, there are many other practices... which the 
Greeks have borrowed from Egypt.... it seems to me a sufficient proof of this 
that in Egypt these practices have been established from remote antiquity, while 
in Greece they are only recently known.69

Since Herodotus also added that the Egyptians were “black-skinned and have woolly hair” 
(History, II. 104), his idea that the Greeks were like children before the Egyptians was intoler­
able to racist European historians from 17th c. GE onwards—whether or not they personally 
owned black slaves.

While on the one hand the Greeks blindly aped black African (Egyptian) tradition, on 
the other hand the Ionian Greeks were a full- edged Persian colony, with their little hefs, 
and their resentment about forced service in the Persian army. Meanwhile, the Athenians 
and Peloponnesians on the margins of the Persian empire were constantly engaged in petty 
warfare, as recounted by Thucydides in his History o f the Peloponnesian War. Consequently, 
the Greeks in Athens had little time or leisure for scientific or philosophical speculations, 
which naturally tend to ourish in more settled times of peace.

This situation was aggravated by the anti-scientific culture of the Greeks. Thus, in Athens, 
at the time of Plato, scientific speculations were regarded as an act of impiety—an offence 
punishable with death. Plato recounts in his Apology that at his trial, Socrates was accused 
(p. 279) of teaching that the moon was but a clod of earth, and he vigorously denied it 
saying that he did not engage in physical speculations, that he believed in the divinity of the 
moon, and that his accusers had confounded him with Anaxagoras (who had earlier been 
imprisoned on a similar charge, but had escaped and ed). Similarly, Aristotle was forced to 

ee Athens after the death of Alexander. Clearly, in Greece proper, science was regarded as 
profane.

By what magic did things change so strikingly between Athens and Alexandria? Despite 
the enormous body of literature on Greek history, I am not aware of anyone who has raised 
this elementary question or sought to answer it. We might attempt an answer as follows. 
The Macedonians (Bulgars, Slavs) under Alexander being regarded as “barbarians” even by 
the Greeks in Athens, must also be regarded, from the viewpoint of Egypt and Persia, as 
the “barbarian” invaders, in Toynbee’s terminology.70 Accordingly, along the lines of the 
general theory articulated in Chapter 6 , Alexander’s military conquests naturally led to a 
huge in ow of knowledge into Greece, especially from Egypt, Babylon and Persia, compared 
to which the earlier in ow was but a trickle. Specifically, Alexander acquired a large number
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of books as military trophies; he got some of these books translated, and burnt the originals 
(as recounted in the Zoroastrian Book o f Nativities—see Chapter 6 , p. 278).

What happened to these books which Alexander fetched as war booty? Some of these 
books Alexander would naturally have referred to Aristotle. The existence of a large num­
ber of books in Aristotle’s custody is confirmed by Strabo (Geography, 13.1.54) who says 
that Aristotle was the “first man [Greek]” known to have a library of books. (By “man” 
Strabo presumably meant “Greek”, for the Egyptians certainly collected books in their tem­
ples.) Possibly, Aristotle translated (or got translated) some of these books, though we have 
no knowledge of what he actually did. Thus, Aristotle’s reputation for scholarship already 
owed much to Alexander’s military conquests, although later-day historians have failed to 
acknowledge it.

The bulk of Alexander’s booty of books, however, seems to have been dumped in Alexan­
dria. Ptolemy II, who ruled Egypt, subsequently got this partly catalogued thus initiating 
the Great Library of Alexandria, estimated to have had a collection of over half a million 
scrolls. Obviously the Greek city states were far too small to support the production of books 
in such vast numbers. Moreover, the army of 4000 Greeks with which Ptolemy ruled Egypt, 
could hardly have written so many books in so short a time—during which they were busy 
with military adventures. Hence, most if not all of these books were non-Greek in origin. 
While the Greeks were not known to have collected books earlier, every Egyptian temple did 
have a store of books—both religious books and records—going back thousands of years.

The library of Alexandria also included books subsequently brought in by travellers and 
traders coming to Alexandria—which were forcibly confiscated, and acquired for the library, 
only a copy being returned to the original owner, according to a law made by the Ptolemy 
II. Ptolemy III wrote to kings all around the world to send him their books, and to support 
the activities of the library, the export of papyrus was banned.

In this context, the location of Alexandria is significant: Alexandria, earlier called 
Pharos' 1 (and nearby Rhakotis) was naturally selected by Alexander as the hub of a strate­
gically important trade route (with its Red Sea Canal being equal in strategic importance 
to the present-day Suez Canal). Thus, the books available in Alexandria already re ected 
an accumulation of knowledge from much of the civilized world—certainly including India, 
which is known to have had a huge trade with the early Roman empire, via Alexandria. In 
fact, recorded contacts between India and Alexandria go back to the time of Ashoka the 
Great who recorded in his rock edicts, found across India, that he had sent delegations 
of wise men to various kings, including the king “Tulimaya” (Ptolemy II), and spoke (in 
the 13th edict) of the resulting victory of Dhamma—translated into Greek as epidoeia or 
piety in the Greek version of the rock edicts found in Kandahar, Afghanistan. (Ashoka also 
sent medicinal plants, “for both animals and men”, and we recognize this combination of 
medicine and wisdom (sophia) in the later-day reincarnations of Alexandria in Jundhishapur
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and Baghdad, where hakim meant both a wise man and a medical doctor.) The continuing 
exchanges with India are recorded by Strabo, Porphyry, etc.

Apart from translating some of these looted or seized texts into Greek, exactly what fur­
ther contributions did the Greeks make to this vast accumulation of knowledge in Alexan­
dria? Merely, the language of subsequent texts being Greek would not make those texts (or 
the knowledge in them) Greek in origin, any more than Buddhist texts in Chinese can be 
said to be of Chinese origin, or the present text can be called British in origin or even ori­
entation, just because its language is English. Alexandria had a particular practical need of 
such a common language, because, as the hub of trade route, it was a melting-pot of several 
languages and cultures, as is clear from Dio Chrysostom’s description of his Alexandrian 
audience, which included Indians and Syrians.

So what is the evidence that Claudius Ptolemy, say, contributed anything original? Un­
fortunately none. It is only the Greek names, and a speculative chronology attached to them, 
that come from Alexandria. As for the hooks, not even a single historical source o f Greek books is 
available from Alexandria. Thus, we do not have any direct access to any of those original Per­
sian, Babylonian, and Egyptian sources, or to their early Greek translations in Alexandria. 
The actual information about these “Greek” books comes to us from a different place, at a 
different time many centuries later, in a different language. The huge gap in the evidence 
is filled up by speculations and story telling.

The internal evidence of these texts is not very reassuring. For example, “Ptolemy” has 
been accused of plagiarism on the grounds that he made his observations of stars not by 
gazing at the night sky, but in the Great Library, by copying manuscripts from there! (The 
“observations” have been back-calculated, and this certainly includes the “observations” in 
the passages used to date Ptolemy.) To my mind, the accusations are unsubstantiated, since 
even the existence of Ptolemy has not been established! The alternative is to suppose that 
the text is accretive, and this was presumably already the case in the 2nd c. CE. So, did 
“Ptolemaic” astronomy, like Hipparchus’ star charts, add anything to the world knowledge 
in that vast collection of books?

The Alexandrian library was eventually burnt down by rampaging Christian mobs. The 
same sort of politics of cultural purity (“Doctrine of Christian Discovery”72) has motivated 
Western historians to expend centuries of effort to erase those books also from history: all 
those books apparently disappeared without leaving behind the smallest intellectual trace 
in later-day work! We are asked to believe on faith that Greek ideas were “immaculately 
conceived”, and that “pure Greek” thought certainly did not have a black African ancestry.

Further, just as we are asked to believe that the translations from Egyptian and Persian 
etc. to Greek contributed nothing to Greek knowledge (from the time of Aristotle to the 
fall of the Alexandrian library), so also we are asked to believe that the translations from 
Greek to Arabic contributed nothing to Greek knowledge! The label “Greek” or “Hellenic” thus 
appropriates both earlier Egyptian and later Arabic-Islamic sources. Indeed, since information



52 Cultural Foundations of Mathematics

owed into Alexandria, Jundishapur and then Baghdad also from India, the “Hellenic” 
label also appropriates possible Indian developments known to the Greeks and also the 
Arabs who penned the Almagest! The “Greek” or “Hellenic” label thus appropriates to the 
West practically all the knowledge in the world up to about the 10th c. CE. This alleged 
knowledge of the Greeks is not re ected in non-textual sources. In this manner Western 
historians have built monumental theories of early “Greek” science largely on the strength 
of stray textual remarks in texts from 12th c. GE onwards, to extend into the intellectual 
domain the physical conquests of Alexander!

Apart from these Arabic sources, there are also texts in Byzantine Greek, from later-day 
Istanbul. These texts are typically much later than the Arabic sources, though Western schol­
ars have optimistically dated a few to epochs as early as the late 10th c. CE. Even with such 
optimistic dating it is hard to see how these Byzantine Greek sources could be free of Arabic 
in uence. An unquestionably Indian source, the Pancatantra, came to be translated into Per­
sian (in Jundishapur, 6th c. CE) and then re-translated into Arabic (in Baghdad, 9th c. GE), 
then Greek by Simon Seth (in Antioch) ca. 1080 and finally into Latin for Alfonso X as Calila 
e Dimna in 1251 or 1261.73 This would been a fortiori the case with scientific and math­
ematical texts written with a view to their immediate practical value, rather than to serve 
as a historical record for future historians; hence, they presumably sought to incorporate 
the latest available information, like Gerbert’s 10th c. CE text “Rules for Computations with 
Numbers”, which sought to incorporate into the abacus, as apices, the latest knowledge of 
the Indian numerals, obtained through the Arabic algorismus.74 (Gerbert 940-1003 became 
Pope Sylvester II in 999 CE.)

Many Byzantine Greek texts are known to have involved translations from Arabic into Greek. Per­
haps the most famous example of such translation from Arabic to Greek to Latin is the case 
of Copernicus who was not quite the revolutionary scientist he is made out to be but was 
rather a priest who translated from Greek to Latin the heliocentric theories of Ibn as Shatir 
of Damascus.70

It is generally acknowledged that many of the late Byzantine Greek texts (especially the 
scientific texts relating to mathematics, astronomy etc.) contain much material that is trans­
lated from the Arabic into Greek. (In fact, there is no reason why even the earliest of these 
texts, such as the Arethas text of the Elements from 888 CE, should have remained free of 
Arabic in uence, two centuries after the rise of Arabs, and half a century after the formation 
of the Baghdad House of Wisdom.) Since so many of these texts do contain later-day knowl­
edge, how does one separate the “original” Greek knowledge (obtained from Egyptians and 
others in Alexandria) from later-day “interpolations” that might involve the knowledge of 
the Arabs or Indians and so forth? 'Phis, as already noted, is an extremely fertile field for 
speculation, where a decision is next to impossible by any critical standards: therefore the 
tendency is to rely on authority, i.e., on Western historical scholarship.
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Speculations tend to be coloured by prejudice, and it is beyond the shadow of a doubt that 
very many of these Western authorities were racists, or had racist prejudices. This systematic 
process of racist cultural appropriation has been examined in many books,76 perhaps the 
most well known of which is Martin Bernal’s Black Athena: The Fabrication o f Ancient Greece. 
Though Martin Bernal, unlike his father J . D. Bernal, does not say much about science and 
mathematics, the same situation prevails here. Consider, for example, the classic work of 
Heath, which speaks of the “apparently circumstantial accounts of Euclid given by Arabian 
authors” but clarifies that “the origin of their stories can be explained as the result of (1) the 
Arabian tendency to romance, and (2) . . .  misunderstanding.” He goes on to assert (p. 4) 
that these accounts were intended “to gratify a desire which the Arabians always showed to 
connect famous Greeks in some way or the other with the East” and cites (p. 4, note 6) the 
Haji Khalfa to conclude that “The same predilection made the Arabs describe Pythagoras as 
a pupil of the wise Salomo, Hipparchus as an exponent of Chaldean philosophy or as the 
Chaldean, Archimedes as an Egyptian etc.”"  What, after all, makes it so improbable for 
Archimedes, who studied in Alexandria, to have been a short black man, as Arabic sources 
describe him? And, if Arabic sources are unreliable in this matter, how can they he relied 
upon for matters favourable to the opinion of Western historians? In fact, one could say with 
greater reason: the fabulous accounts of Greeks by Western historians can be explained as 
the result of racist fabrications. That is, to trust the authority of Western historical scholar­
ship is to rest on the dangerous ground of speculations deeply coloured by racist prejudices.
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C H A P T E R  2

Proof vs Pramana

Critique o f  the current notion o f  mathematical proof and comparison with
the traditional Indian notion o f  pramana

OVERVIEW

IN contrast to the present-day notion of mathematical proof, all traditional Indian no­
tions of pramana accepted the empirically manifest (pratyaksa), and this belief is carried 
over also into Indian mathematics from the days of the sulba sutra, for mathematics 

was seen as a practical rather than a religious concern. Mathematics was not conceptual­
ized as something separate from physics, and there was no fundamentally separate notion 
of pramana for mathematics. Current-day mathematics, however, is divorced from the em­
pirical (believed to be contingent), and rests entirely on a notion of proof based on rational 
deduction, believed to incorporate necessary truth.

Proof and deduction, however, depend upon logic, in the direct sense that the theorems 
derivable from a given set of axioms will vary with the logic used. But the particular choice of 
logic used today in mathematics is arbitrary, for logic varies with culture, as in the logic used 
by pre-Buddhist sceptics like Sanjaya, or the logic used in Buddhism, and Jain syadavada. 
Ilence mathematical proof is completely arbitrary: for the axioms are already admittedly 
arbitrary, and deduction rests on logic, so that the theorems will vary also with logic, while 
the choice of logic is arbitrary. Within the present-day philosophy of mathematics which 
regards mathematics as a priori and divorced from the empirical, there is simply no way that 
the choice of logic can be further justified, e.g. by appealing to the empirical—for if logic 
itself is to be founded on the empirical, then it is surely legitimate to use the empirical in 
mathematical proof.
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Thus, social authority is the ultimate foundation of the present-day notion of mathe­
matical proof, and it is manifest that social authority is rather more fallible than reliance 
on the empirical. On the other hand, if we do appeal to the empirical to decide the na­
ture of logic, then we can hardly bypass our most sophisticated physical theories, regarding 
time and quantum mechanics, so that the eventual decision may well be in favour of quasi 
truth-functional Buddhist or quantum logic rather than two-valued truth-functional logic.

In any case, an empirical decision regarding logic can only be an inductive process. Thus, 
whether one uses social authority or appeals to the empirical to decide the nature of logic, in 
all cases deduction will forever remain less certain than induction, contrary to what has long 
been incorrectly advocated in Western philosophy, due to theological predilections. Hence, 
also, it seems desirable to shift back from mathematics-as-proof to mathematics as a practical 
and empirical matter of calculation.

I
INTRODUCTION

In the nineteenth century the idea of “the white man’s bur­
den” helped justify the extension of Western political and 
economic domination over non-Western societies. At the end 
of the twentieth century the concept of a universal civiliza­
tion helps justify Western cultural dominance of other soci­
eties and the need for those societies to ape Western practices 
and institutions. Universalism is the ideology of the West for 
confrontation with non-Western cultures.

Samuel P. Huntington1

The East-West Civilizational Clash in Mathematics: Pramana vs Proof

Exactly how universal is the method of rational deduction which underlies present-day math­
ematics, and which is alleged to be universal? In Huntington’s terminology of a clash of 
civilizations, one might analyse the basis of the East-West civilizational clash as follows: the 
Platonic tradition is central to the West, even if we do not go to the extreme of Whitehead’s 
remark, characterizing all Western philosophy as no more than a series of footnotes to Plato. 
But the same Platonic tradition is completely irrelevant to the East.

In the present context of mathematics, the key issue concerns Plato’s dislike of the empiri­
cal, so the civilizational clash is captured by the following central question: can a mathematical 
proof have an empirica l component ?

The Platonic and Neoplatonic Rejection of the Empirical

According to university mathematics, as currently taught, the answer to the above question 
is no. Current-day university mathematics has been enormously in uenced by (Hilbert’s
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analysis of) “Euclid’s” Elements, and Proclus,2 a Neoplatonist and die first actual source of 
the Elements, argued that

Mathematics... occupies the middle ground between the partless realities... and 
divisible things. The unchangeable, stable and incontrovertible character of 
[mathematical] propositions shows that it [mathematics] is superior to the kinds 
of things that move about in matter.... Plato assigned different types of knowing 
to ... the... grades of reality. To indivisible realities he assigned intellect, which 
discerns what is intelligible with simplicity and immediacy, and... is superior to 
all other forms of knowledge. To divisible things, in the lowest level of nature, 
that is, to all objects of sense-perception, he assigned opinion, which lays hold 
of truth obscurely, whereas to intermediates, such as the forms studied by math­
ematics, which fall short of indivisible but are superior to divisible nature, he 
assigned understanding.

In Plato’s simile of the cave, the Neoplatonists placed the mathematical world midway be­
tween the empirical world of shadows, and the real world of the objects that cast the shadows. 
Mathematical forms, then, were like the images of these objects in water—superior to the 
empirical world of shadows, but inferior to the ideal world of the intellect, which could 
perceive the objects themselves.

Proclus explains that the term “mathematics” means, by derivation, the science of learn­
ing, and that learning ( a d  ) is but recollection of the knowledge that the soul has from 
its previous births which it has forgotten—as Socrates had demonstrated with the slave-boy. 
Hence, for Proclus, the object of mathematics is “to bring to light concepts that belong essen­
tially to us” by taking away “the forgetfulness and ignorance that we have from birth”, and 
re-awakening the knowledge inherent in the soul. Hence, Proclus valued mathematics (espe­
cially geometry) as a spiritual exercise, like hatha yoga, which turns one’s attention inwards, 
and away from sense perceptions and empirical concerns, and “moves our souls towards 
Nous” (the source of the light which illuminates the objects, of which one normally sees only 
shadows, and which one could better understand through their re ections in water).

In regarding mathematics as a spiritual exercise, which helped the student to turn away 
from uncertain empirical concerns to eternal truths, Proclus was only following Plato. The 
young men of Plato’s Republic (526 et seq.) were required to study geometry because Plato 
thought that the study of geometry uplifts the soul. Plato thought that geometry being- 
knowledge of what eternally exists, the study of geometry compels the soul to contemplate 
real existence; it tends to draw the soul towards truth. Plato emphatically added, “if it 
[geometry] only forces the changeful and perishing upon our notice, it does not concern 
us,”3 leaving no ambiguity about the purpose of mathematics education in the Republic.
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Rejection of the Empirical in Contemporary Mathematics: Proof as Necessary 
Truth vs the Empirical World as Contingent

A more contemporary reason to reject any role for the empirical in mathematics is that 
the empirical world has been regarded as contingent in Western thought. Any proposition 
concerning the empirical has therefore been regarded as a proposition that can at best be 
contingently true. Hence, such propositions have been excluded from mathematics which, it 
has been believed, deals only with propositions that are necessarily true: either eternally true, 
or at least true for all future time, or true in all possible worlds.4

In the 20th century CE, it has, of course, again been (partly) accepted that mathematical 
theorems are not absolute truths,0 but are true relative to the axioms of the underlying 
mathematical theory. Nevertheless, the relation between the axioms and theorems is still 
regarded as one of necessity: the theorems are believed to be necessary consequences of the 
axioms—it is believed that every possible (logical) world in which the axioms are true is a 
world in which the theorems are also true. A mathematical theorem such as 2 + 2 = 4 is 
no longer regarded as eternally true, but, since this theorem can be proved, since it can be 
logically deduced from Peano’s axioms, it is believed that 2 + 2 = 4 is a necessary and certain 
consequence of Peano’s axioms. It is today believed that though neither any axiom nor the 
theorem can be called a “necessary truth”, the relation between axioms and the theorem can 
be so called. A theorem being the last sentence of a proof, theorems relate to axioms through 
the notion of mathematical proof, which is believed to embody and formalise the notion of 
logical necessity. Contemporary Western mathematics has not abandoned the notion of 
“necessary truth”, it has merely shifted the locus of this “necessary truth” from theorems 
and axioms to proof. From this perspective, admitting the empirical into mathematical 
proof would weaken and make contingent the relation of theorems to axioms, so that the 
empirical is still not allowed any place in the formal mathematical demonstration called 
“proof”.

The current definition of a formal mathematical proof, as enunciated by Hilbert, may 
be found in any elemental')' text on mathematical logic.6 This definition may be stated 
informally as follows. A mathematical proof consists of a finite sequence of statements, 
each of which is either an axiom or is derived from two preceding axioms by the use of 
modus ponens or some similar rules of reasoning. Modus ponens refers to the usual rule: 
A, A => B, hence B. The other “similar rules of reasoning” must be prespecified, and may 
include simple rules such as instantiation (for all x, f (x),  hence f (a)),  and universalization 
(f{x),  hence, for all x, f (x))  etc. A mathematical proof being such a sequence of statements, 
a reference to the empirical cannot be introduced in the course of a proof.

Neither can there be any reference to the empirical in the axioms at the beginning of a 
proof. Here, the word “axiom” is used in the sense of “postulate”. Axioms are not regarded 
as self-evident truths; axioms are merely an in-principle arbitrary set of propositions whose
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necessary consequences are explored in the mathematical theory. Since there is no reference 
here to the empirical, mathematical postulates and the primitive undefined symbols they 
involve are regarded as being, in principle, completely devoid of meaning.

Postulates relating to the empirical world lead to a physical theory, and not to mathemat­
ics. This difference between mathematical and physical theories is embodied also in Pop­
per’s criterion of refutability as follows. The theorems of the sentence calculus are exactly 
the tautologies. Though these tautologies may not be obvious, being tautologies, they are 
not refutable. Unlike a mathematical theory, a physical theory' must be (logically) refutable, 
and hence must contain some hypotheses and conclusions that are not tautologies. Mathe­
matics concerns the tautologous relation between hypothesis and conclusions, while physics 
involves the empirical validity of the hypothesis/conclusions. dims, no mathematical theory 
is a physical theory according to this widely-used current philosophical classification, since 
no mathematical theory involves the empirical.

Acceptance of the Empirical in Indian Thought

However deep rooted may be this rejection of the empirical, in Western ways of thinking 
about mathematics, it seems to have gone unnoticed that not all cultures subscribe to this 
elevation of metaphysics above physics. Not all cultures and philosophies subscribe to this 
belief that the empirical world is contingent, and that only the non-empirical can be nec­
essary. For example, the Lokâyata (popular/materialist) stream of thought in India adopts 
exactly the opposite viewpoint. It explicitly rejects any world except that of sense perception. 
It admits the pratyaksa or the empirically manifest as the only sure means o î  pramdna, or val­
idation, while rejecting anumdna or inference as error-prone, and fallible. That is, in terms 
of the Platonic gradation of reality, Lokâyata places intellectual ways of knowing on a lower 
footing than knowledge relating directly to sense perception. Howsoever odd this may seem 
from a Western perspective, and notwithstanding the orientalist characterization of Indian 
thought as “spiritual”, all major Indian schools of thought concur in accepting the pratyaksa 
as a valid pramdna, or means of validation. Moreover, pratyaksa is the sole pramdna that is 
so accepted by all schools, since Lokâyata rejects anumdna, while Buddhists accept anumdna 
but reject sabda or authoritative testimony, though Naiyâyika-s accept all three, and add the 
fourth category of analogy (upamdna).

That is, the means of proof acceptable to all in Indian tradition consist of only
(1 ) pratyaksa (the empirically manifest),

while the Buddhists and Jains accept also
(2) anumdna (inference),

and the Naiyâyika-s accept also proof based on
(3) sabda (authority/authoritative testimony), and
(4) upamdna (analogy).
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As explained in box 2.1, pratyaksa should not be confounded with induction.

Box 2.1. P ratyaksa  vs induction

Pratyaksa should not be confused with induction. The con ict between deduction 
and induction is peculiar to Western thought, with deduction being divorced from 
the empirical, and induction being associated with the empirical. (The principle of 
mathematical induction, as articulated in Peano’s axioms, should be classified with de­
duction, even though it is a postulate rather than a rule of reasoning.) The pratyaksa, 
though it is associated with the empirical, differs from induction in that it contains no 
claim or overtone of any inference about the future, and no attempt to generalize the 
observation to all categories. Pratyaksa should be regarded as mere observation, not 
an inference from it.

Of course, the pratyaksa is fallible in the same sense that observations may have 
errors. This fallibility is recognized in the classical example of the situation where 
a rope is mistaken for a snake or vice versa. Tradition does not explicitly state any 
remedy for this situation, but it would have no difficulty in agreeing to the idea that 
in case of doubt the matter must be settled by subjecting it to test (pariksd)—tap the 
rope/snake with a stick.

After a sufficient number of proddings (i.e., a repeated series of experimental 
observations), the doubt should be settled from a practical perspective, although it is 
possible to hang on to the philosophical doubt long after the rope/snake is dead with 
prodding.

From the Western perspective, contrary to what Popper has maintained, this series 
of observ ations is indeed an inductive process. Popper’s argument is that probabili­
ties are not ampliative; therefore, repeated observation does not change probabilities. 
Popper has in mind a formal Kolmogorov model of probabilities. Granting this, the 
problem that Popper overlooked is that one never knows what the probabilities actu­
ally are. All one has is an estimate of the probabilities, or likelihood. It is an elementary 
thing that likelihood will and does change with repeated observations, and that one 
may adopt, for example, a maximum likelihood estimate: when two experiments were 
for and one was against the violation of Bell’s inequalities, the likelihood of Bell’s in­
equalities being violated was different from what it became with five experiments for 
and two experiments against it, which eliminated all practical doubt regarding the vi­
olation of the inequalities. Thus, likelihoods may be ampliative, unlike probabilities, 
so that the process of repeated observations with, say, maximum likelihood estimation 
is an inductive process.

How'ever, given the Western obsession with prophecy and foretelling the future as 
the test of truth, there is another sense in which the term induction is used: viz. in the 
sense of using a series of observation to foretell the future. We observe the sun rising 
from the east 10,000 times and conclude that it will rise from the east for all future
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time. T his sense of the term induction, related to inductive inference, is completely 
missing in pratyaksa, which relates to observation here and now.

The idea of prophecy was rejected early in Indian tradition. Specifically, at the 
time of the Buddha, earning a living by predicting the future was regarded as uneth­
ical, by common people, as the Buddha states in the Dlgha Nïkâya. Thus, pratyaksa, 
as observation, must be separated from induction as a means of generalizing that 
observation.

While anumana is similar to deduction, there is a little twist related to the nature of logic. 
This is summarily explained in box 2.2, and is considered in more detail later on.

Box 2.2. A num ana  vs deduction

Anumana or inference is closer to deduction than pratyaksa is to induction, but anumana 
nevertheless needs to be separated from deduction. A subtle but fundamental differ­
ence is in the nature of the underlying logic. Though Buddhists, Jains, and Naiyayikas 
all accept the use of anumana for pramdna, they disagree on the logic underlying in­
ference. Summarily, these are quasi truth-functional logic (Buddhist), three-valued 
logic (Jain), many-valued logic (Sanjaya), and two-valued logic (Nyaya). These dif­
ferences in logic pertain to differences in the perception of time, and these differing 
time perceptions are at the core of the respective philosophies/

The concept oisabda is similar to authority, except that it, too, is accepted as fallible. (An 
example is provided in box 2.3.)

Box 2.3. S abda  vs scriptural testimony

Sabda is the (spoken) testimony of a credible person. This is accepted as a means 
of proof in present-day law, as in the testimony of a credible witness. This is also 
accepted as a means of proof in present-day science, as in the report of an experiment, 
perhaps costing several billion dollars, performed by a credible laboratory, though 
it is expected to be documented or written down, in the manner in which Western 
scriptures are written, rather than spoken.

Although formal proofs in present-day mathematics are deductive in theory, tes­
timony (as in a proof published in a reputed journal) is also the only real means of 
proof that many an expert has for believing in many complex mathematical results, 
for which one has perforce to rely upon the authority of the person and the journal 
wherein the result is published, since it would be impracticable and too time consum­
ing to check out the proof on one’s own, and the human life span is limited. This 
tendency (to believe formal mathematical results on authority) will surely increase as
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computers are used to produce more and more complex formal mathematical proofs 
that stretch further and further beyond the understanding of most human beings.

However, like pratyaksa and anumdna, s'abda too is not regarded as infallible either. 
At any rate, it is not regarded as being necessarily true, or true for all time. An 
example is provided by Varahamihira, who asserts, in his Pancasiddhantika,8 * about the 
authority of the Veddhga Jyotisa, that our ancestors were no doubt right, but things have 
manifestly changed since then. This also shows that sahda must yield to pratyaksa.

Mathematics was valued in Indian tradition, but it was not accorded the glorified place it 
has in Western philosophy. In particular, there was no distinction between mathematics and 
physics of the sort prevalent in the West from the time of Aristotle. This was particularly true 
with regard to the pratyaksa, or the empirical.

Accordingly, the pratyaksa enters explicitly also into mathematical rationale, in the In­
dian way of doing mathematics from the time of the sulba sutra-s (ca. -600 CE),51 through 
Aryabhata (ca. 500 CE)10 and up to the time of the Yuktibhasa (ca. 1530 CE). For example, 
the geometry of the sulba sutra-s, as the name suggests, involves a rope (sulba) for measure­
ment. Aryabhata defines water level as a test of horizontality, and the plumb line as the test 
of perpendicularity (Ganita 13):

The level of ground should be tested by means of water, and verticality by means 
of a plumb.

The Yuktibhdsd proves the “Pythagorean” “theorem”11 in one step, by drawing a diagram on 
a palm leaf, cutting along a line, picking and carrying. The rationale is explained in the 
accompanying figure (Fig. 2.1): the figure is to be drawn on a palm leaf, and, as indicated, 
it is to be measured, cut, and rotated.

Now, draw a square [with its side] equal to the koti [longer side of the triangle], 
and another equal to the bhuja [shorter side of the triangle]. Let the bhuja square 
be on the northern side and the koti square on the southern side, in such a way 
that the eastern side of both the sides [squares] falls on the same line, and in such 
a manner that the southern side of the bhuja-square lies alongside the koti. [Since 
the koti] is longer than the bhuja on the [koti] side, there will be an extension [of 
the koti] towards the western side further than the bhuja. From the north-east 
corner of the bhuja-square, measure southwards up to the koti, and mark [the 
spot] with a point. From this [point] the line towards the south will be of the 
length of the bhuja. Then cut on lines from the point to the south-west corner 
of the koti-square and the north-west corner of the bhuja-square, dividing the 
squares [into equal triangles]. Allow a little clinging at the two corners so that 
the cut portions do not fall away. Now break off the two parts [i.e., the triangles]
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Figure 2.1: Yuktibhasa proof of the “Pythagorean” theorem. T h e square corresponding to the 
smaller side (bhuja) is drawn on a palm leaf and placed on the square corresponding to the bigger 
side (koti), as shown. T h e bhuja is measured off from the SE corner o f the larger square, and jo ined  
to the SW corner o f the larger square and the NVV corner o f the smaller square. Cutting along the 
joining lines and rotating gives the square on the hypotenuse. This simple proof o f the “Pythagorean” 
“theorem ” involves (a) measurement, and (b) movement o f the figure in space.

at the point, turn them round alongside the two sides of the bigger (i.e., koti) 
square, so that they meet at the north-east, and join them, so that the inner cut 
of one joins with the outer cut of the other. The figure formed thereby will be a 
square. And the side of this square will be equal to the hypotenuse of the original 
hhuja-koti [rectangle]. Hence it is established that the sum of the squares of the 
bhuja and koti is equal to the square of the karna [hypotenuse]__ 12

The details of this rationale are not our immediate concern beyond observing that drawing 
a figure, carrying out measurements, cutting, and rotation are all empirical procedures. 
Hence, such a demonstration would today be rejected as invalid solely on the ground that it 
involves empirical procedures that ought not to be any part of mathematical proof.

Genesis of the Current Notion of Mathematical Proof: STS and the Empirical

We recall from Chapter 1 the historical process by which the empirical was eventually elim­
inated from Western mathematics, and how the persuasiveness of the Elements became the 
sole element for its acceptance by Christian rational theology, discarding equity. Paradoxi­
cally, though the currently dominant notion of mathematical proof, as formulated by Hilbert
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at the turn of the century, is essentially modelled on “Euclid’s” Elements, the empirical is not 
entirely rejected in the Elements. “Mathematically proved” is, even today, virtually synony­
mous with “incontrovertible”. In Christian rational theology, this was in contrast to empirical 
procedures which were not “incontrovertible”, since the empirical world had to be regarded 
as contingent.13

As we have seen, in contemporary Western philosophy of both mathematics and science, 
this belief in the contingency (hence unreliability) of the empirical world is very deep rooted, 
in Popper’s criterion of falsifiability, for example. In a historical perspective, the need to 
regard the empirical world as contingent can be readily located in the requirements of the­
ology, and specifically Christian rational theology. If “necessary” is interpreted to mean 
true for all time, then a necessary world could hardly have been created by God. On the 
other hand, if “necessary” is interpreted to mean true for all future time, then God would 
be unable to destroy the world, as in the doctrine of apocalypse. Finally, if “necessary” is 
interpreted to mean true in all possible worlds, God would not have a choice in the kind 
of world to create. Asserting the necessity of the empirical world in any sense con icts with 
fundamental theological ideas about God’s role in creation and apocalypse.

The roots of these difficulties can be traced to the Augustinian modification of Christian 
theology, which made God transcendent and all powerful. Islamic rational theology', in 
contrast, viewed creativity as immanent, and hence was willing to admit limits to what God 
could do. 'Phis was similar to the belief among old-Egyptians/Neoplatonists like Proclus 
who were far closer to the theology of Origen which regarded God as immanent, and hence 
regarded creation as an ongoing process, rather than a one time affair lasting for a week. 
Even al Ghazall championed the notion of ontically broken time, which makes creation a 
continuous process.

Proclus, further, quite explicitly accepted the eternity of the cosmos. He regarded it as 
related to necessity of mathematical truths regarded as eternal truths. Accordingly, Proclus 
did not need to reject any role for the empirical in mathematics.

Thus, while Proclus regarded mathematics as a means of moving away from the empirical, 
he did not regard mathematics as disjoint from the empirical; he did not think the empirical 
had no role at all in a mathematical proof—he thought a proof must suit the thing to be 
proved.14

Proofs must vary with the problems handled and be differentiated according to 
the kinds of being concerned, since mathematics is a texture of all these strands 
and adapts its discourse to the whole range of things.

Since Proclus accorded to mathematics an intermediate status, between the gross empirical 
world and the higher Platonic world of ideals, Proclus was ready to accept the empirical at the 
beginning o f mathematics, just as much as he was ready to accept that diagrams had an essential
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role in mathematical proof, to stir the soul from its forgetful slumber. While there was a 
change between Proclus and Hilbert, this change did not constitute “progress”: had Hilbert 
preceded Proclus, then Hilbert’s view of mathematics would have been rejected as unsound 
by Proclus.

As we have seen, in actual fact, this reference to the empirical in Elements 1.4 was sub­
sequently eliminated following Hilbert,10 Russell,16 etc. who suggested that “Euclid” had 
made a mistake in proving the theorem. Hence, that theorem was incorporated as the SAS 
postulate, today taught in school geometry.1 ‘ The theorem asserts that if two sides and the 
included angle (side-angle-side) of one triangle are equal to those of another triangle, then 
the two triangles are equal (“congruent” in Hilbert’s terminology, which bypassed also the 
political signif icance of equity in the Elements, which was a key aspect of the Elements for Neo- 
platonists and Islamic rational theologians). The proof of this theorem, as actually found in 
all known manuscripts of the Elements, involves picking one triangle, moving it and placing it 
on top of the other triangle to demonstrate the equality—an empirical procedure similar to 
that used in the Yuktibhdsa proof of the “Pythagorean” “theorem”. The proofs of subsequent 
theorems of the Elements, however, avoid this empirical process, with the possible exception 
of 1.8.

The question before us is this: is it legitimate to accept the empirical at one point in 
mathematical discourse, and to reject it elsewhere?

From the point of view of Proclus, the appeal to the empirical in the proof of 1.4 was 
acceptable, since proofs must be differentiated according to the kinds of being, and the em­
pirical was the starting point of mathematics, though not its goal. Empirical procedures 
were therefore acceptable in proofs at the beginning of mathematics, though the proofs of 
subsequent propositions must move away from the empirical, to suit the objectives of math­
ematics. For Hilbert, who sought the standardization and consistency suited to an industrial 
civilization, a notion of mathematical proof that varied according to theorems, or “kinds of 
beings”, was not acceptable. Indeed, in Hilbert’s time, in the West, industrialization was 
practically synonymous with civilization, as in the statement: “Civilization disappears ten 
feet on either side of the railway track in India”. So it is no surprise that Hilbert’s view of 
mathematics was entirely mechanical18—where Proclus sought to persuade human beings, 
Hilbert sought to persuade machines! Hilbert’s notion of proof, therefore, had to be ac­
ceptable to a machine; a proof had to be so rigidly rule-bound that it could be mechanically 
checked—an acceptable proof had to be acceptable in all cases. Hence, exceptions do not 
prove the rule; a single exception disproves the rule—a belief that is the basis also of Pop­
per’s criterion of falsifiability. Hence, Hilbert et al. chose to reject as unsound the proof of 
Elements 1.4. As we have seen in Chapter 1, in rejecting the traditional demonstration of 
Elements 1.4, Hilbert also thought that he re ected the Western view since Aristotle which 
sought to separate physics from mathematics.
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The Epicurean Ass

The requirement of a consistent notion of proof limited Hilbert’s options. If an appeal to the 
empirical is permissible in the proof of one theorem {Elements, 1.4), then why not permit an 
appeal to the empirical in the proof of all theorems? Why not permit triangles to be moved 
around in space to prove the “Pythagorean” theorem {Elements, 1.47), as in the Yuktihhdsd 
proof? Why not permit length measurements? Accepting the empirical as a means of proof 
(or even introducing a measure of length axiomatically, as done by Birkhoff19) simplifies 
the proofs of the theorems in the Elements. In fact, so greatly does it simplify the proofs 
that it makes most of the theorems of the Elements obvious and trivial! Since the indigenous 
Indian tradition of geometry relied on measurement, one strand of Indian tradition hence 
rejected the Elements as valueless from a practical viewpoint, until the 18th century when 
they were first got translated from Persian into Sanskrit by Jai Singh. (This simple answer to 
a question raised by Needham shows, incidentally, that even a relatively unbiased historian 
like Needham could not entirely transcend the prejudices that prevailed in his time.)

That the Elements are trivialised by the consistent acceptance of the empirical, definitely 
was the basis of the objections raised by the Epicureans, who may be regarded as the coun­
terpart of the Lokayata, in Greek tradition. The Epicureans argued, against the followers of 
“Euclid”, that the theorems of “Euclid’s” Elements were obvious even to an ass. They partic­
ularly referred to Elements 1.20, which asserts: in any triangle the two sides taken together 
in any manner are greater than the third. The Epicureans argued that any ass knew the 
theorem since the ass went straight to the hay and did not follow a circuitous route, along 
two sides of a triangle. Proclus replied that the ass only knew that the theorem was true; he 
did not know why it was true.

The Epicurean response to Proclus has, unfortunately, not been well documented. The 
Epicureans presumably objected that mathematics could not hope to explain why the theo­
rem was true, since mathematics was ignorant of its own principles. They presumably quoted 
Plato {Republic, 533)20

geometry and its accompanying sciences...—we find that though they may 
dream about real existence, they cannot behold it in a waking state, so long as 
they use hypotheses which they leave unexamined, and of which they can give 
no account. For when a person assumes a hrst principle which he does not know, 
on which first principle depends the web of intermediate propositions and the 
final conclusion—by what possibility can such mere admission ever constitute 
science?

It is to this objection that Proclus presumably responds when he asserts that Plato does not 
declare that
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mathematics [is] ignorant of its own principles, but says rather that it takes its 
principles from the highest sciences and, holding them without demonstration, 
demonstrates their consequences.21

This appeal to Plato’s authority, and to the Platonic gradation of the sciences, is obviously 
inadequate to settle the issue—for the Lokayata would reject as non-science what Plato re­
gards as the “highest science” (though they would have agreed with Proclus about equity). 
Contrary to Plato, the Lokayata would insist that mathematics must take its principles from 
the empirical world of sense-perceptions, a move that would also destroy the difference be­
tween mathematics and physics in current Western philosophical classification.

Though Proclus has gone largely unanswered down the centuries, presumably because no 
Epicureans were left to respond to him, the present chapter will provide an answer from the 
perspective of traditional Indian mathematics.

Mathematics as Calculation vs Mathematics as Proof

The trivialization of the Elements by the acceptance of the empirical can be viewed from an­
other angle: what is mathematics good for? why do mathematics? As already stated, Proclus 
explains at great length in his introduction to the Elements that though (a) mathematics has 
numerous practical applications, (b) mathematics must be regarded primarily as a spiritual 
exercise. Thus, Proclus states:

Geodesy and calculation are analogous to these sciences [geometry, arithmetic],
. . .  [but] they discourse not about intelligible but about sensible numbers and 
figures. For it is not the function of geodesy to measure cylinders or cones, but 
heaps of earth considered as cones and wells considered as cylinders; and it does 
not use intelligible straight lines, but sensible one, sometimes more precise ones, 
such as rays of sunlight, sometimes coarser ones, such as a rope or a carpenter’s 
rule.22

Clearly, for Proclus, the practical applications of mathematics were its lowest applications 
involving “sensible” objects rather than “intelligible” objects:

instead of crying down mathematics for the reason that it contributes nothing to 
human needs—for in its lowest applications, where it works in company with ma­
terial things, it does aim at serving such needs—we should, on the contrary, es­
teem it highly because it is above material needs and has its good in itself alone.23

This echoes the Platonic deprecation of the applications of mathematics (Republic, 527):

They talk, I believe in a very ridiculous and poverty-stricken style, for they speak 
invariably of squaring and producing and adding, and so on, as if they were



72 Cultural Foundations of Mathematics

engaged in some business, and as if all their propositions had a practical end in 
view: whereas in reality I conceive that the science is pursued wholly for the sake 
of knowledge.24

Plato clearly thought of mathematics-as-calculation as distinctly below mathematics-as- 
proof, and this Platonic valuation led to the implicit valuation of pure mathematics as 
superior to applied mathematics, and to the resulting academic vanity of pure mathemati­
cians, who regarded (and still regard) themselves as superior to applied mathematicians—a 
vanity so amusingly satirized in Swift’s Gullivers Travels.

His Majesty discovered not the least curiosity to enquire into the laws, govern­
ment, history, religion, or manners of the countries where I had been; but con­
fined his questions to the state of mathematicks, and received the account I gave 
him, with great contempt and indifference....20

In traditional Indian mathematics, however, there never was such a con ict between 
“pure” and “applied” mathematics, since the study of mathematics never was an end in 
itself, but always was directed to some other practical end. Geometry, in the sulha sutra, was 
not directed to any spiritual end, but to the practical end of constructing a brick structure. 
Contrary to Plato, calculation was valued and taught for its use in commercial transactions, 
as much as for its use in astronomy and timekeeping. Proof was not absent, but it took the 
form of rationale for methods of calculation. The methods of calculation were regarded as 
valuable, not the proofs by themselves—there was no pretence that rationale provided any 
kind of absolute certainty or necessary truth. Rationale was not valued for its own sake. 
Hence, rationale was not considered worth recording in many of the terse (sutra-style) au­
thoritative texts on mathematics, astronomy, and timekeeping. On the other hand, rationale 
was not absent, but was taught, as is clear, for example, from the very title Yuktibhdsd, or in 
full form, the GanitaYuktiBlidsa, which means “discourse on rationale in mathematics”.

The Epistemological Discontinuity

We now have before us several different ways in which mathematics has been historically 
perceived. For example:

(a) The Procluvian view of mathematics as the science of learning, hence an instrument of 
spiritual progress.

(b) The view of Christian rational theology that mathematics is an instrument of persuasion, 
since it (supposedly) incorporates universal and certain knowledge. Deriving from this 
is the formalist view of mathematics as proof—which proof (supposedly) incorporates 
necessary truth.
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(c) The Indian view of mathematics as primarily an instrument of practical calculation which 
is not disjoint from the empirical.

Thus, the belief in the universality and certainty of mathematics has certainly not been 
universal across cultures! Nor has it been universal across time. We have already seen in 
Chapter 1, how the condemnation and banning of the Procluvian view followed by its rein­
terpretation led to the view of Christian rational theology, and how this evolved into the 
present-day view of formal mathematics.

Historically speaking, this quaint mediaeval theological belief in the universality and cer­
tainty of mathematics proved to be a serious impediment in accepting the practical benefits 
of mathematics. We can see this in the two key cases of the algorismus and the calculus.

Thus, it is natural that those Europeans who valued the practical applications of 
mathematics—the Florentine merchants—played a major role in first importing the Indian 
techniques of calculation into Europe, as algorismus texts. (Algorismus, as is well known, 
is a Latinization of al Khwarizmi, and refers to the Latin translations of al Khwarizmi’s 
Arabic translation of Sanskrit manuscripts like those of Brahmagupta.) The Florentine 
merchants clearly saw that the ability to make rapid calculations conferred a competitive 
advantage in commercial transactions. Hence they adopted the algorismus. However, 
the algorismus notion of number differed from the abacus notion of number, and this led 
to difficulties. The simplest of these difficulties was that the algorismus enabled efficient 
calculation by using the place value system, and especially zero, but this did not fit into the 
additive system of Roman numerals tied to the abacus. There were other subtler difficulties 
related to representability: for common commercial problems, the algorismus used tech­
niques like the algorithm for square-root extraction. This made manifest the difficulty in 
representing numbers like y/5, for which one could find a good practical approximation, 
but no exactitude. These difficulties of representation were of absolutely no consequence 
for purposes of practical or commercial computation, since a number such as \/5 could be 
represented to any desired degree of accuracy, e.g. \/5 = 2.2360679774 and the remaining
0.0000000000997896964091736687313... (non-representable) could always be treated as if 
it were zero. These difficulties were also not of any philosophical consequence, from the 
perspective of a philosophy such as sunyavdda, which accepts non-representability, and 
denies the existence of any underlying ideal entity—as we shall see in more detail in a later 
chapter.

However, these difficulties arising from the different epistemology' underlying the algo­
rismus were almost insurmountable for Europeans who regarded mathematics as universal, 
and their understanding of mathematics as the only possible one, and hence tried to hang on 
to the idealist understanding of number. A common way to express these difficulties was that 
mathematics being perfect, even the smallest quantity could not be discarded. Thus, these 
contrasting epistemologies of mathematics led to major difficulties in Europe in accepting
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the algorismus. Though the practical applications of mathematics were valued de facto in 
the West, so enormous were the difficulties that the West had in understanding the Indian 
tradition of mathematics, that the acceptance of algorismus texts in Europe took around five 
centuries,26 from the first recorded attempts to relate to the algorismus from the time of the 
10th c. CE Gerbert (Pope Sylvester II) to the eventual triumph of algorismus techniques as 
depicted on the cover of Gregor Reisch’s Margarita Philosophical Indeed, it took a little 
longer than that, for the British Treasury continued to use the competing abacus techniques 
as late as the 18th c. CE, since the algorismus techniques were not regarded as reliable 
enough for use by the state exchequer. Thus, formalist epistemology severely inhibited even 
the acceptance of elementary arithmetic in Europe.

A closely analogous epistemological discontinuity arose in connection with the import of 
the calculus in Europe. As we will see in the next few chapters, the “Pythagorean” theo­
rem is merely the starting point of the Yuktihhdsd which goes on to develop infinite series 
expansions for the sine, cosine, and arctan functions, nowadays known as the “Taylor” se­
ries expansions, to calculate very precise numerical values for the sine and cosine functions. 
These expansions arose naturally in the course of determining the length of the arc, since 
Indian geometry was unabashedly metric and used a rope to measure the length of curved 
lines, so that the notion of the “length of the arc” did not present the slightest conceptual 
problem.

In the 16th c. CE, Indian mathematical and astronomical manuscripts, because of their 
practical application to navigation through astronomy and timekeeping, engaged the atten­
tion of Jesuit priests in Cochin. Christoph Clavius, who reformed the Jesuit mathematical 
syllabus at the Collegio Romano, emphasized the practical applications of mathematics. A 
student and later correspondent of the famous navigational theorist Pedro Nunes, Clavius 
understood the relation of the date of Easter to latitude determination through measure­
ment of solar altitude at noon, as described in the 7th c. CE texts of Bhaskara I—the Malta 
Bhdskariya and the very widely distributed Laghu Bhdskanyaf8 In his role as head of the 
committee for the Gregorian calendar reform, Clavius received inputs from correspondents 
and former students like Matteo Ricci whom he had trained in mathematics, astronomy, and 
navigation, and who visited Cochin to learn about Indian methods of timekeeping. (The 
Jesuits, of course, knew Malayalam, the language of the Yuktihhdsd, and had even started 
printing presses in Malayalam by then, and were teaching Malayalam to the locals in the 
Cochin college, latest by 1590.)

Precise sine values were needed in Europe for various practical purposes related to 
navigation—to calculate loxodromes, for example—hence precise sine values were a key 
concern of European navigational theorists, and astronomers like Nunes, Mercator, Simon 
Stevin,29 and Christoph Clavius,30 who provided their own sine tables.

Despite the practical value of the calculus, the contrasting epistemologies of Indian and 
Western mathematics, however, led to another protracted epistemological struggle. 'Phis
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Figure 2.2: The fish figure. With W as centre and WE as radius two arcs are drawn, and they intersects 
the arcs drawn with E as centre and EW as radius at N and S. The above construction, called the “fish 
figure”, was used in India to construct a perpendicular bisector to the EW line and thus determine 
NS. In Elements, 1.1, a similar construction is used to construct the equilateral triangle WNE on the 
given segment WE. Though it is empirically manifest (pratyaksa) that the two arcs must intersect at a 
point, to prove their intersection, without appeal to the empirical, formal real numbers are required, 
for, with rational numbers, the two arcs may “pass through” each other, without there being any 
(exact) point at which they intersect, since there are “gaps” in the arcs, corresponding to the “gaps” 
in rational numbers.

involved various issues, such as the meaning to be assigned to the length of a curved line. 
The computation of precise sine values is closely related to the numerical determination of 
the length of the arc of a circle, and we have seen (p. 38) how Descartes declared in his 
La Geometric that “the ratios between straight and curved lines... cannot be discovered by 
human minds” and that conclusions based on such ratios could never hope to be “rigorous 
and exact”,31 so that they did not constitute mathematics. Descartes’ pompous assertion 
about “human minds” did apply to minds steeped in Western culture: the “infinitesimals” 
and “infinities” of the calculus also puzzled other leading European minds like Newton and 
Leibniz, who could not give a clear account of them. This initiated the protracted epistemo­
logical struggle in Europe concerning the meaning and nature of infinitesimals (according 
to idealistic mathematics). It was only towards the end of the 19th century that Dedekind’s 
formalisation of the real numbers partly resolved the issues regarding infinitesimals, while 
also providing a metaphysical basis to the implicit and less-noticed reference to the empir­
ical in the proof (Fig. 2.2) of the very first proposition in the Elements. Needless to say, this 
formalisation of real numbers did not add an iota of practical value to the real numbers as 
used since the days of the sulba sfitra-s. However, the felt need for a theologically correct 
proof once again inhibited the acceptance of a practically useful technique for which, as we 
shall see in the next chapter, there was adequate pramãna.
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Towards an Alternative Epistemology of Mathematics

The present-day schism between mathematics-as-calculation and mathematics-as-proof is 
one of the consequences of the above historical discontinuities and continuities: on the 
one hand, the practical and empirical is rejected, on the other hand there is the persistent 
attempt to assimilate practical/empirical mathematics-as-calculation into spiritual/formal 
mathematics-as-proof. Practical mathematics, as in the Indian tradition, regarded mathe­
matics as calculation, whereas the idea of mathematics as a spiritual exercise has developed 
into the current Hilbert-Bourbaki approach to mathematics as formal proof, which has 
dominated mathematical activity for most of the 20th century CE. Side by side, the attempt 
to assimilate practical and empirical mathematics into the tradition of theological and 
formal mathematics has gone on now for over a thousand years. However, despite the 
apparent epistemological satisfaction provided by mathematical analysis, for example, it 
is still the calculus which remains the key tool for practical mathematical calculations, and 
few physicists or engineers, even today, study Dedekind’s formalisation of real numbers, or 
the more modern notion of integral and derivative—either the Lebesgue integral or the 
Schwartz derivative. The practical seems to get along perfectly well without the need for 
any metaphysical seals of approval!

T his schism within mathematics is today again being rapidly widened by the key technol­
og)7 of the 20th c. CE, the computer, which is a superb tool for calculation. The availabil­
ity of this superb tool for calculation has accentuated the imbalance between mathematics- 
as-calculation and mathematics-as-proof. With a computer, numerical solutions of various 
mathematical problems can be readily calculated even though one may be quite unable to 
prove that a solution of the given mathematical problem exists or is unique. For example, one 
can today calculate on a computer the solution of a stochastic differential equation driven 
by Levy motion, though one cannot today prove the existence or uniqueness of the solu­
tion. The advocates of mathematics-as-calculation suggest that the practical usefulness of 
the numerical solution—the ability to become rich through improved predictions of price 
variations in the stock market—overrides the loss of certainty in the absence of proof. The 
advocates of mathematics-as-proof argue that what lacks certainty cannot be mathematics, 
irrespective of its usefulness.

Is this schism in mathematics a “natural law”? Must useful mathematics remain episte­
mologically insecure for long periods of time? Or is this state of affairs the outcome of the 
narrow, theologically-motivated view of mathematics in the West? From an understanding of 
the civilizational tensions that have determined the actual historical trajectory of mathemat­
ics, can we modify mathematics to resolve these tensions? Can an alternative epistemology 
of mathematics be found, which is better suited to mathematics-as-calculation? I believe the 
first step in evolving an alternative epistemology is to probe the alleged epistemological se-
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curity of mathematics-as-proof by re-examining the very notion of mathematical proof—is 
mathematical “proof” synonymous with certainty?

Interim Summary

To recapitulate, in mathematics, the East-West civilizational clash may be represented by 
the question of pramdna vs proof: is pramdna (validation), which involves pratyaksa (the em­
pirically manifest), not valid proof? The pratyaksa or the empirically manifest is the one 
pramdna that is accepted by all major Indian schools of thought, and this is incorporated 
into the Indian way of doing mathematics, while the same pratyaksa, since it concerns the 
empirical, is regarded as contingent, and is entirely rejected in Western mathematics. Does 
mathematics relate to calculation, or is it primarily concerned with proving theorems? Does 
the Western idea of mathematical proof capture the notions of “certainty” or “necessity” in 
some sense? Should mathematics-as-calculation be taught primarily for its practical value? 
or should mathematics-as-proof be taught for its theological correctness?

II
THE CULTURAL DEPENDENCE OF LOGIC

Plato and Proclus rejected the practical and empirical as valueless or inferior relative to the 
ideal; subsequent developments stripped away the spiritual and political content of Neopla­
tonic mathematics; formal mathematics has discarded also meaning and truth. If mathe­
matics exclusively concerns the impractical, the unreal, the meaningless, and the arbitrary, 
then of what value is mathematics? Why should one continue to accept Plato’s injunction 
to teach this sort of mathematics to one’s children? The only potentially valuable element 
left in Western mathematics, today, is the notion of “proof”. The notion of “proof” is the 
fulcrum of Western mathematics—the whole edifice of 20th century mathematics has been 
made to rest on the notion of mathematical proof.

One can enquire more closely into the nature of this “proof” or criterion of validity. 
One can enquire into the cherished belief that mathematical proof, since it involves only 
reason or logical deduction, is universal and certain—for it is this belief in its universality 
and necessity which makes the notion of mathematical proof potentially valuable. Can one 
maintain universality for the criterion of validity? Can one assert that there is a necessary 
relation between the meaningless and unreal assertion 2 + 2 = 4, and the arbitrary set of 
axioms known as Peano’s axioms? The short answer is no. The validation of 2 + 2 = 4 
requires proof—one is able to prove 2 + 2 = 4 from Peano’s axioms. But this proof relies on 
modus ponens, and modus ponens implicitly involves a notion of implication that requires 
2-valued logic. Thus, the entire value of formal Western mathematics rests on the belief in 
the universality of a 2-valued logic.
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Lukasiewicz 3-Valued Logic and Quasi Truth-Functional Logic

But in what sense is 2-valued logic universal? Surely this is not the only type of logic that 
there is. The West has known from the 1930’s that there are different kinds of logics avail­
able. One kind of logic is 3-valued logic of the sort formulated by Lukasiewicz (though he 
was surely not the first to have formulated such a logic). In this logic, the logical connec­
tives are given by the following truth tables (Table 2.1). One can similarly have many other 
many-valued logics.

^P V A q V V q V => q V q
v q - T I F T I F T I F T I F

T F T I F T T T T I F T I F

i I I I F T I I T T I I T I

F T F F F T I F T T T F I T

fable 2.1: Truth table for 3-valued logic. This table is read exactly like an ordinary truth table, 
except that the sentences p  and q now have three values each, with I denoting “indeterm inate” (and 
T  and F denoting “true” and “false” as usual). With this system, pV->p does not remain a tautology. 
A somewhat similar system was used by Reichenbach in his interpretation o f quantum mechanics.

Of course, even in the Western understanding of logic, truth tables are not at all essential 
to logic. One can have, for example, a quasi truth-functional logic which does not have any 
clear-cut truth tables (Table 2.2). Connectives in such a logic might be defined as follows 
(Table 2.3).

The “truth table” is no longer adequate, but the meaning is made clearer by means of 
the semantic interpretation using possible logical worlds, as illustrated in the accompanying 
figure (Fig. 2.3). A proposition is “true” if it is true in all possible worlds, false if it is false 
in all possible worlds, and indeterminate otherwise. Although the figure shows only two 
possible worlds, there may be any number of them. Whether or not such a logic applies to 
the physical world, i.e., whether or not these “possible” worlds have a real physical existence, 
is something that depends upon the nature of time.32 For instance, if the nature of time is 
such that at the microphysical level there are closed time loops, as even Stephen Hawking 
now concedes,33 then more than one logical “world” may really exist at a single instant of 
time. These are not disjoint physical worlds which never interact with each other as in the 
Many-Worlds interpretation of quantum mechanics. Rather, we are describing a state of 
affairs in a single physical world by treating it as if it were a collection of logical worlds in 
each of which two-valued logic holds.

The existence of a multiplicity of logics creates a fundamental problem for formal math­
ematics. In present-day formal mathematics, what is or is not a theorem depends not only 
upon the underlying axioms or postulates (accepted as arbitrary), but it also depends upon
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p A q P V q

p \ q T ? 

F

T  ? 

F

T F T  ? 

F

T  T 

T

p P ? (? or F) 

F

T  (? or T)

p

F T F F 

F

T  ?

F

Table 2.2: Quasi truth-functional logic. The quasi truth-functional system cannot be defined using 
a truth table, since a definite truth value cannot always be assigned. Hence, the “?” should not be 
construed as a third truth-value. This table should be seen only as an analogy. With this system, 
p V ->p remains a tautology, but p A y  need not be a contradiction.

p => q p q

p\q T ? 
F

T  ? 
F

T T  ? 
F

T  ? 
F

p T  (? or T) 
p

? (? or T) 
p

F T  T 
T

F ? 
T

Fable 2.3: Possible definition of conditional. This table shows a possible “definition” of the condi­
tional, using p => q for ->p V q, and p q for (p =>• q) V (q => p). The precise definition of “if ” is very 
important for axiomatic quantum mechanics.
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P
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Figure 2.3: Quasi truth-functional world.The upper figure shows a quasi truth-functional (Q TF) 
world which has two branches or possibilities corresponding to two 2-valued logical worlds (at a single 
instant o f time). T h e relevant statements which are true in each branch are displayed. This explains 
how p  V ->p remains a tautology, but p  A ->p need not be a contradiction. Physically, a Q T F world 
might represent the various possibilities at a single instant o f time (corresponding to a closed loop 
in time). Q T F logic has the features o f a quantum logic, and has been proposed as an appropriate 
way to describe the microphysical world according to the structured time interpretation o f quantum 
mechanics proposed by this author. T h e lower figure show a Feynman diagram for the photon self­
energy, in which a photon simultaneously creates an electron-positron pair, which recombines to give 
back the photon. This corresponds to the possible empirical realization o f such Q T F worlds since 
the positron may be regarded as the electron going back in time. For the mathematics o f the photon 
self-energy, see Chapter 10.

the logic used to derive the theorem from the axioms. For example, (A A ->A) => B  is a 
theorem of 2-valued logic, and it is a theorem which is used to derive many theorems of 
present-day mathematics. But (A A ->A) =4> B  is NOT a theorem with cjuasi truth-functional 
logic. What is counted as a theorem therefore varies with both the axioms and logic. From 
the intuitionist controversy, it is well known that mathematics would change substantially if 
just the above rule of inference (reductio ad ahsurdum) is denied, without even changing logic. 
Even contemplating a change of logic, of course, goes far beyond intuitionism, since many 
other rules would, then, need to be re-examined.

Western thought has long regarded deduction as universal and infallible. However, de­
duction rests on logic, and logic, unfortunately, is not unique, as the West seems to have 
incorrectly assumed for millennia. The result of deduction will vary with the logic used, 
so deduction can be universal only if logic is universal. But in what sense can a particular 
choice of logic be declared to be universal? Having entirely eliminated the empirical from 
mathematics, present-day mathematics can no longer appeal to the empirical world to es­
tablish the nature of logic. (As we shall see later on, even if one does appeal to the empirical, 
there is nothing obvious about 2-valued logic. Moreover, an appeal to the empirical would 
involve induction, so, in that case, induction, based on the empirically manifest, would have
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to regarded as more certain and more universal, so that the Western valuation of deduction 
over induction would also need to be revalued.) The alternative is to appeal to intuition in 
the manner of Kant.

The Kantian belief in the universality of logic is not based on any profound study but on 
the opposite: mere parochialism and lack of information about other cultures, coupled with 
facile historical claims. Thus, in a profoundly parochial way, Kant asserted:

Whether the treatment of that portion of our knowledge which lies within the 
province of pure reason advances with that undeviating certainty which charac­
terizes the progress of science, we shall be at no loss to determine__ That logic
has advanced in this sure course, even from the earliest times, is apparent from 
the fact that, since Aristotle, it has been unable to advance a step and, thus, to all 
appearances has reached its completion.34

Unlike Kant, our story of alternative logics begins from long before Aristotle of Toledo, 
from before even Aristotle of Stagira, and with things that Aristotle probably ought to have 
known (if at all the texts on logic attributed to him can be validly traced to him), and people 
Kant categorically ought to have heard of. (As Paulos Mar Gregorios remarked, in the West, 
a person who has not read something of Plato would be regarded as improperly educated; 
shouldn’t one similarly regard a person who has not even heard of Aksapad Gautam or 
Nagarjuna?)

The Kantian error in trying to base the universality of logic on a priori intuition is clear 
enough. Intuition is conditioned by culture, so if different cultures used different logics, as 
we now proceed to show, then deduction would refer to a cultural truth rather than a certain 
or universal truth. Logic is not culturally universal: so the tacit assumption of a two-valued 
logic in present-day mathematics involves a cultural bias. Phis is the antithesis of the Platonic 
view that mathematical “truths” are somehow out there, independent of culture:30 for the 
theorems of mathematics can hardly be certain if logic is not. The importance of a difference 
of logic cannot be overstated: it throws into doubt the Western notion of “proof” and the 
entire edifice of formal mathematics built on it. It also throws into doubt inferences about 
physical “facts” drawn from this mathematics. (In particular, there is a close link between the 
nature of physics, the nature of time, and the nature of logic, as I have elaborated elsewhere. 
The relation of time beliefs to logic on the one hand, and to culture on the other, enables us 
to understand better the link of culture to logic.)

Syadavada and the Logic of Structured Time

As our first example, let us examine alternative logic in the context of the Jain system of 
syadavada, which has been much discussed in recent times. The distinguished commentators 
who have sought to make this logic a new basis for statistics,36 referred to its significance
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for experimental physiology,3' and to Bohr’s complementarity principle,38 have incorrectly 
assumed39 that non-2-valued logic is exclusively a Jain phenomenon.

The Jain logic40 of syadavada involves seven categories. The system is attributed to the 
commentator Bhadrabahu. Jain records and literature mention two Bhadrabahu-s who lived 
about a thousand years apart. Between the two sects of the Jains there is no agreement as to 
the date of the later Bhadrabahu, who may have lived as early as the —4th or as late as the 
5th-6th century CE,41 as his elaborate ten-limbed syllogism suggests.

The word syat means “may be”, and the quickest way to see this is that the word shayad 
in current Hindustani means “perhaps”. Hence, syadavada means “perhaps-ism” or “may- 
be-ism” or “discourse on the may be”. In this view certainty is not possible, and uncertainty 
requires the making of judgements {naya). The seven-fold judgements (saptabhanginaya) 
are: (1) syadasti (may be it is), (2) sydtnasti (may be it is not), (3) syadasti ndsti ca (may be it 
is and is not), (4) syadavaktavyah (may be it is inexpressible [= indeterminate]), (5) syadasti 
ca avaktavyasca (may he it is and is indeterminate), (6) sydtnasti ca avaktavyasca (may be it 
is not and is indeterminate), (7) syadasti ndsti ca avaktavyasca (may be it is, is not, and is 
indeterminate). (According to some there is an eighth category (8) vaktavasya avaktavasyaca.)

Haldane relates this to human perception.

In the study of the physiology of the sense organs it is important to determine 
a threshold. For example a light cannot be seen below a certain intensity, or 
a solution of a substance which is tasted as bitter when concentrated cannot be 
distinguished from water when it is diluted. Some experimenters order their 
subjects to answer “yes” or “no” to the question “Is this illuminated?”, or “Is this 
bitter?”. If the experimenter is interested in the psychology of perception he will 
permit the subject also to answer “It is uncertain”.

Suppose now that a subject is given a randomized series of stimuli, and we record his re­
sponses. The experiment is repeated a few times. Especially for stimuli very close to the 
threshold, it is now possible that the subject may say “no” to a stimulus to which he had 
earlier said “yes”; or “uncertain” (= “may be”) to a stimulus to which he had earlier said 
“no”. After at least three repetitions of the experiment, the responses to a given stimulus 
may be naturally classified in a seven-fold way: (1) Y, (2) N, (3) Y and N, (4) U, (5) Y and 
U, (6) N and U, (7) Y and U and N, though the last possibility seems a bit unlikely. These 
predications correspond exactly to the saptabhanginaya. On this interpretation, what we have 
here is something like a 3-valued logic, so the proposed relation to Bohr complementarity is 
exactly like the (unsuccessful) one of Reichenbach.42

Haldane’s interpretation of Bhadrabahu resolves the apparent contradiction in asserting 
that something both is and is not by making these statements true at different moments of 
time. While Haldane’s interpretation is very clear in itself, it is not clear that this captures the
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original syadavada meaning which is also associated with anekantavada or no-single-point-of- 
view-ism. Thus, when it is asserted that “The pot is both red and black” this is a statement 
intended to be true at a single instant of time from different perspectives.

We may therefore need to consider a situation where Haldane’s different moments of 
time are not perceptually different, but are packed within the same atomic instant of time.43 
As the name atom suggests, one might want to treat this atomic instant as really indivisible, 
as a single atom of time. In that case, one way to make sense out of this logic (for those 
accustomed to 2-valued logic) is to attach multiple (2-valued) logical worlds to the same 
instant of time. This corresponds to the idea of a quasi truth-functional logic.

Ill
CATUSKOTI: THE BUDDHIST LOGIC OF FOUR ALTERNATIVES

That contradictor)' attributes are expected to hold simultaneously (i.e., at a single instant of 
time) is unambiguously clear in the Buddhist context, which also quite definitely predates 
Aristotle and Plato. Contrary to the belief of even some learned scholars that this logic 
originated with Nagarjuna, we find this directly in the exposition given by the Buddha of 
various wrong views concerning the world, in the Brahmajdla Sutta of the Digha Nikdya itself.

One such view described there is the one which we have earlier attributed to Plato and 
Socrates: that man’s life is ephemeral, but a part of him (the soul) is eternal. Therefore, a 
man (while alive) has both an eternal and non-eternal part. The contradictory properties 
of eternality-ephemerality or eternality-non-eternality are required to hold simultaneously. 
Unlike a pot where one might point out the part which is red and the part which is black, no 
such ostensive indication can be given for the part of man which is supposed to be eternal.

The point is made clearer with the next example, which concerns four (wrong) views 
about the world.44

“. . . I  know that the world is finite and bounded by a circle.” 'Phis is the first
case__ " .. .  I know that this world is infinite and unbounded”. This is the second
case. And what is the third way?.. . “. . .  I . . .  perceive the world as finite up-and- 
down, and infinite across. Therefore I know that the world is both finite and 
infinite.” This is the third case. And what is the fourth case? Here a certain 
Sramana or Brahmana is a logician. From his reasoning (tarka) he understands:
“This world is neither finite nor infinite. Those who say it is finite are wrong, 
and so are those who say it is infinite. Those who say it is both finite and infinite 
are also wrong. This world is neither finite nor infinite.” This is the fourth case.
These are the four ways in which these ascetics and Brahmins are Finitists and 
Infinitists__ There is no other way.

Thus, the four wrong views about the world, described by the Buddha, are:
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1. The world is finite.

2. The world is not finite.

3. The world is both finite and infinite.

4. The world is neither finite nor infinite.

Maurice Walshe refers to this as “the four alternatives’ of Indian logic: a thing (a) is, (b) 
is not, (c) both is and is not, and (d) neither is nor is not.”4° This Four Cornered logic (as it 
is called in Chinese), certainly did not apply to all Indian logic, but was frequently used by 
Nagarjuna.

The semantic interpretation of (3) is that the world is finite up-and-down and infinite 
across. The semantic interpretation46 of (4) is obtained by considering a person (such as 
Sahjaya Belatthaputta) who denies that any of the three preceding views are right.

Sahjaya Belatthaputta was one of the five wanderers, a contemporary of the Buddha, 
to whom King Ajatasattu addressed his sceptical question about the mundane (.sdmdnya = 
pratyaksa) benefits of leading the life of a homeless wanderer. His reply, as summarized by 
Ajatasattu, ran as follows.

If you ask me whether there is another world—well, if I thought there were, I
would say so. But I don’t say so. And I don’t think it is thus__  And I don’t
think it is otherwise. And I don’t deny it. And I don’t say there neither is nor is 
not, another world. And if you ask me about the beings produced by chance; or 
whether there is any fruit, any result, of good or bad actions; or whether a man 
who has won the truth continues, or not, after death—to each or any of these 
questions do I give the same reply.4 ‘

Prior to the Buddha, there must have been prevalent various logics different from that sub­
sequently adopted by Naiyayika-s and Aristotle, as noted by Barua.48 Sanjaya’s formula for 
a five-fold negation is summarized in the Pali si oka: evarn pi me no, tatha ti pi me no, annathd ti 
pi me no, iti ti pi me no, no ti ti pi me no.

Ajatasattu himself thought that Sahjaya Belatthaputta had simply evaded his question.

Thus, Lord, Sahjaya Belatthaputta, on being asked about the [manifest 
(pratyaksa)] fruits of the homeless life, did not say anything definite. Ask 
about a mango, and get a reply about a breadfruit (katahala), ask about a 
breadfruit and get a reply about a mango. How can someone like me [a king] 
remove a Sramana or a Brahmana from the country? So I neither applauded 
nor condemned his words, nor showed any displeasure, but got up and left.49

In two-valued logic accepting a statement and its negation implies every other statement. 
But this acceptance of 4-alternative logic did not mean that anything at all was both true and
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false. A little later in the same Brahmajala Sutta of the Digha Nikaya, we find the discourse of 
the Buddha rejecting another of the wrong views labelled as the Wriggling of the Eel.°°

Because of his dullness and stupidity, when he is questioned he resorts to evasive 
statements and wriggles like an eel. “If you ask me whether there is another 
world—if I thought so, I would say there is another world. But I don’t say so.
And I don’t say otherwise. And I don’t say it is not, and I don’t not say it is 
not.” “Is there no other world?... ” “Is there both another world and no other 
world?... ” “Is there neither another world nor no other world?... ”

Unlike Ajatasattu’s account of Sanjaya Belatthaputta, we have here clearly a list of seven 
negations: (1)1 don’t say so, (2) I don’t say otherwise, (3) I don’t say it is not, (4) I don’t 
not say it is not, (5) I don’t affirm that there is no other world, (6) I don’t say there both is 
and is not another world, (7) I don’t say there is neither another world nor no other world. 
If we add to this the affirmative proposition of which these are negations, then we obtain 
the eight possibilities. (It is clearly rather hard to describe so many negations using natural 
language.51) The Buddha rejected this proliferation of negations.

Not too much should be read into the particular semantic interpretation for the case (3) 
above. Thus, Nagarjuna, in his famous tetralemma (catuskoti) puts forward the proposition:02

Everything is
such
not such
both such and not such 
neither such nor not such.

As we shall see, later on, although the word “law” suggests that those who break it are crimi­
nals, Nagarjuna’s “middle way” is founded on a denial of the ’’law of the excluded middle”, 
with four examples of which his Midamadhyamakakarika begins.

MatilaP3 accordingly accepted that the “standard” negation does not fit Buddhist logic. 
Despite the Buddha’s own rejection of numerous truth values as leading to confusion, a 
distinguished biologist, G. N. Ramachandran has suggested04 another interpretation which 
applies the many-valued logic point of view to Buddhist logic as expounded by Nagarjuna: 
namely that this could be seen as an 8-valued logic00 with a cyclic negation. (Given the evo­
lution of opinion and the various divisions of opinion within Buddhism, after the Buddha, 
it is not necessary that there is a uniform notion of logic across various Buddhist schools 
today.)

My own reading is that Buddhist logic is quasi truth-functional, and that this quasi truth- 
functionality of the underlying logic is closely related to the structure of time or the structure 
of the instant implicit in the Buddhist thesis of paticca samuppada, which, as the Buddha
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stated, is the key to the dliamma. Since I have amplified on this elsewhere, I will not go into 
the details here, but only brie y recapitulate.

Logic relates to time beliefs: and Buddhist logic relates to the belief in time as instant. 
While the yogi regards even an entire cycle of the cosmos, lasting for billions of years, as an 
ephemeral instant, the Buddha proceeds in the other direction, dilating each microcosmic 
instant of time into an analogue of the macrocosm. An obvious consequence is the non- 
persistence of identity—and its relation to difficulties of representation is considered in a 
later chapter. Another important consequence of the Buddhist idea of time as instant, a 
consequence only dimly noticed by earlier commentators, is this: the dilation o f the instant 
into an analogue of a cycle of the cosmos also gives a structure to the instant, i.e., a structure 
to time, in the sense of temporal logic, i f  we were to replace the atomic instant by a point of 
time. Within the microcosm of an atomic instant there could be both growth and cessation, 
in complete analogy with both birth and death within a cycle of the cosmos. But if we insist 
upon thinking of the atomic instant as a point of time (Naiyayika-s like Udyotkara did just 
that) then one must alter the logic of discourse: for Udyotkara’s act can then be simultaneously 
both begun and complete, like Schrodinger’s cat which can be simultaneously alive and 
dead. This altered notion of simultaneity alters the very logic of debate, making it very 
difficult for opponents to refute the Buddha’s view. Udyotkara who came some 15 centuries 
after the Buddha still gives completely tangential arguments in an attempted refutation of 
the Buddhist logic of the instant, following the above plan of deducing a contradiction.

(The quasi truth-functional logic, as we have seen,ofc> corresponds to a quantum logic, and 
gives genuine complementarity.) Alternatively, one may use a many-valued logic, though the 
two are NOT equivalent (since the structured-time interpretation of quantum mechanics is 
not the same as Reichenbach’s interpretation).

However, the suggestion to use many-valued logic is not necessarily orthogonal to the sug­
gestion to use quasi truth-functional logic: one can well conceive of a quasi truth-functional 
logic, in which the multiple logical worlds attached to a single instant of time are themselves 
not 2-valued. In Haldane’s model used to interpret Jain logic, this would happen if the 
different moments of time that he uses were treated as perceptually indistinguishable.

That the base logic of sentences is itself not two-valued is also clear from the work of 
Dihnaga, a celebrated Buddhist logician, who developed something like a predicate calculus. 
We do not know his exact date, but he taught with distinction at the University of Nalanda, 
from where some of his works were obtained by the Chinese traveller Huen Tsang, and 
first translated into Chinese in 557-569 CE. Dihnaga must have been alive in 480 when his 
teacher Vasubandhu lived. He wrote in Sanskrit, rather than Pali, and his treatise on logic 
was composed in the anusthub metre, as we can infer from the fragments of it quoted by his 
opponents. Tibetan prose translations are, however, extant.

An enigmatic and very terse (2 printed pages) treatise on the “logic of nine reason” by 
Dihnaga is the Hetu-cakra-hamaru (/ic/m = reason, C7/Cra=wheel; in Tibetan this is called the
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Wheel of Reason put in order). Because of its classical terseness (46 lines of verse = about 
20 lines of prose + 1 diagram), this treatise admits diverse interpretations. Those who know 
Tibetan or Chinese are invited to clarify matters. The adoption of such a classically terse 
style suggests that the author was recognized as an all-time great authority, as indeed he 
was. The first three and last three stanzas read as follows.07

I am expounding the determination of 
The probans with three-fold characteristics.

Among the three possible cases of “presence, “absence” and “both” 
Of the probans in the probandum,
Only the case of its “presence” is valid,
While its “absence” is not.

The case of “both presence and absence” is inconclusive, 
ft is therefore not valid either.
The “presence, “absence” and “both”
Of the probans in similar instances,
Combined with those in dissimilar instances,
There are three combinations in each of three.

Since there are nine classes of probans 
Accordingly we have nine sets of examples:

Space-pot, pot-space,
Pot-lightning-space,
Space-pot, (space-pot), space-pot-lightning, 
Lightning-space-pot,
Pot-lightning-space,
Space-atom-action-pot.

The above concerns the determined probans only;
As regards the “doubtful” ones,
There are also nine combinations of 
“Presence”, “absence” and “both”.

The Treatise on the Wheel of Reasons by Acarya Dinnaga.
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S. C. Vidyabhushan, an adherent of Nyaya, has suggested one interpretation.58 This has 
been strongly disputed by R. S. Y. Chi,°9 who asserts that Vidyabhushan “had confused the 
notions of like’ and unlike’ altogether.. . .  As a result his translation is almost incomprehen­
sible.”

There is a definite difficulty in understanding the three possible cases of “presence”, “ab­
sence”, and “both” mentioned in the Hetucakra, the last term being particularly obscure 
in Tibetan. In the Nyayavarttikd of Udyotkara, the Sanskrit formulae used are “for all” 
(vydpaka), “for none” (avrtti), and “for some” (ekadesavrtti), corresponding to the quanti­
fiers of modern predicate logic. While I agree that Ditinaga was the first logician to have 
introduced logical quantification, as generally believed, (1) I do not see why it should be 
assumed that Dirinaga’s predicate calculus was based on a two-valued logic.60 (2) Also, I do 
not see why Ditinaga, a Buddhist who taught at Nalanda, should have automatically ignored 
the question of identity across time,61 in the manner of undergraduate courses62 in logic 
taught at Oxford and Cambridge today.63 (The absence of any meaning of identity across 
time is the focus of the Buddhist philosophy oi'paticca samuppada.)

The Non-Universality of Logic

To summarize, logic varies with culture: the 2-valued logic, assumed a priori in the West, is 
not universal.

If the logic underlying present-day formalistic mathematics were to be changed, that 
would, of course, change also the valid theorems derivable from a given set of axioms, as 
we have seen earlier in this chapter (p. 78). Hence, not only are the axioms of a formal 
mathematical theory arbitrary, but the allegedly universal part of mathematics—the relation 
of axioms to theorems through “proof”—is arbitrary since this notion of “proof” involves 
an arbitrary choice of logic. Logic is the key principle used to decide validity in formal 
mathematics, but it is not clear how this principle is to be fixed without bringing in either 
empirical or social and cultural considerations.

We see that the “universal” reason of the schoolmen was underpinned by the alleged 
authority of God to which the schoolmen indirectly laid claim. If this authority is denied, as 
Buddhists inevitably would, there is nothing except practical and social authority that can be 
used to fix the logic used either within a formal theory or in a metamathematics that rejects 
appeal to the empirical

Accordingly, all of present-day formal mathematics, in practice, or in principle, depends 
upon social and cultural authority; for whether or not a proposition is a mathematical theo­
rem depends upon Hilbert’s notion of mathematical proof, and that notion of mathematical 
proof tacitly presupposes a 2-valued logic which is not universal, but depends upon social 
and cultural authority. Thus formal mathematics of the Hilbert-Bourbaki kind is entirely a
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social and cultural artefact. Proof or deduction provides only a social and cultural warrant 
for making cultural truth-assertions; it does not provide certain or secure knowledge.64

Reassessing the Role of the Empirical

It is possible, of course, to argue that 2-valued logic has social approval just because it is 
a matter of mundane empirical observation. But such arguments would hardly suit the 
20th century Western vision of mathematics-as-proof, because once the empirical has been 
admitted at the base of mathematics, to decide logic itself, by what logic can it be excluded 
from mathematics proper? If the empirical world provides the basis of logic, why should the 
empirical be excluded from the process of logical inference? If the validity of anumdna is 
based on pratyaksa, why should the pratyaksa be excluded from valid anumdna.

If one does eventually decide to appeal to the empirical, in support of logic, a 2-valued 
logic need not be the automatic choice. Consider a meaningful but apparently contradictory 
proposition of the form: “This pot is both red and black”. One may try to resolve the 
contradiction by breaking the identity of the pot and decomposing the proposition into 
the propositions: “This part of the pot is red”, and “That part of the pot is black”. But 
precisely what does “this” and “that” refer to? If the statements refer to the empirical, as 
we have now supposed, such a decomposition of the proposition may end up referring to 
ever smaller physical parts of the object. Thus, moving to atomic propositions may also 
drive one to the atomic domain in the physical world, where quantum mechanics certainly 
does apply. But are things two-valued in the physically atomic domain? The best physical 
theory we have as of now is quantum mechanics, and it is well known that quantum logic 
cannot be 2-valued, unless we fundamentally change the theory. On the contrary, according 
to the structured-time interpretation of quantum mechanics60 the key postulates of quantum 
mechanics can be obtained by supposing logic to be quasi truth-functional. (Of course, the 
physical theory itself will have to be reviewed if we change the underlying mathematics.) 
Thus, one might perhaps need to start with a quantum logic as the empirical basis of logic, 
so that no conclusion could be drawn from the statement that Schrodinger’s cat is both 
dead and alive. (In 2-valued logic, any conclusion could be drawn from this statement.) 
Specifically, the logic of the empirical world should not be regarded as a settled issue, solely 
on the basis of mundane experience. There is no guarantee at all that an appeal to the 
empirical will establish 2-valued logic.

Further, accepting the empirical may well make mathematics explicitly fallible, like 
physics. No one denies the fallibility of the empirical: as when one mistakes a rope for 
a snake or a snake for a rope. However, it seems to me manifest that social authority 
(e.g. that of Hilbert and Bourbaki) is more fallible than empirical observation. I regard 
the pratyaksa as more reliable than sabda or authoritative testimony. Accordingly, I regard
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mathematics-as-calculation, based on the empirical, as more secure, and more certain than 
mathematics-as-proof, which bypasses the empirical altogether.

To return to 2 + 2 = 4, the particular case of 2 + 2 = 4 still remains persuasive because, for 
example, 2 sheep when added to 2 sheep usually make 4 sheep (though they may produce 
any number of sheep over a period of time). However, this involves an appeal to mundane 
human experience; it involves an appeal to the empirical, not the a priori.

Mundane experience may not be universal, but it is more universal than the a priori—there 
is less disagreement about mundane physical things than there is about metaphysics. Thus, 
the way to make mathematics more universal, and the way to evolve an East-West synthe­
sis is to accept the empirical in mathematics. The best route to universalization through 
an East-West synthesis is through everyday experience, through physics rather than meta­
physics, through shared experience rather than shared acceptance of the same arbitrary 
social authority. Stable globalization needs pramdna rather than proofl

IV
FORMAL MATHEMATICS AS A SOCIAL CONSTRUCTION

In attempting to resolve the East-West civilizational clash in mathematics, we examined the 
key question: are mathematical theorems “necessary”? are they universal truths? We found 
that neither mathematical theorems nor mathematical proof can be regarded as incorpo­
rating universal truths. I will now argue that the theorems of formal mathematics are social 
constructs, and that belief in their validity or necessity rests on nothing more solid than social 
authority. Various arguments have been given in this direction, but I regard the arguments 
above about the cultural dependence of logic as conclusive.

Nevertheless, making an allowance for the irrational basis of the belief in present-day 
mathematics, a belief deriving from social authority, this argument needs to be developed 
in two further ways. First, the existing social consensus regarding mathematics involves a 
certain uniformity of opinion, but this uniformity, anchored in present-day social processes, 
should not be confused with universality. The uniformity arises from present-day social 
processes which encourage reliance upon mathematical authority. These social processes 
are examined in greater detail in Appendix 2.A.

Secondly, for the purposes of our historical study, apart from the question of proof there 
is the question of number. The present-day idealistic construction of number is also a social 
construct: the notion of number has been different in the past and may change further in 
the future in response to various social pressures, such as the technology of computation. 
Hence, the current (non-universal) notion of number must be carefully distinguished from 
the notion of number in Indian mathematics. This chapter takes up this question in a 
preliminary way, and further details are postponed to a later chapter.
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Integers (ints) and Real Numbers (Floats) on a Computer

Understanding present-day formal mathematics as a pure social construction helps to clarify 
the distinction between the different notions of number in present-day formal mathematics, 
and in traditional Indian mathematics. One of the authoritative dogmas of the present-day 
mathematical understanding of the calculus is that an understanding of the calculus requires 
formal real numbers. Thus, the calculus requires limiting processes, and, unlike the integers 
or rational numbers, the formal real numbers are complete, in the sense that every sequence 
that is intrinsically trying to converge (Cauchy sequence) can find a value to converge to. 
Hence, the limiting processes of the calculus make sense in formal real numbers.

Now, traditional Indian mathematics, from the earliest known times of the sulba sutra-s, 
was not averse to using “irrational” (non-ratio) numbers like y/2. However, the present-day 
formal understanding of real numbers is impractical—for there is no way to represent real 
numbers in practice. In fact, even the present-day formal understanding of natural numbers 
is impractical. Hence, this understanding is unacceptable to traditional Indian mathematics 
(and for present-day computers). This suggests that, before proceeding to the specifics of 
traditional Indian mathematics, we should re-examine the notion of number in present-day 
formal mathematics, based on the understanding of formal mathematics as a pure social 
construction.

Consider a formal mathematical theorem, an apparently certain universal mathematical 
truth, such as 2 + 2 = 4. Is 2 + 2 = 4 a universal truth or is it a social construction, hence a 
cultural truth? Perhaps one should first take up the easier case of 1 + 1! The usual belief is 
that 1 + 1 = 2 .  One could also amplify this belief negatively, as what 1 + 1 is not: if 1 + 1 = 2 
is a universal truth, then 1 + 1 = 0 or 1 + 1 = 1 or 1 + 1 = 3 must all be universally false. 
However, if 0 and 1 denote truth values, we know, for instance, that 1 + 1 = 1 holds in 
classical 2-valued logic, with + denoting “inclusive or”, 0 denoting “false”, and 1 denoting 
“true”. We know that 1 + 1 = 0  holds in classical 2-valued logic with + denoting “exclusive 
or”. 1 + 1 = 0 is also the case if 0 and 1 denote binary digits (bits) and + denotes addition 
with cany. And this case is one that is commonly implemented thousands of times in the 
chips of a computer.

We see that if at all 1 + 1 = 2 is a universal truth, it is at best a qualified universal 
truth. It is necessary to specify what 1, +, and = are; these are merely symbols which, 
lacking any empirical reference, could be performing multiple duties. Today we would tend 
to qualify that in 1 + 1 = 2, 1, +, =, and 2 relate to “natural numbers” or to integers 
or to rational numbers or real numbers. However, in current formal mathematics, since 
the axioms, lacking any empirical reference, are practically arbitrary, there can be no real 
restriction on how one specifies the syntactic rules for using 1, +, =. To return to the harder 
case of 2 + 2, it is, for example, perfectly possible, in current formal mathematics, to specify 
2, +, and = so that 2 + 2 = 5. Thus, let a + b = a b 1, where is an unusual notation



92 Cultural Foundations of Mathematics

for usual addition (socially conventional addition in “natural numbers”). One cannot say 
that such a formal theory is useless, for like all pure mathematics it may find a use some day. 
(Indeed it has a use already in philosophy for purposes of illustration!) At best one can say 
that this or that mathematician, who enjoys a certain degree of social recognition, finds it 
uninteresting. So the theory of numbers with 2 + 2 = 5 is not false; it is, at worst, a way to 
handle numbers that some existing social authorities may find socially uninteresting.

What is socially interesting or uninteresting can naturally vary with the cultural circum­
stances: for instance, 2 + 2 = 5 may be a socially interesting case for native South Ameri­
cans,66 and similar differences about exactly what is regarded as socially interesting do exist 
in the mathematics in African arts, architecture and crafts.67

What is socially interesting or uninteresting can also vary across time with varying tech­
nology. Computers are widely used today, but one cannot make a computer “understand” or 
work with natural numbers or real numbers. For the purposes of programming a com­
puter, the standard convention is that an integer (int data type) is something that can 
be represented using 2 bytes, which is usually 16 bits. Setting aside one bit to represent 
the sign (positive or negative) the largest (signed) integer that can then be represented is 
111111111111111(15 l ’s), in binary notation, or 214 + 213 + • • • + 22 + 21 + 2° = 215 -  1 = 
32767. This convention suits the 8-bit architecture; but nothing will change, except the 
value of the upper limit, if we move from an 8-bit to a 128-bit machine, or use static storage, 
with any finite number of bits (“arbitrary precision arithmetic”). The number 32767 may 
change with changing technolog)7 and changing conventions, but the point is that for any 
computer whatsoever there will always be such an upper limit, so long as we are dealing with 
actual computers rather than abstract Turing machines with infinite memory, which are as 
imaginary and non-existent as “a barren woman’s son” or “a rabbit with horns”.

The existence of an upper limit creates a serious problem in computer arithmetic, 
relating to the Western mathematical conceptualization of “natural numbers” asserted by 
Dedekind to have been given by God. One can have 2 + 2 = 4 on a computer, but only at 
the expense of admitting that

20000 + 20000 = -25536.

Anyone who disbelieves this is welcome to use the accompanying computer program in 
the C language (box 2.4) to check this out. (Note: This program was first written when 16 
bit systems were in vogue, and has been retained for clarity of exposition; if one actually 
wants to do the same thing on a 32 or 64 bit system, one must increase the number of zeroes 
appropriately.)

One can represent the natural numbers needed for all or for most practical purposes, 
but one cannot represent the idea of a “natural number” on a computer, and one cannot
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represent addition according to Peano’s axioms on a computer. It is impossible to program the 
syntax o f natural numbers on any actual computer.

Box 2.4. Adding integers on a computer

/* Program  nam e: a d d in t . c
F u n c t io n : To d e m o n stra te  how a com puter adds i n t e g e r s  */

# in c lu d e  < s td io .h >
# in c lu d e  < co n io .h >

main ()
{

i n t  a ,  b ,  c ;
p r i n t f  ( "  n E n te r  a = " ) ;  
s c a n f  ( " 0/0d " ,  &a) ; 
p r i n t f  ( "  n E n te r  b = " ) ;  
s c a n f  ("°/0d " ,  & b ); 
c = a+ b ;
p r i n t f  ( "  n %d + %d = % d", a ,  b ,  c ) ;
getchO ;
r e t u r n ;

>

Program  In p u t and O u tp u t:

E n te r  a = 2 0 000  
E n te r  b = 20000  
2 0 0 0 0  + 200 0 0  = -2 5 5 3 6

A desktop calculator usually manages to get the above sum right—how is this achieved? 
One can get the expected answer by using oating point numbers, which roughly correspond 
to real numbers. The upper limit becomes much higher, but we can now validly have

2 + 2 = 4.00000000000000001 (16 0’s).

which is typically the case in a computer (which observes the IEEE standard6*8 for oating 
point arithmetic). From a practical point of view, this arithmetic is quite satisfactory. From 
the point of view of the current formal mathematics of real numbers, this type of arithmetic 
only seems more satisfactory: serious problems arise, because the above equation means that 

oating point numbers do not obey the same algebraic rules as real numbers. The associative 
law, for example, fails for arithmetic operations with oating point numbers. Thus,

( 0.00000001 +  1 ) 1 = 0
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but
0.00000001 + (1 - 1 ) = 0.00000001

Once again, one can achieve a higher precision, one can arrange things so that in the above 
equation the number of zeros dazzles the eye. One can arrange for a number of decimal 
places adequate for all practical, physical, and engineering purposes. But one cannot bypass, 
in principle, the failure of the associative law. There will always remain not one or two 
but an uncountable infinity of “exceptions” to the associative law for addition. Similarly, 
the associative law and cancellation law for multiplication fail, and so does the distributive 
law linking addition and multiplication. Hence, the numbers on a computer can never 
correspond to the numbers in the formal systems of natural numbers or real numbers. Since 
computers are socially interesting, so are numbers not corresponding to formal natural or 
real numbers.

The other point I am trying to drive at is the following: formal real numbers may help 
to bypass the appeal to the real world in Elements 1.1, but in the real (empirical) world, as 
distinct from some imagined or ideal Platonic world, there is no satisfactory way to represent 
the natural or real numbers, since there is no way to represent any real number with only a 
finite number of symbols. Hence also there is no satisfactory way to represent the alleged uni­
versal truth that 2 + 2=4, since there is no satisfactory way to state the required qualification 
that the above equation concerns natural or real numbers. The representation of natural 
numbers according to Peano’s axioms involves a supertask, an infinite series of tasks, usually 
hidden by the ellipsis, but made evident by computer arithmetic, which can hence never be 
the arithmetic of Peano’s natural numbers or Dedekind’s real numbers.

For practical purposes, no supertask is necessary: the representation of numbers on a 
computer is satisfactory for mathematics-as-calculation, but it is unsatisfactory or “approxi­
mate” or “erroneous” from the point of view of mathematics as proof. Indian mathematics, 
which dealt with “real numbers” from the very beginning (s/2 finds a place in the sulba 
sutra-s), does not represent numbers by assuming that such supertasks can be performed, 
any more than it represents a line as lacking any breadth, for the goals of mathematics in the 
Indian tradition were practical not spiritual. The Indian tradition of mathematics worked 
with a finite set of numbers, similar to the numbers available on a computer, and similarly 
adequate for practical purposes. Excessively large numbers, like an excessively large num­
ber of decimal places after the decimal point, were of little practical interest. Exactly what 
constitutes “excessively large” is naturally to be decided by the practical problem at hand, so 
that no universal or uniform rule is appropriate for it.

On the other hand, theoretically speaking, formal Western mathematics is not formulated 
with a view to solving practical problems: it treats both natural and real numbers from 
an idealist standpoint, hence it runs into the difficulty with supertasks, made evident by 
computer arithmetic.
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Social Change and Changing Social Construction: The Case of Sunya

The above argument being abstract, a concrete example (drstanta) is in order. If mathe­
matics is a social construction, then one can expect mathematics to change with changing 
technology' and changing social circumstances. Can one point to instances of such change? 
Clearly that part of mathematics is most susceptible to change which is furthest away from 
the empirically manifest or pratyaksa.

To bring this out, let us consider something for which there is no obvious empirical ref­
erence, such as division by zero. From the East-West point of view, sunya is a particularly 
interesting case. We know that sunya travelled from India to Europe via the algorismus texts, 
starting 10th c. CE, and that the epistemological assimilation oisunya required some five to 
six hundred years. As late as the late 16th century CE we find mathematicians in Europe 
worrying about the status of unity as a number, and the following question was still being 
used as a challenge problem: “Is unity a number?” The expected answer was that unity was 
not a number, but was the basis of number. With the changed social circumstance, those 
metaphysical concerns about the status of unity now merely serve to amuse us, and zero is 
now firmly regarded as a number, an integer. However, the nature of zero has changed.

Thus, Brahmagupta maintained that 0 0 = 0. This is something that a modern-day 
mathematician will immediately regard as an error, for division by zero is not permitted. In 
current-day formal mathematics, 0 is the additive identity; hence, for any number x, from 
the distributive law, 0 ■ x = (0 + 0) • x = 0 ■ x + 0 • x, so that 0 • x = 0. Thus 0 cannot have 
a multiplicative inverse. Hence one cannot divide by zero, for division is nothing but the 
inverse of multiplication. Hence, Datta and Singh69 assert that Brahmagupta was mistaken. 
At a conference on sunya,70 almost all the participants agreed with this perception of Datta 
and Singh (I was the exception). This goes to show the extent of acculturation, but not, of 
course, the universal validity of the belief. The above proof of the illegitimacy of division by 
zero tacitly assumes that the numbers in question must form a field, but as we have already 
seen, this is not the case for numbers on a computer, where the distributive law, used in the 
above proof, fails.

As a matter of fact, there are, even in current mathematics, common situations where 
0 0 = 0 may be implicitly used as part of the arithmetic of extended real numbers. Thus, 
consider the Lebesgue integral

-^=dx =  1. (2.1)
o

The integrand is ill behaved only when x = 0, when the denominator becomes zero. Since 
the integral is a Lebesgue integral rather than a Riemann integral, we do not omit 0 from 
the region of integration, but appeal to the rules of the extended real number system/1 
which admits the additional symbols oo, — oo.
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Now, either the limit
lim —p=
x o \/x

or the corresponding unwritten convention

oo,

1 0 = oo

(2 .2)

(2.3)

allows us to regard the integrand as

/(*)
-L , X = 0 
oo, x = 0.

(2.4)

However, the integrand is infinite only at a single point, i.e., it is infinite only on a set of 
Lebesgue measure zero. Hence, we appeal to the standard convention, used in the theory of 
the Lebesgue integral, that72

()-oo = 0. (2.5)

We see that (2.1), (2.3), and (2.5) together amount to saying that 0 0 = 0. I would
emphasize that the convention (2.5) 0 • oc = 0 is a very important convention, for one 
cannot do modern-day probability theory or statistics without it; a statement that is true 
with probability 1, i.e., true except on a set of probability zero, is said to be true almost 
everywhere, and “almost everywhere” occurs almost everywhere in current probability the­
ory. Thus, 0 0 = 0 is certainly not a convention every use of which is necessarily incorrect. 
This was presumably believed to be so in 1937, by Datta and Gupta, but we now have good 
reasons for admitting the convention, at least in some situations—reasons relating both to 
mathematical practice and to computer arithmetic. But can one make 0 0 = 0 a universal 
rule? That depends, in the first place, on what one means by 0.

Under different social and cultural circumstances, zero was regarded differently. As I have 
argued elsewhere,73 in Brahmagupta’s case, sunya or 0 is not the additive identity in a field, 
but refers to the non-representable, in line with the meaning given to it in the sunyavada of 
Nagarjuna. With calculations involving a representable, hence a finite set of numbers, such 
non-representable numbers are bound to arise, and some rule is needed to handle these 
cases. Brahmagupta’s rule should be read as

nr nr nr,

where nr — non-representable.
We see that changed social circumstances have transformed the notion of zero, but further 

changes could change it further. As observed above, computers can represent only a finite 
set of numbers. Hence, exactly this problem of dealing with non-representable numbers 
arises in computing. Here, too, we have a situation very' similar to nr nr = nr, as can be 
seen by writing and executing the accompanying short C program (box 2.5).
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Box 2.5. Adding reals on a computer

/* Program  name: s u n y a .c  */

/* F u n c t io n : To show how a com puter h a n d le s  n o n -r e p r e s e n ta b le  numbers

a c c o rd in g  t o  th e  IEEE s ta n d a rd  */

# in c lu d e  < s td io .h >

# in c lu d e  < co n io .h >

# in c lu d e  < v a lu e s .h >

m ainO

{
f l o a t  a ,  b ,  c ;  

a = MAXFLOAT; 

b = MINFLOAT;

p r i n t f  ( " a  = °/0e n , b= %e n " , a ,  b ) ; 

g e tc h O  ;

/* Now t r y  p u t t in g  in  v a lu e s  o f  a ,  and b , l a r g e r  th a n  

MAXFLOAT o r  v a lu e s  o f b s m a l le r  th a n  MINFLOAT */ 

p r i n t f  ( "  n n E n te r  a = " ) ;  

s c a n f  ("°/,f" ,  & a ) ; 

p r i n t f  ( "  n E n te r  b = " ) ;  

s c a n f  ("*/.f" ,  &b) ; 

c = a/ b ;

p r i n t f  ( " 0/Oe/0/Oe = °/0e " ,  a ,  b ,  c ) ;

/* p rin tf ("°/0f/7of = %f" , a ,  b ,  c) ; */ /* uncomment * /  
getchO ; 
return 0;

Program Input and Output:

a = 3 .3 7 0 0 0 e + 3 8  

b = 8 . 4 3 0 0 0 e -3 7  

E n te r  a = le 4 0  

a = +INF 

E n te r  b = - l e 4 0  

b = -IN F

F lo a t in g  p o in t  e r r o r :  Domain
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In accord with Western mathematical sensibilities, the IEEE standard, however, per­
mits a few different types of non-representables. Anything smaller in absolute value than 
1.40130 x 10_4° is non-representable, and is represented by zero. Anything larger than 
3.37 x 1038 is non-representable, but is represented by +INF, while anything smaller than 
—3.37 x 1038 is represented by —INF. Even though the associative and distributive laws fail 
for numbers on a computer, in accordance with prevalent Western mathematical conven­
tions, the IEEE standard specifies that arithmetic operations involving non-representables, 
such as 0 0, always lead to an undefined result, which is treated as an error. This is not the 
full story, and there are other kinds of non-representables, such as subnormal numbers, an 
account of which would take us too far afield/4 (Indeed, by uncommenting the line marked 
“uncomment”, i.e., removing the first pair of/* and */ in that line, and providing the inputs 
a = 2.0e—45 and b = 4.0e—45, one can actually make the computer print out the statement
0.00000/0.00000 = 0.00000! But this is not something that needs to be taken seriously.)

How satisfactory are the IEEE specifications that 0 0 = 0 always is an error? If we look 
upon this as a practical matter of making efficient calculations, then a universal rule of the 
kind that one has in current-day computing is not the most efficient. For example, in a 
practical situation, even if something is treated as non-representable, we might yet know 
that it is \hesame non-representable as one that was previously encountered. In that case, we 
may even want to apply the cancellation law to zero! We might want to say

2 • 1046 _  1 
4 • 1046 “  2

But this is a statement that the IEEE standard regards as erroneous for oats (real numbers 
represented in single precision), as the accompanying C program shows. According to that 
standard, the correct statement is:

2 • 1()46
4 . 1q46 = “Floating point error”.

Accordingly, the computer treats the attempt to carry out the above calculation as erroneous, 
though anyone can see what the valid answer is. Thus, the attempt to eliminate one kind of 
absurdity (that might arise out of a wrong use of 0 0 = 0) leads to another kind of absurdity.

A machine cannot discriminate between a “legitimate” use of 0 0 = 0, and an “illegit­
imate” use: it cannot easily handle exceptional situations, it needs a universal rule, and 
this universal rule may lead to other absurdities. Though the IEEE has regarded the latter 
absurdity as more acceptable, this could change with circumstances. The conventions may 
change not only with who lays down the standard, but also with who performs the calcula­
tion: for human arithmetic, as distinct from machine arithmetic, we may use rules which 
permit exceptions. Possibly tomorrow’s machines may be intelligent enough to make this
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kind of discrimination. This is exactly how Bhaskara II interprets Brahmagupta’s rule while 
computing the value of x (= 44), given that

x • 0 +
--------o ~  =

This suggests that, when we go beyond the empirical, the “universal” may lie, as in a physical 
theory, in what Poincare" called “convenience”. 'Phis criterion of “convenience” can have 
profound consequences as in the case of the theory of relativity: the constancy of the speed 
of light is not an empirical fact (though elementary7 physics texts usually misrepresent it as 
such), Poincare defined the speed of light as a constant as a matter of “convenience”. I see 
this criterion of “convenience” as more modest than the criterion of beauty which seeks to 
globalize a local sense of aesthetics.

V
CONCLUSIONS

1. Logic is not unique, and logic varies with culture. Proofs vary with logic. Formal 
mathematics having rejected the empirical, the choice of a logic can only be justified on 
cultural grounds. Accordingly, the theorems of present-day formal mathematics merely 
represent socially and culturally specific warrants for truth claims and are definitely not 
necessary or universal or even trans-cultural truths.

2. If logic is decided not on the basis of theology but on the basis of empirical facts, 
then it is far from certain that it would be two-valued or even truth-functional. Since 
empirical choices can only be justified inductively, and since social authority is more 
fallible than the empirical, whatever the technique used to justify the choice of logic, 
it follows that deduction will forever remain more fallible than induction, contrary to 
what has long been believed in Western philosophy.

3. Traditional Indian mathematics relies on pramdna, which uses the empirical and is, 
therefore, more certain and universal than mathematical proof.

4. 'l he notion of number in present-day formal mathematics assumes the possibility of 
performing supertasks—something shown to be manifestly impossible with a com­
puter, which cannot pretend to understand the idealist or formalist representation 
of number. Supertasks are not contemplated in the notion of number in traditional 
Indian mathematics.

5. Where mathematical constructs go beyond the empirical, it may be most appropriate 
to use Poincare’s criterion of “convenience”.
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APPENDIX 2.A
INDUSTRIAL CAPITALISM AND MATHEMATICAL AUTLIORITY

Let me begin with the more general part of the thesis: the in uence of industrial capitalism 
on the belief in the universality of mathematics.

At the present moment, why does the state support mathematicians? Is this a matter of 
charity, or does the state derive (or expect to derive) some benefit from this? The logic is 
quite clear: mathematics is a key input to modern science, which is a key input to technology, 
which is the key to economic and physical domination.

Present-day mathematics has grown along with modern science under conditions of in­
dustrial capitalism. The substantial increases in profit come from technological innovation; 
consequently the scientist must have a single-minded focus on innovation useful for com­
mercial production—when he is not working like von Neumann on designing new weapons 
like the atomic bomb, used to extract surplus by other means. Innovation has, thus, be­
come a commodity, and specialization boosts the efficiency of production of commodified 
innovation; hence most scientists tend to be very specialized. One consequence of this is 
that scientists are not able to understand each other or communicate with each other. If a 
mathematician has to read a paper not exactly in his field, this process could easily take a 
determined effort lasting for a year or two. With such formidable difficulties in communica­
tion, scientists quickly start relying on authority. 'Phis is the first consequence of industrial 
capitalism: because it hopes to profit from specialization, it encourages reliance on authority.

Thus, the new standard of truth is this: if it is published by an important person in a 
respectable journal it must be true or, at any rate, very likely true (though there is still the 
possibility of a small error somewhere if one is speaking of the four-colour theorem, or Fer­
mat’s last theorem). The most pathetic example of this standard of truth is the grievous 
mathematical error70 in a paper published by Einstein76 in the Annals o f Mathematics, in 
1938, on the relativistic many-body problem, which exposes his fundamental lack of under­
standing of the special theory of relativity relative to Poincare'.

There is another reason why the prevalent social conditions systematically encourage the 
process of deciding truth by authority. Barring a few hundred relativists, and perhaps a few 
thousand people who might have some idea of it, most people in the world would be unable 
to judge for themselves the truth of the above example about Einstein. 'Phis state of affairs 
is not incidental. Commodified innovation is produced by scientists through a process of 
research; hence, the state is willing to invest resources into research facilities that scientists 
need to produce innovation. The state also does invest in the education of scientists, but only 
with the objective of reproducing the scientific labour power needed to produce innovation. 
It is well understood why, under conditions of industrial capitalism, there is systematically 
greater investment in production than in reproduction of the labour consumed in produc­
tion. Hence, there is a systematic bias in the state support for science: more resources are
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invested in research facilities than in education. (In particular, the state is no longer inter­
ested in enabling people through education to understand the world around them. Not only 
has education been delinked from the needs of theology, but “understanding” is something 
that most scientists look down upon as “philosophy”, since it consumes the time that could 
be more actively spent in the process of engineering useful innovations.) As a result of this 
systemic bias against education, in the state support for science, most people are scientif­
ically illiterate, even in the developed countries.77 In the interaction of illiterate patients 
with doctors one can easily see how illiterate persons are left with no option but to decide 
truth by relying on authority, whether that authority is conferred by the media or the state. 
This is the second consequence of industrial capitalism: it encourages reliance on authority 
by creating widespread scientific illiteracy or information poverty. (Spengler had already 
anticipated this widespread scientific illiteracy as a process contributing to the decline of the 
West.)

One can also enquire into the nature of this authority: what bearing does it have on truth? 
How reliable is authority, on an average? To continue the analog)', the illiterate patient has 
no option but to trust the doctor, but even to a casual observer it is obvious that a medical 
career is much sought after not out of a widespread desire to help out humanity at large, but 
to enable the person to lead a good life, as it is defined under industrial capitalism. The doc­
tor’s first concern usually is extraction of surplus rather than the health of the patient, and 
this is especially true if the patient is illiterate and hence not very important. Consequently, 
the doctor’s prescription may suit the health of the pharmaceutical company more than that 
of the patient. Unlike doctors, scientists who are in authority are necessarily employed by, 
hence dependent upon, state and private capital.

Second, industrial capitalism is a great uniformizer, because standardization is essential 
for mass production. Once something becomes a standard, market logic tends to drive out 
others: a publisher will be more willing to publish a text in mathematics rather than a mono­
graph on intuitionism. T his process relies, like the market, on statistical effects, rather than 
any absolute prohibition: difference is not prohibited, but is made so disadvantageous that 
few people care to differ. Consequently, those in authority do not differ too much from each 
other. Thus, industrial capitalism encourages a process of uniformity and standardization in 
opinion.

The above processes lead to the remarkably widespread agreement that sociologists have 
observed among practitioners of mathematics and science. But this uniformity and stan­
dardization of opinion ought not to be mistaken for universality as it often is. In the context, 
uniformity of opinion does not make the opinion itself more reliable: if a variety of doctors 
prescribe the same drug this does not mean that that drug is most suited to one’s health, it 
might simply mean that this is a drug being vigorously promoted.

To my mind it would be facile to set aside the above observations, regarding the determi­
nation of mathematical and scientific truth through authority, as concerning practice rather
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than principle. It is a myth that principles are insulated from practice. The very same practi­
cal and social considerations may infiltrate not only the allegedly universal and metaphysical 
“truths” of mathematics but also the very principles used to decide these truths—principles 
that have been and can only be formulated by authoritative mathematicians. If practical 
considerations can penetrate to the content of relativity, there is no reason why they cannot 
penetrate the content of the philosophy of science or mathematics. We will see this in greater 
detail below. Since these principles, as currently articulated in the formalistic philosophy of 
mathematics, have no external empirical anchor, it is all the more important to recognize 
the social processes within which mathematical authority is anchored.

Thus, authority decides mathematical truth—the veracity of mathematical theorems and 
the principles used to decide this veracity. The obvious point about authority as the standard 
of mathematical truth is that authority is socially conferred. It would, of course, be exces­
sively naive (or religious) to imagine that social processes are such that they automatically 
(or by design) “select the fittest” and confer authority on those who seek truth through cre­
ative insights. Thus, it is not only in present-day India that knowledgeability and creativity 
have little relation to scientific authority. The primary interest under industrial capitalism 
is neither in understanding nor in the creative process of innovation, but in control of in­
formation or the ownership of the innovated commodity, as decided by patents, authorship 
of papers, etc.78 As a clerk in the patent office, Einstein understood the subtler legalities 
of this process: that one may copy ideas if one does not copy the expression verbatim. A 
more recent example of this sort is Bill Gates, one of the richest men of all time, who legally 
won the claim of having innovated the windowing software that, despite its bugs, bears a 
striking resemblance to the earlier software of Apple Macintosh. The relative unimportance 
of the creative process is emphasized by the fact that no one has heard of the person who 
initially thought up the point-and-click concept behind the windowing software. Author­
ity ows from ownership, and ownership, laws regarding ownership, and the principles on 
which these laws are based, are all rooted in social processes that it is not necessary to go 
into here.

To recapitulate, formal mathematics being divorced from the empirical, mathematical 
truth tends to depend upon social processes. Under industrial capitalism social processes 
tend to decide mathematical truth in two steps, (a) Overspecialization of scientists, and 
widespread scientific illiteracy of others, both, strongly encourage reliance on authority, and 
(b) authority devolves on those who are better able to manipulate social processes of deciding 
ownership of innovation rather than on those who are most knowledgeable or innovative— 
there is also a systematic decline of the best! The view of mathematics as a social construction 
results in the following irony: present-day formal mathematics is ultimately valued for its 
ability to promote inequity and injustice, though it claims to base itself on the Elements— 
written to promote equity and justice!
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C H A P T E R  3

Infinite Series and n

The thousand-year background to infinite series in India 
and how they were derived

OVERVIEW

WF. have now seen the deficiencies in the present-day (“Hilbertian”) notion of math­
ematical proof, and the illegitimate historical claims which gave it credence. We 
have also seen the advantages of an alternative epistemology of mathematics 

(as in pramana). Accordingly, we are now prepared to examine the actual historical origin 
of the calculus without the mindless presupposition that has af icted previous authors that 
present-day formal mathematics (and particularly mathematical analysis) is the only possible 
way of doing things.

The background and derivation of the high-order “Taylor” series and “Gregory-Leibniz” 
series expansions used in 14th-15th c. CE in India has, in any case, never been fully and 
clearly explained. The calculus historically originated in India in the process of calculating 
precise trigonometric values, and the length of the circumference of a circle, using both 
infinite and indefinite series. The details are as follows.

Aryabhata in Ganita 1 1 cursorily dismisses the clumsy geometric and algebraic method of 
computing trigonometric values, “using triangles and quadrilaterals”. He goes on to state 
('Ganita 12) a finite difference method of computing sine values, which is exactly like an Euler 
solver for ordinary differential equations. (It should not be presumed that Euler derived 
this method independently, since Euler not only wrote an article on the use of the sidereal 
year in Indian astronomy, but diligently followed up the work of Fermat, whose challenge 
problem to European mathematicians is a solved example in Bhaskara II.) While the actual



1 1 0 Cultural Foundations of Mathematics

values in Gitika 10/12 are values of the first sine differences, Ganita 12 applies to the second 
sine differences (as also noticed by Delambre), allowing us to compute both sine values 
and differences. Aryabhata uses a computational notion of a function as a stored table of 
values/differences, along with a method of (linear) interpolation, which has epistemological 
advantages over the formal set theoretic definition, involving supertasks. Second differences 
are certainly used by Brahmagupta (Khandakhadyaka II. 1.4) for quadratic interpolation. 
Vatesvara (Siddhanta II. 1.64-67) uses further “Stirling’s” formula for quadratic interpolation, 
along with stored trigonometric values that are only 56 apart, to achieve a higher precision 
to the second (sexagesimal minute). Bhaskara II, who explicitly lists second differences, 
justifies the above interpolation formula using the notion of “instantaneous sine difference”, 
closely related to his notion of instantaneous velocity (tdtkalika gati) of a planet (GrahaGanita 
VII. 37-38).

This background combined with the indefinite fraction series expansion of Brahmagupta 
{Brahma Sphuta Siddhanta 12.57) leads very naturally to the power series expansion for the 
sine function credited by the 1501 CE Nllakantha to his predecessor Madhava (1340 CE), 
and also found in the TantrasahgrahaVyakliyd/Yuktidvpikd (2.441-443), Kriydkramakan, Yuk- 
tibhdsa, etc. I also explain the basic principle of order counting and discarding of non- 
representables, used to obtain the sum of an infinite geometric series, as stated by Nllakantha 
in his AryabhatiyaBlidsya.

Some live centuries before Madhava, Govindasvamin (ca. 800) and then Udayadivakara 
(10th c.), of the Aryabhata school in Kerala, tried to obtain trigonometric values accurate 
to the thirds (i.e., third sexagesimal minute), but their values were not accurate enough; 
Madhava’s trigonometric values are however accurate to the thirds. Hence, it is clear that 
a key input enabling the computation is the expression for the sum of the varasahkalita 
given by Narayana Pandit of Benares in his Ganita Kaumudi, to sum the intermediate series 

”=i *k’ f°r ^ie non-elementary cases, k 4. (Fermat and Pascal’s derivation of the 
area under “higher-order” parabolas similarly used higher order ligurate numbers.) 'Phis 
shows, incidentally, that it is incorrect to attribute the entire development of the calculus to 
the “Kerala” school, since the development of the calculus involved key contributions from 
various parts of India, over a thousand year period, including Patna, Gujarat, Ujjain, and 
Benares, as much as from Cochin.

Aryabhata’s value of 7t, accurate to five decimal places, was perhaps derived by an ear­
lier technique which combined geometric and algebraic methods, continuing the sulba-sutra 
method (e.g. Apastamba 3.2) of cutting the corners of a square, but using, instead of the 
sulba-sutra value of s/2, a full algorithm for square-root extraction, stated in Ganita 4. This 
octagon-doubling method differs from the 13th-14th c. CE hexagon-doubling method used 
by both al Kashi and Yu-Chhin, but attributed (with insufficient reason) to “Archimedes” and 
to the 3rd c. CE Liu Hui, respectively.
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For the 11th—12th order “Taylor” polynomials, computation of Madhava’s coefficients, 
accurate to the third minute, required a value of 7t accurate to at least 8  places, and the 
value of 7T accurate to 11 decimal places is attributed to Madhava of Sangamagrama by 
Nilakantha in the AryabhatiyaBhdsya (Bhasya on Ganita 17), and also credited to Madhava 
in the commentary Laghuvivrti on Nllakantha’s Tantrasangraha (2.9.5). How was this value 
derived? Contrary to Srinivasiengar’s assertion that summing the series must have involved 
a lot of labour, I explain how these series could be used to compute n accurately to 10 
decimal places in a completely practical way with fewer than 100 oating point operations.

The sum of an infinite series was understood not as involving the supertask of adding 
together an infinite number of terms, but as that of summing the series to a finite number of 
terms beyond which the sum of the series became constant (up to non-representables). To ac­
tually compute the sum, in analogy with the indefinite series, used from long before, this in­
finite sum was expressed as the sum of a finite number of typical terms plus an exceptional or 
correction term. In the case of an indefinite series, the exceptional term made the successive 
sums (exactly) constant; to arrive at a similar situation (up to non-representables), in the case 
of an infinite series, the exceptional term was chosen to minimize the change in successive 
sums. The use of the correction term made it practicable to sum the infinite series, because 
the use of the correction term amounted to transforming the series to accelerate its conver­
gence, especially important for the case of the slowly convergent “Gregory-Leibniz” series. 
I explain how the place-value notation for numbers was extended to represent polynomials 
and rational functions as expounded in the Kriyakramakan, of Sankara Variyar, which pro­
vides the most complete description of this correction/acceleration procedure. I also explain 
how the notion of the order of growth of a rational function in one variable (rasi) was used 
to obtain the samskara correction, and to improve it by computing its grossness (sthaulya), 
by a technique of iterative minimization that Youskevich and Hayashi et al. have missed. 
The computation explicitly resulted in the continued fraction expansion for tt (related to 
the expansions used by Brouncker and Wallis).

I also point out the use of the traditional Indian technique of “zeroing” the insignificant 
or non-representable quantities in the above calculation. Any term, or terms, could be dis­
carded or “zeroed” when insignificant or non-representable (sunya) from a practical point of 
view. This zeroing is similar to rounding, but unlike rounding or chopping for oating point 
numbers, this zeroing was done in a non-mechanical way. This is clear, for example, from 
the slight difference in sine values between Aryabhata I and Aryabhata II. The consequence 
of this last factor is considered in greater detail in later chapters of this book. The zeroing of 
non-representables was understood as inevitable for numbers like tt for which it was under­
stood from very early times that an exact representation was impossible. Infinitesimals, that 
can be zeroed like non-representables, are a natural extension of this concept of zeroing, 
combined with the notion of order of growth of a polynomial or rational function. Finally, 
the Yuktidipika and Yuktibhdsa derivation of these series does make use of the empirical in
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a variety of ways, even to the extent of using the atomic theory of the Naiyayika-s to stop 
the subdivision of the circumference of the circle, when the subdivisions reach atomic or 
“indivisible” proportions.

Thus, in Indian tradition, there was a clear understanding of infinite series, and valid 
pramana for the various derivations involved. (The point here is not the distinction be­
tween pramdna and proof, which we have already covered, but the contrast with the case of, 
say, Newton and Leibniz who could provide neither mathematical proof nor any coherent 
account to their contemporaries, of these very same series, imported into Europe about a 
century before them. In retrospect we can understand their lack of understanding: because 
they adopted (a) an all-rule-no-exception approach to these series, and, overlooking the ex­
ceptional or correction term, tried to sum an infinite number of terms; further, they (b) pro­
ceeded on an idealistic perspective that regarded mathematics as being perfect, so that the 
minutest quantity was not to be discarded. However, they obviously could not perform the 
required supertask of exactly summing a series with an infinite number of terms. Nor could 
they explain to their sceptical contemporaries, like Berkeley, the meaning of woolly con­
cepts like “ uxions” which had eventually to be abandoned in the interests of clarity. These 
matters are dealt with in a later chapter.)

I
INTRODUCTION

The importance of the calculus for the development of present-day science can hardly be 
overstressed. As already noted, all the mathematics needed for Newton’s Principia (and for 
classical mechanics down to this day) is encapsulated in the so-called Taylor-series expan­
sion, which is the pinnacle of the calculus. In the language of Arnol’d, “Newton invented 
Taylor series, the main instrument of analysis.”1 Taylor was Newton’s pupil, and his work 
on it dates from 1715.2 Though the 1671 work of James Gregory3 predates both, Gregory 
made a small (almost inconsequential) error, which has been used to his discredit, so that 
the term “Gregory” series is often reserved for the series for arctan. A particular case of 
Gregory’s series is what is today called the “Leibniz” series for 7r.

As we show below, the “Taylor” series, the “Gregory” series, and the “Leibniz” series are all 
found in Indian tradition. Also found are (a) numerically efficient rules for evaluating the 
sum of these series expansions, and (b) accelerated convergence methods of accelerating 
the convergence of slowly convergent series like the “Leibniz” series.

Gregory himself made no claim to originality, and many related series actually appear 
slightly earlier in Europe, by around 1630 with the work of Cavalieri, a Jesuati, and student 
of Galileo, whose access to Jesuit sources is very well documented.4 In Europe, Cavalieri’s 
approach using “indivisibles” was regarded as epistemologically insecure. Newton hence 
claimed that his uxions (which used the antithetical idea of the continuum) were “perfect”,
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unlike Cavalieri’s “approximations”. And, though neither Newton nor Leibniz (nor even 
Taylor) made any fundamental epistemological advance from the perspective of idealistic 
mathematics (that had to await Dedekind, and the formalisation of set theory), and they 
were, in fact, unable to explain their ideas of the continuum in a coherent way to their scep­
tical contemporaries, like Berkeley, both commanded ample social authority which helped 
to make the calculus socially more acceptable in Europe.

This motivates us to consider two further issues, (c) Epistemological continuity. These 
infinite and indefinite series have an extensive background of a thousand years in Indian 
mathematics, predating their sudden (epistemologically discontinuous) appearance in Eu­
rope, a century after Europeans had established large settlements in the vicinity of the most 
active groups then working with these series in India, near Cochin. Considering that Europe 
was then still struggling to understand elementary algorithms for arithmetic, and notwith­
standing claims that the calculus was invented by Newton and Leibniz, these series (and 
the calculus) naturally remained poorly understood in Europe, and could not be assimilated 
within the then-existing epistemological framework of Western mathematics.

There is also the issue of (d) pramana and proof. In contrast to the situation in Eu­
rope, detailed derivations of the series expansion for arctan, sin, and cos are found in the 
TantraSangrahaVydkhydn also known as Yuktidipika/ Laghuvivrtft of Sankara Variyar (1500- 
1560 CE), the (ca. 1534) Kriydkramakan1 of Sankara Variyar, and Narayana, and the contem­
porary (ca. 1550 CE) Yuktibhdsdfi of Jyesthadeva. The TantraSangrahaVydkhyd, as the name 
suggests, is an exposition of NTlakantha’s 1501 CE TantraSangrahafi As its other name Yuk- 
tidipika suggests, this exposition throws light on the rationale or yukti, while the Yuktibhdsa, as 
the name suggests, is a discourse on rationale in the bhdisa (= vernacular = Malayalam, nat­
urally known to most Christian missionaries then in Cochin). The most complete (though 
somewhat neglected) work in this respect is the Kriydkramakan, which could be important 
also from the viewpoint of transmission, since it is a commentary on Bhaskara’s Lildvati, a 
popular and well-known work.

Though this rationale or pramana, since it involves the empirical, does not constitute 
proof in the sense of Western mathematics, Western mathematical proofs involving idealized 
real numbers and supertasks do not constitute valid pramana either. As seen in the previous 
chapter, this is not a purely relativistic position: Western mathematical proof, being devoid 
of any empirical basis, can never hope to be universally acceptable. Also, the practical value 
of mathematics derives from the ability to calculate, well adapted to pramana, but not to 
idealistic mathematical proof involving impossible supertasks. Therefore, let us set aside this 
oft-repeated belief about Western mathematical proof as a theological superstition, shortly 
likely to become extinct.

The series expansions, themselves, are found also in various other books such as the 
AryabhatiyaBhdsya10 of Nilakantha, or the anonymous Karanapaddhati.11 The series expan­
sion and the sine values are referred to as being “given by Madhava”, identified as the 14th
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c. CE Madhava of Sangamagrama who first used them to derive a “table” of 24 very accurate 
trigonometric values. This table greatly improves upon the accuracy of a similar “table” of 
24 values provided a thousand years earlier by Aryabhata, and continuously improved upon 
since then by various people, including Bhaskara I and Vatesvara. Where Aryabhata’s 24 sine 
values are accurate to the first sexagesimal minute, and Vatesvara’s 96 values are accurate to 
the second sexagesimal minute, Madhava’s 24 values are accurate to the third sexagesimal 
minute—about eight to nine decimal places.

II
THE SERIES EXPANSION FOR SINE AND COSINE 

The “Taylor” series expansion for the sine is stated in a couple of verses, as follows.

T lW fa r  =3TT Trl'c^TI'rf'T ^  I
W R T  II II

TFT TFITfa ^ i t 5 * f r  I

^ W r T c ^ , f ^ F T  f w :  II ||

The key passage12 may be translated as follows.13

Multiply the arc by the square of the arc, and take the result of repeating that 
[any number of times]. Divide [each of the above numerators] by the squares of 
successive even numbers increased by that number [lit. the root] and multiplied 
by the square of the radius. Place the arc and the successive results so obtained 
one below the other, and subtract each from the one above. These together give 
xhejlva, as collected together in the verse beginning with “vidvan” etc.

Jiva  relates to the sine function. Etymologically, the term sine derives from sinus (= fold), 
a Latin translation of the Arabic jaib (fold for pocket, as in a shirt). What the Oxford English 
Dictionary does not mention is that jaib (= pocket) is a misreading of the Arabic term jibd 
(both terms were written as jb, omitting the vowels). Mathematically, however, as is well 
known, Indian mathematics and astronomy (like European mathematics in the 16th and 
17th c. CE) dealt not directly with present-day sines and cosines but with these quantities 
multiplied by the radius r of a standard circle. Thus, jhvl (earlier jy«) corresponds to r sin f), 
and is sometimes called Rsine, while the sara corresponds to r(l — cos#).

In present-day mathematical terminology, the above passage says the following. Let r 
denote the radius of the circle, let s denote the arc and let tn denote the nth expression 
obtained by applying the rule cited above. The rule requires us to calculate as follows.

1. Numerator: multiply the arc s by its square s2, this multiplication being repeated n
n

times to obtain s ■ s2.
l
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2. Denominator: multiply the square of the radius, r2, by [(2 k ) 2 + 2 k] (“the squares of 
successive even numbers increased by that number”) for successive values of k, repeat-

n
ing this product n times to obtain r2 [(2 k ) 2 + 2 k].

k=i

Thus, the nth iterate is obtained by

n (22 + 2) • (42 + 4 ) ..........[(2n)2 + 2n] • r2n'
'fhe rule further says:

jiva S — t\ +  t2  — +  £4 —  ̂ 5 +  ...

+r2 • (22 + 2) r4(22 + 2)(42 + 4)

(3.2)

(3.3)

Substituting
(1) jlva r sin 9,
(2) s — r 9, so that s2n + 1 r2n — r 9 2n+1, and noticing that
(3) [(2A:)2 + 2k] = 2k ■ (2k + 1), so that
(4) (22 + 2)(42 + 4) • • ■ [(2n)2 + 2n] = (2n +1)!,
and cancelling r from both sides, we see that this is entirely equivalent to the well-known 
expression

sin 9 = 9
93 95

3l + 5i
(3.4)

A similar rule gives an iterative expression for sara. The passage14 reads:

4144^1 W  r f f f ^  I
: WTRf II YY  ̂II 

P^Hld fTHvrMdm I
rW cf II YY3 II

9RT4r^, mxfF&W ^eMlbiHI f w :

This may be translated as follows.

Multiply the square of the arc by the unit (= radius), and take the result of re­
peating that [any number of times]. Divide [each of the above numerators] by 
the squares of successive even numbers decreased by that number and multiplied 
by the square of the radius. But, the first term is [now] [the one which is] divided 
by twice the radius. Place the successive results so obtained one below the other 
and subtract [lit. remove] each from the one above. These together give the sara, 
as collected together in the verse beginning “stena”, “stri”, etc.
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This amounts to

n (22 — 2) • (42 — 4 ) ........[(2n)2 -  2n] • r2n ’
and the rule further says that

sara = r( 1 — cos 9) — u\ — + u% — U4 + u$ — • • • ,
9 4s •r s -r

r2(22 -  2) ~ r4(22 — 2)(42 — 4) +

Recalling that
(1) sara = r( 1 — cos 0),
(2) s — r 9, so that s2nr r2n — r 92n, and noticing that
(3) [{2 k ) 2 -  2 k] = 2 k ■ {2 k -  1 ), so that
(4) (22 — 2)(42 — 4) • • • [(2n)2 -  2n] = (2n) !,
we see that this is again equivalent to the well-known expression

(3.5)

(3.6)

(3.7)

cos 9
92 94 _  96

2!" + i f  ”  6f +
(3.8)

Though a great achievement in itself, the actual numerical calculation of the sine and co­
sine values from here is far from trivial. If too few terms are taken, the results are inaccurate, 
especially for larger values of the arc. If too many terms are taken, the computations become 
impossibly unwieldy. Even with an ordinary calculator, calculating 20! is difficult, and an ac­
curate value of 200! is non-trivial even on a computer. Further, as we shall see later, the value 
of the radius r is inextricably tied to the value of 7t, since the circle was traditionally taken 
as having a fixed circumference of 21,600 (= 3600 x 60). Finally, for 9 > 1 (radian), i.e., 
for angles larger than about 58°, the value of the powers of s r goes on increasing instead 
of decreasing. Therefore, a numerically efficient method was evolved, which could be used 
to calculate the desired sine values to high accuracy with 1 division, 6 multiplications, and 
5 subtractions, or just 12 arithmetical operations in all, even by those who did not use the 
precise value of the radius.

This required a transformation of the above series. The series (3.3) was rewritten as

jlva
,s3 r

+ r5 '
r

r3 (22 + 2) (22 + 2)(42 + 4)

' • ( 5 )3 .S5

+
r ( T ) 5

c3 (22 + 2) (22 + 2)(42 + 4)

(3.9)

(3.10)

where c = 5400 was a quarter of the circumference of the standard circle.
Thus, the actual calculation of sine values used a “ready-reckoner” stored “table” of nu­

merical coefficients encapsulated in a single verse15 of four lines beginning with vidvan etc.
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fHr*t : srsterfaw:
F̂TRTcT I

ijfw r^ it^ r^ T : fWtrMI f^ r̂mf r̂FT-
q^EFricr: II *^s II

Here vidvan, tunnabala, kavisanicaya, sarvarthasilasthira, and nirviddhanganarendraru are ex­
pressions for five numbers in the reverse katapayddi-sexagesimal system (box 3.1).

Box 3.1. K atapayad i system

This system is based on the letters of the Sanskrit alphabet. It was known to Aryabhata 
who had a different system. The consonants (alphabets) in due succession denote the 
numerals, as in the following table.

1 w T 1 ka ta pa ya
2 W T 2 kha tha pha ra
3 ir S' W 3 ga da ba la
4 w S' vr W 4 gha dha bha va
5 w w 5 ha na ma sa
6 w T 6 ca ta sa
7 w «r 7 cha tha sa
8 sr S' 8 J a da ha
9 w tr S' 9 jha dha la
0 w T 0 na na

The vowels standing by themselves also denote 0.
Of two conjoint consonants, only the last has numerical significance.
The numerals may be in direct or reverse order. (The reverse order apparently 
found greater favour, according to the maxim: ahkdndm vdmato gati.)
E.g. bhavati = bha va ti = 4 4 6 = 644 in reverse katapayddi.
Chronograms may occasionally have an ordinary meaning. This additional 
meaning is regarded as an ornament (slesa alamkdra) to verse, and helps to mem­
orize it.

In sexagesimal notation, a number is to be interpreted in terms of first (kaldi), second 
(■vikald), and third (tatpard) minutes. Thus, vidvan = vi dva n = 4 4 0 = 0 44 (for dvdi use 
the conjoint consonant rule), tunnabala = tu nna ba la = 6 0 3 3 = 33 06 , kavisanicaya = ka 
vi sa ni caya = 1 4 5 0 6 1 = 16 05 41 , sarvarthasilasthira = sa rva rth si la sthi ra = 7 4 7 5 3 
7 2 = 273 57 47 , nirviddhanganarendraru = ni rvi ddha nga na re ndra ru = 0 4 9 3  0 2 2 2 = 
2220 39 40 .
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The passage may now be translated.16 The values of the Rsine, as collected together in 
the sloka beginning vidvan etc., are given by

vidvan, tunnabala__  Successively multiply these five numbers in order by the
square of the arc divided by the quarter of the circumference [i.e., 5400], and 
subtract from the next number. [Continue this process with the result so obtained 
and the next number.] Multiply [the final result] by the cube of the arc divided 
by quarter of the circumference, and subtract from the arc.

In present-day notation, if we denote these numbers, starting from vidvan respectively by 
an, ag, 07, 05, 03, then if s ( r9) is the given arc in minutes, c is the length (= 5400)
of a quadrant of the standard circle, and jyd — r • sin 0 , then the verse corresponds to an 
iterative procedure. Starting with vidvan (an), multiply it by (s c)2 and subtract it from the 
next number: tunnabala ( ag). Again multiply the result by (s c)2 and subtract from the next 
number. Multiply the final result by (s c)3 and subtract from the arc s, to obtain the jyd. 
Thus, the result my be expressed by the formula

r sin 9
S 3 s 2 s

(13 ~ — as —
c c c

s 2 s 2
-  ag — an
c c

(3.11)

This formula is a numerically efficient way to approximate the sine function by its “Taylor” 
polynomial of the 11 th order.

There is a similar formula for cosine in the next verse1 ‘ beginning with stenah etc., cor­
responding to numerically efficient approximation by its “Taylor” polynomial of the 12th 
order.

VO 9 < I

irw riT T  qfw i^fr^rtrfT: fc^rr
O 'O o  ̂ '

This may be translated:

The six: stena [60 = 06 ], stnpisuna [2150 = 05 12 ], sugandhinaganud [739030 = 
03 09 37 ], bhadrangabhavyasana [4234170 — 071 43 24 ], mindngonarasimha 
[5030278 = 872 03 05 ], imadhanakrdbhureva [00901424 = 4241 09 00 ]. Mul­
tiply by the square of the arc divided by the quarter of the circumference, and 
subtract from the next number. [Continue with the result and the next number.] 
The final result will be the utkramajyd [R versed sine].
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This corresponds to the formula

r (1 — cos 0 )
s  2

« 2c
S 2 s  2
-  a4 — -  üq
c c

S 2 s  2
«10 — “ «12

C C

S 2
agc

(3.12)

with ak being the six numbers in the reverse katapayadi sexagesimal system, collected to­
gether in the verse beginning with stena. From (3.10), the above numbers correspond to

«fc
r  7T k  

k\ 2
(3.13)

where r is the radius of a circle of circumference 21,600 (= 3600 x 60) minutes (r = 1080° ). 
The actual calculation of ak thus requires primarily the value of 7r. Nilakantha, in his 
ÀryabiiatïyaBhasya,18 in his commentary on Ganita 10, described Mâdhava’s subtle value of tt 
as follows:

'l he numbers in this verse are according to a different number system, known as the bhiita 
samkhyd system, which uses word numerals. Thus, netra means 2 because one has two eyes, 
veda = 4, guna, = 3, tri = 3, etc. 19 The quantity nikharva = 1011. Thus, the above verse may be 
translated:

Madhava of Sarigamagrama spoke the approximate [dsanna] number of the cir­
cumference of a circle: vibudha [33] netra [2] gaja [8] alii [8] hutdsana [3] tri [3] 
guna [3] veda [4] bhavarana [27] bdhavah [28], i.e., [2,827,433,388,233] is the 
measure of a circle of diameter nava [9] nikharva [100,000,000,000].

This corresponds to tt = 3.141,592,653, 5922 . . . ,  accurate to 11 decimal places, with the 12th 
and 13th places (92 respectively) differing slightly from their accurate value (89). The term 
nikharva continues the series, koti, arbnda, abja, kharva, nikharva, then in common use for 
centuries.20 (This decimal series coming from Vedic times is constant up to the term koti = 
crore, in current use. From koti onwards there are usually variations. Currently, of course, an 
arbuda, called “arab” is 100 crores, while a kharva, called “kharab” is 100 arabs.) The more 
common katapayadi-sexagesimal expression for r is Devo visvasthali bhrguh, corresponding (in 
reverse order) to 34374448 or 3437 44 48 , which is still substantially more accurate than 
Bhaskara I’s figure of 3438 , or Vatesvara’s figure of 3437 44 .
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According to Rajagopal and Rangachari, there is a significant discrepancy of — 1 in the 
value of mmangonarasimha, “from its accurately rounded off [value]” .21 What they presum­
ably mean is that if we use the “standard”22 rounding procedure while applying formula 
(3.13), then the fourths turn out to be —30, while the fifths turn out to be —49. Thus, the 
“standard” rounding procedure would round —49 fifths to —1 fourths, and when this —1 is 
added to —30, we should get —31 fourths, which should then be rounded up to give another 
— 1 thirds. Though this particular example is a bit stretched, and also involves negative num­
bers for which rounding conventions, even today, may vary significantly between mathemati­
cians and computer scientists, we consider the details of the rounding procedure later on.

More to the point, the procedure used to calculate the coefficients explains the degree 
of accuracy actually needed for the value of 7r, to compute the coefficients accurately to the 
third minute. If it is accurate to only 7 places after the decimal, then there is an inaccuracy 
of 1 —in the coefficient nirviddhananarendraru. Thus, an accuracy of at least 8 places after 
the decimal point is needed for the calculation of the coefficients. In actual fact, the value 
of 7t stated is accurate to 11 decimal places.

Using the series expansion and the stored coefficients, the actual sine values are com­
puted. These are stated in the AryabhatiyaBhdsya,2:i and also in a verse in the Laghuvivrti 
commentary on the Tantrasangraha.24

TTR- 4f<VSHi l is t e n  I <H: I
iTW T II

tW vW ft T fW T  W  tt'jt 'HVlIM’M'lfM'ftl' 1
fyiiTfur wW tft Attr ii

i je f  Hlot'HI JTFtT RUoil =HT: I

^ f r  ip fcft fM * ’sfRTFRT I
srsff TfV fTFTT: II
wTTRnfr xpjfr ifRfr r̂rfFr fic$H i
Tnff «rcfrn
^ tfr  w r  ^iTefRT: w q t  Iv© C\

HNMrvfl >J7T: II
RfFfcrT i

^ : II T V *  II

The numbers here are again in the reverse sexagesimal katapayadi notation, and give the 
minutes, seconds, and thirds for the 24 sine values. This passage may be translated and the 
resulting conversion to present-day notation is given in Table 3.1.

For the sake of comparison, the numbers have also been converted to decimals, and 
'lable 3.2 gives the comparison with sine values. A computer program was used to generate 
the TpX output for this table, to avoid typing errors. It is clear that a minimum accuracy
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of as high as 7 places after the decimal point is maintained for all values, over the entire 
quadrant.

Table 3.1 : Mâdhava’s sine table.

No. Katapayâdi kalâ ( ) vikalâ( ) tatpara( )
1 i|vi 4TH dRvini 224 50 22
2 448 42 58
3 cTcrY TĤ TWiifr 670 40 16
4 889 45 15
5 fw rw r trft 1105 01 39
6 Ŝ>TH) J11ÜI >MI h-3 <*> 1 1315 34 07
7 fiRTÏfRT 1520 28 35
8 TtfT TWŴ ftv̂ rT: 1718 52 24
9 OH •iio&e<4C\ 1909 54 35

10 iTFTf f%T55T TTT: 2092 46 03
11 2266 39 50
12 5T3^vtrif Tffh?9T: 2430 51 15
13 2584 38 06
14 2727 20 52
15 r̂sfr f^n^Tfr 2858 22 55
16 R=RfC: 2977 10 34
17 ÿTPTTëPfr iR f 3083 13 17
18 frdëit TTfkr 3176 03 50
19 Wt" siw P JT f 3255 18 22
20 3320 36 30
21 Tiff WëTtëT: 3371 41 29
22 3408 20 11
23 3430 23 11
24 *PT: 3437 44 48

This raises various questions. How was the accurate value of ir calculated? How were 
the power series obtained? Why was such a high level of accuracy required? etc. All these 
questions are addressed in the sequel.

Although the series expansion is clearly regarded as indefinite, the values of the coef­
ficients, being given only to the nearest third minute, are tied to the assumption of an 
11th/ 12th order polynomial. Hence, to achieve higher accuracy by using a higher-order 
polynomial, it would also be necessary to recompute the above coefficients to the desired 
level of accuracy. This was not done, except presumably for demonstration purposes, in the 
19th c. CE Sadratnamala, which computed the value of 7r to 17 decimal places. The limiting 
accuracy of the third sexagesimal minute is clearly set by the practical concerns of timekeep­
ing, which are taken up in the next chapter, and related planetary models (not considered 
in detail in this book).
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Table 3.2: Accuracy of Mädhava’s sine table.

No. Mädhava’s sine value Difference
1 0.0654031452 0.0000000160
2 0.1305262297 0.0000000375
3 0.1950903240 0.0000000020
4 0.2588190035 -0.0000000416
5 0.3214394797 0.0000000144
6 0.3826834083 -0.0000000241
7 0.4422886665 -0.0000000237
8 0.5000000000 0.0000000000
9 0.5555702346 0.0000000016

10 0.6087614077 -0.0000000213
11 0.6593458183 0.0000000032
12 0.7071068355 0.0000000543
13 0.7518398680 0.0000000605
14 0.7933533335 -0.0000000068
15 0.8314696287 0.0000000164
16 0.8660254521 0.0000000483
17 0.8968727739 0.0000000324
18 0.9238795632 0.0000000307
19 0.9469301920 0.0000000625
20 0.9659258390 0.0000000127
21 0.9807852980 0.0000000176
22 0.9914448967 0.0000000353
23 0.9978589819 0.0000000587
24 1.0000000000 0.0000000000

The context for the calculation of these trigonometric values within texts, such as the 
Yuktihhdsd, is the calculation of the circumference of a circle while avoiding the extraction of 
square roots. We recollect that some 2000 years prior to the Yuktibhdsa, in ca. —500 CE, the 
sulha sutra-s had given an accurate value of \/2, and that procedure inheres in the present- 
day term “surd” from the Latin term surdus (= deaf), which is a Latin translation of the 
Arabic mistranslation of the Sanskrit term karani or karna (= diagonal), confused by Arabic 
translators with the other meaning of the word karna (= ear; hence “bad karna” = “bad 
ear” = “deaf”). This method of square-root extraction was used to compute the circumfer­
ence of the circle, hence the value of 7r, starting with the octagon obtained by cutting the 
corners of a square. We recollect that Aryabhata, who first stated a general algorithm for 
computing square roots, also probably used this octagon-doubling method to compute his 
value of the ratio today designated by 7t. The interesting thing about this octagon method is 
that it is distinct from the hexagon-doubling method widely used, from “Archimedes” to al 
Kashi, to compute the circumference of a circle.20 Historians have also failed to notice that
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Aryabhata clearly indicated his preference for numerical finite-difference techniques above 
these relatively clumsy geometric techniques. So let us look at that background first.

Ill
Ar y a bh a ta ’s t r ig o n o m e t r ic  v a lu es

Terminology, Notation, and the Role of the Historian as a Translator

The historian is perforce a translator, for, to make things comprehensible, he must necessar­
ily translate from one cultural milieu at one time to another at a different time. In particular, 
to communicate with people at the present time—people who are typically trained in the 
Western mathematical tradition—it seems best to use present-day terminology. For this rea­
son, in what follows, as in what preceded, we will, without fear of damaging the propositions 
advanced in Chapters 1 and 2, continue to use the language of present-day mathematics, 
with the understanding, of course, that the use of the current terms (such as 7r) is solely for 
communication, and does not re ect an acceptance of the underlying epistemology, or an 
implicit endorsement of the underlying history of science.

Area and the Value of tx

Today one learns in school that the integral calculus concerns the integrals of “functions”, 
and it is equally elementary that computing (definite) integrals is equivalent to calculating 
the area enclosed by a plane curve. But what is area? Unlike the case of Hilbert’s interpreta­
tion of “Euclidean” geometry, which, as we have seen, stumbles on the question of defining 
area, Proclus’ approximate contemporary Aryabhata, in his Aryabhatiya,26 defined the area 
of a general plane figure using triangulation. In the Ganita section, he first states (6a-b) that 
“The product of the perpendicular and half the base gives the area of a triangle.” He then 
states (7a-b) that “half the circumference multiplied by half the diameter gives the area of 
a circle.” He next states (8) that the area of a trapezium is obtained by “multiplying half 
the sum of the base and face by the height.” He goes on to state that (9a-b) “for any plane 
region [find a way to fill it using rectangles or right triangles, and sum (half)] the product of 
the adjacent sides to obtain [surpass] the area.” He then gives

5tcFr^jw i

fddH ftfill^: II II

This may be translated:2'

(10) 4 more than 100, multiplied by 8, and added to 62,000: this is the approxi­
mate [asanna] measure of the circumference of a circle whose diameter is 20,000.
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This works out to
62832
20000

3.1416. (3.14)

A1 Khwarizmi, in his Algebra, reproduces Aryabhata’s values in practically the same termi­
nology

The other method is used by the astronomers among them; it is this, that you 
multiply the diameter by sixty-two thousand eight hundred and thirty two and 
then divide the product by twenty thousand; the quotient is the periphery.

And this value is also cited by Stevin.

Surds, Roots, and Other Irrationals

Did Aryabhata understand the “irrational nature of 7r”? There is a cultural disjuncture here: 
for, unlike Greek tradition, no special mystical significance was attached to ratios (or the 
corresponding musical harmonies), and irrational numbers like s/ 2  are treated like other 
numbers from the days of the sulba sutra. Of course, the difference is that a “number” like 7t 
could not (and still cannot) be completely specified.

Accordingly, in the sulba sutra (ca. —500 CE), the term used for the value of s/2 is sa 
visesa28—meaning that there remains a small quantity in excess or deficit of the stated 
value.29

STHRTT f w l^ T  R-sj4>fl4 H I
Hfd'51'4: II  ̂ II

This may be translated:30

The measure is to be increased by its third and this (third) again by its own foruth 
less the thirtyfourth part (of that fourth); this is (the value of) the diagonal of a 
square (whose side is the measure), with something remaining.

That is,

s/2 «  1 + -  + - --------- -—  = 1.4142156. (3.15)
3 3.4 3.4.34 v '

We note incidentally that the value is accurate to five places after the decimal point, or six 
decimal places in all (s/2, = 1.4142135 ...).

Apastamba sulba sütra 3.2 uses the term sclnitya, interpreted as sa anitya = inexact, or 
impermanent. The same understanding applies to tt, since the sulbakcira-s express the value 
of 7t using the value of s/2 as follows.
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^ T S T  PHMIrlild I
TT9#cT: ^  H<!«H HptPH^d II
Mi IHc Î I
STFngteRf m^TRT^f II 3 ^  II

'1'he translation is as follows.

If it is desired to transform a square into a circle, a cord is stretched from the 
centre (of the scjuare) up to its corner (so as to measure out a length equal to 
half the diagonal). It is (then) stretched (from the centre) towards the (eastern) 
side. With one-third of the excess part (lying outside the eastern side) added (to 
the portion of the cord between the centre and the side), the (required) circle is 
drawn. This is the approximate circle for (almost) as much is added as is cut off 
(from the corners of the square).31

Thus, if 2a is the side of the square, and r is the radius of the desired circle, this corre­
sponds to the formula

r

- ( 2  + s/2). (3.16)

(The problem of squaring the circle arose in the sulba siitra in the context of having altars with 
equal areas but of different shapes—what would today be called area or measure preserving 
transformations. This process already presumed the definition of the area of an arbitrary 
plane region, obtained by filling it with rectangular tiles, as explicitly stated by Aryabhata.) 
Since the circle with the above radius r was required to have the same area as a square with 
side 2a, from ttr2 = 4a2 we get

1 2
7T -(2  + V2) =  4. (3.17)

O
corresponding to 7r = 3.0883 « 3 .1 .

Early Jain canonical works such as the Surya prajnapati, sutra 20) also use the term kincid 
visesadhika (“a little excess”) in describing the value of 7r: “the diameter of the circle is 99640 
yojana-s, the circumference is 315089”, corresponding to a value of 7t = 3.16227. Likewise, 
about a thousand years later, Aryabhata uses, for the measure of the circumference, the term 
dsanna (= near, proximate; Ganita verse 10, above). Almost exactly another thousand years 
later, Nllakantha comments on the use of this term by Aryabhata as follows:32

fen i i coftt id i fen i
rrr r̂ dfwRT ænrrr fa w c  ftrt, olw d : ïïfrfar: <pn h iw
PTRT ^  JTpEFTFT: MPtPfclPJ <4±M*xl34 sqrefdr H 1W  ITcf,
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f t r r e w i f  ^ T fr t  ^r^rfafa htt: i

The translation is as follows.

Why is the real value not given and the proximate [dsanna = near] value stated?
I will tell. Because it is not possible to express that [the real value]. Why? By 
any measure [howsoever small] if the diameter is measured without a remainder, 
by the same measure the circumference [when measured] will leave a remain­
der most certainly. By any measure if the circumference is measured without 
remainder the diameter will leave a remainder. Whatever the measure there will 
always be a remainder. Though we may continue endlessly, we can only achieve 
smallness of the remainder, but never remainderlessness. That is the sense [of 
dsanna].

Aryabhata s 24 Sine Values: Geometric Method

Aryabhata not only gives the value of n, that value of n is embedded in the course of his 
derivation of the values of sine and cosines, conventionally done for 24 angles. Thus, he 
applies the above definition of area to state:

(9c-d) The chord of one-sixth of the circumference is equal to half the diameter.

He goes on to state:

fl'HTHWq'ifa' ^ ^ II

This may be translated:

(11) Divide the quadrant of a circle into equal parts, and pierce it with triangles 
and quadrilaterals, to find the corresponding jya-s [Rsines] of equal arcs for any 
desired radius.

Even by Aryabhata’s standards of brevity, this is a very cursory and dismissive description 
of triangulation, and its cursoriness clearly indicates that the reader is assumed to be already 
familiar with the process described. As such, sine values must have been in use prior to 
Aryabhata, and must have been computed using this geometric technique. The dismissive 
nature of the description suggests that Aryabhata does not himself have a high opinion 
of this procedure. As we shall see, the Aryabhatlya emphasizes instead the finite difference 
technique in Ganita 12, and records only the sine differences in Gitikd 10/12.

The way the geometric process worked is explained with examples by Bhaskara I (and 
these examples are also worked out in detail by various persons, and, in particular, by Shukla
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and Sarma in their translation of the Aryabhatiya). In Bhãskara I’s first example, one divides 
the quadrant of the circle into six equal parts. The corresponding sine values, at intervals of

15°, are today known to every school boy as: 0, ^ 2̂   ̂ =  ^4 2, ^
The calculation nevertheless has certain points of interest: the value of R is explicitly used, 
and the square roots are actually evaluated instead of merely being indicated symbolically, as is 
done today.

Since the value of R is explicitly used, the question naturally arises: what value of R should 
one use? There is an interesting difference between Indian and Western tradition here. 
In Western tradition, the radius of the circle was usually taken to be given; the question 
was one of determining the length of the circumference. First there were the persistent 
doubts (pointed out in Chapter 1) whether measurement had anything to do with geometry. 
For practical purposes, of course, lengths had to be measured, and rigid rods were used 
for this purpose. Western philosophers assumed somewhat thoughtlessly that this was the 
“universal” or the only “right” way to measure length, so that those doubts about being able 
to measure length were incorporated in questions about the “rigidity” of the measuring rod. 
But on this prescription of using rigid rods, only straight lines could be measured, and the 
West assumed the ideal straight line to be the foundation of geometry. Since, it is obviously 
hard to measure the length of a circle, using a rod, there were even graver doubts whether 
the measure of the circumference could at all be expressed in terms of the radius—as we 
have seen, Descartes asserted that this was beyond the capacity of the human mind (p. 38)! 
Under the circumstances, it is understandable that the radius (which could be measured with 
a rigid rod) is assumed to be given, and the formula describes the circumference.

Indian geometric tradition, however, since the days of the sulha sütra, used a exible 
rope rather than a rigid measuring rod, so the length of a curved line could manifestly be 
measured. Therefore, at no stage did Indian tradition entertain the slightest doubt about 
the ability to measure the length of curved lines. And, it was the length or circumference of 
the circle that was usually taken as a standard, while it was the radius that was treated as the 
derived quantity.

From the earliest times, time, hence angles, have been measured sexagesimally (to base 
60). Traditionally (since Vedic times), for example, a day has 60 ghati-s or nãdikã-s—each 
of some 24 minutes—instead of some 24 hours each of 60 minutes. Even today, the mathe­
matical convention is that a circle has 360°, and if we take Io = 60 , then the circle should 
have a length of 360 x 60 = 21600 . Hence, the typical value of the standard length 
of the circle, from Ãryabhata onwards, is 21600 . The larger figure enabled trigonometric 
values to be stated with greater precision, accurate to the first sexagesimal minute. There 
could have been further reasons related to the precision with which the orbit of the moon 
was to be calculated (the radius of the moon’s orbit is expressed by Ãryabhata as 3600 x 60 
yojana).
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At any rate, with the figure of 21600 for the length of a standard circle, and using 
Aryabhata’s value of n, the value of the radius turns out to be R = 3438 . We can now 
calculate the sine values.

First, one calculates the value of Rsin30° (= \ chord 60°) as stated by verse 9. Verse 9 
states that the chord of the sixth part of the circumference is equal to the radius. (In today’s 
terminology, the angle subtended by that chord, at the centre of the circle is one-sixth of 
the circle, or 60°, so that the corresponding triangle is an equilateral triangle, since its apex 
angle is 60°, while it is evidently an isosceles triangle, since its two arms are both equal to 
the radius of the circle.) With the above value of R we can express Rsin 30° = R sin 30° = 
\R, =  1719 .

The derivation of other sine value from this is a straightforward (though tedious) process 
of applying the rule of three to similar triangles, and the diagonal rule to various “trian­
gulations” to calculate the remaining sine values geometrically, as indicated in verse 1 1 . 
The value of R sin 60° can he easily calculated by applying the diagonal rule: R sin 60° =

R2 ~ ( § ) 2 = ~T R- Explicit computation of the square root gives the fourth sine value as 
R sin 60° = 2978 .

Rounding

For a calculation done on a calculator, the exact value of R sin 60° comes out to be 
2977.3953. This raises the very interesting question of exactly how rounding was done, for 
Aryabhata had a definite algorithm for computing s/3, which could hence be computed 
to any desired precision. However, the sine values given by Aryabhata (implicitly through 
sine differences) are rounded off to the first minute. As we shall see later on, rounding 
was invariably done, for the sine values are always expressed in a whole number of minutes 
(or seconds, or thirds), but no simple mechanical rule was followed for rounding since the 
idea was a more goal-directed one of making a precise and practically useful calculation. 
(Aryabhata II changes Aryabhata I’s sine value to 2977; but the value given by Aryabhata I 
was surely not a mistake, for it remained unchanged by commentators over many centuries, 
though these very commentators, like Bhaskara I, naturally rejected many things that 
Aryabhata I said.)

Square-Root Extraction

Apart from the question of rounding, there is another point worthy of note: the calculation 
of these sine values requires an actual method of computing square roots. This is hardly a 
trivial matter.

In this connection, we note that Ganita verse 3 defines square and cubes, both geomet­
rically and numerically, while verses 4 and 5 explain respectively the method of extracting 
square roots and cube roots. This is the earliest known statement of an algorithm for ex­
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trading square roots—“Ptolemy”, for instance, does not have such an algorithm. (Neither 
does he have sine values, and it is a great mystery how he even calculated his table of chords 
without such an algorithm for extracting square roots—in the purported text of the Almagest 
square-root extraction is done without comment, in Book I, e.g., \/4500 = 67p4 55 . Perhaps 
the original Ptolemaic table of chords was a rough table that was updated by later authors, 
for the present-version of Ptolemy’s text is not compatible with non-textual evidence such 
as the contemporary Roman calendar, which was hopelessly off the mark—-just because the 
difficulties with fractions did not allow the Romans even to articulate the right length of the 
year. It is an even greater mystery why Western historians of mathematics nevertheless keep 
repeating uncritically that Aryabhata’s values are derived from Ptolemy’s table of chords!) 
The fact is that Roman and Greek tradition had an obvious difficulty not only with fractions 
but also with multiplication and division (as Ptolemy states33), prior to the algorismus. It 
had an even greater difficulty with non-ratio numbers that are bound to arise in the process 
of square-root extraction. In contrast, as seen above, approximate values of \/2, \/3, etc. 
were known to Indian tradition from as early as the sulba sutra-s (ca. —500 CE).

It is not known precisely how the sulbakdra-s obtained the value of s/2 as precisely as they 
did, though various speculations have been made.34 The basic idea in the sulba sutra seems 
to have been a method of successive approximations as follows. To calculate v/T, we first 
find a number a such that a2 «  A. Then, s/~A = \/a2 + c = a + + • This
approximation can be understood using the rule of three (linear interpolation): 2a +  1 is 
the difference between a2 and (a +  l )2. If the addition of 2a + 1 increases the square root 
by one, by how much will the addition of c increase it? 1’he addition of or a term such as 
sa visesa, then indicates the understanding that this process is a quick approximation which 
can be improved. Alternatively, one may try to understand it in present-day algebraic terms, 
using (a + b)2 — a2 + 2ab + b2, with b — Continuing this process presumably led to 
the sulba sutra approximation30 noted earlier.

Howsoever good may be the sulba sutra approximation, a knowledge o f  some technique of 
numerical approximation is one thing, and a knowledge of an easy and efficient algorithm 
for extracting square roots to any desired precision is another thing. We do not know for 
sure whether the sulbakdra-s had access to such an algorithm.

Aryabhata, however, did have such a general algorithm for square-root extraction which 
went as follows (Ganita 4).

Hirf I
cRfr t̂f ?T5tf PTFTFrft II *  II

This may be translated as follows.

Always divide the avarga [number in the even place] by twice the square root [pre­
viously obtained]. Then, having subtracted the square from the varga [number
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in the odd place], transfer the quotient to the next place [to obtain the next digit 
of the square root]. This is the square root.

(Aryabhata also gives an algorithm for cubing and extracting cube roots, but that does not 
concern us here.) This method of square-root extraction was probably not a very new method 
at the time of Aryabhata, for this process of computing sine values using square roots was al­
ready being found to be cumbersome, and was in the process of being replaced by a superior 
technique.

Aryabhata s 24 Sine Values: Finite Difference Method

While the above geometric method of computing trigonometric values can be continued, it 
soon becomes cumbersome36 if the quadrant of the circle is divided into a large number of 
equal parts, such as the 24 parts for which Aryabhata actually gives the sine differences. The 
sine values themselves are obtained from the tenth37 gitikd of the dasgltika section, which is 
as follows.

wfy cubs >rfw 
f%^r w f r  f%w i 

m Ph Rhit fsvs
'FT 5*fT ’’TT ^  II II

The numbers involved here are expressed in Aryabhata’s novel notation explained in 
box 3.2.

Box 3.2. Aryabhata s numerical notation

According to this notation, explained in the second verse at the beginning of the 
Gitikd section, the varga letters (classified letters, i.e., the letters from k to m) are to be 
used in the varga (odd) places. They, thus, have the value from 1 to 25 in alphabetical 
order. The avarga (unclassified letters, i.e., the letters y, r, l, v, s, s, s, h) are to be 
used in the avarga (even) places. They, thus, have the values 30, 40, 50, 60, 70, 80, 
90, 100, respectively. The nine vowels a, i, u, r, Ir, e, o, ai, au respectively denote the 
eighteen places (lit. two nines of zeros) corresponding to 10° to 1017, with each vowel 
occupying one varga and one avarga place: thus a denotes the place of 1 as well as 10 , 
i denotes the place of 100 as well as 1000, etc. A consonant combined with a vowel 
denotes a number. When the vowel is combined with an avarga letter, it has a value 10 
times what it has when combined with a varga letter. (The names for various powers 
of 10 given by Aryabhata in Ganita 2 , are a bit different from those given for the first 
12 powers of 10 in the Yajurveda xvii.2, and also a bit different from those names in 
current use today, except up to koti = crore. Thus, for example, the present-day unit
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“arab” is 100 crores, whereas for Aryabhata arbudam is only 10 koti [ = 1 0  crores], while 
for commentators on the Yajurveda an arbuda is what we today call a crore.)

Thus, when combined with a vowel, a consonant acquires the place(s) of that 
vowel. (For the purposes of this rule, it is immaterial whether we use the short forms 
a, i, u, r, or the longer forms a, I, u, f.) The system is very compact: thus khyughr 
-  4,320,000, since kh — 2, y — 30 , so that khyu -  320,000, while gh -  4, so that 
ghr = 4,000,000. It is also order-independent: thus dhaki = kidh. Despite its many 
virtues, the problem with this system is that the resulting words are often difficult to 
pronounce, e.g. nisibunlrskhr (= 1,582,237,500 = number of rotations of the earth in a 
yaga). Moreover, unlike the bliuta sankhyd system, the words need not be natural words 
which mean something. As such, they are difficult to recollect, and cannot be checked 
against meaning, which is what makes a mnemonic easy to remember. Further, it is 
difficult to use such number-words with the proper meter in a verse, since not much 
variation is possible.

In view of Aryabhata’s compact numerical notation, one might ask why his value 
of 7r was expressed in a prolix way (“4 more than 100 multiplied by 8 and 62 times 
1000 . . .  ”). Perhaps he was simply restating a traditional sloka. More likely, this way of 
stating things enabled a play on words, allowing him to state indirectly that what he 
had done was extra clever. (The word catur, apart from meaning the number 4, also 
connotes cleverness by reference to one who has learnt all four Veda-s. “Clever” is the 
primary meaning of the word in derivative languages like Hindi.) Unfortunately, later 
interpreters seem to have lacked the sense of humour needed to appreciate this.

Thus, the verse may be translated:

225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 131, 119,
106, 93, 79, 65, 51,37, 22, 7—[these are the] Rsine differences [for the quadrant 
divided into as many equal parts, each part hence being 225 ] [in] minutes.

It is noteworthy that the above numbers give the 24 sine differences rather than sine values per 
se. (The first difference is taken to be equal to its value, since this is implicitly the difference 
from sin 0 which is obviously zero.) Combined with the cursory treatment of the geometric 
method of obtaining sines (“use triangles and quadrilaterals”) this strongly suggests that 
the geometric method of computing sines was well known prior to Aryabhata, and that he 
favours a change to the finite difference technique. It is strange that the significance of this 
point has gone largely unnoticed by earlier historians.

Calculating Sine Differences

How were the sine differences derived? In fact, Aryabhata goes a step further, and gives a 
rule which can also be simultaneously used to derive the sine differences themselves.
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This rule, stated in Ganita verse 12, treats sine differences in a way which becomes the key 
to the origin of later infinitesimal techniques.

(12) The Rsine of the first arc divided by itself and diminished gives the second 
Rsine difference. That same first Rsine, when it divides successive Rsines gives 
the remaining [Rsine differences].38

That is, if the quadrant of the circle is divided into, say, 24 equal parts, R\, R2 , . . . ,  R24 

are the 24 corresponding sine values, 1 (= R\), 2 , ■ ■ ■, 24» are the corresponding sine
differences, and i = Rt — R j-i, for i 2, then Aryabhata’s rule consists of the following 
two parts:

2 — 1

n + l  n

R1 

Ri

Ri

(3.18)

(3.19)

Three key points are worth noticing here. The first is that Aryabhata has here brought in 
the second difference. Today, we would rewrite the formula as

(2 )n n + l  n
R i'

(3.20)

corresponding to the idea that that second difference/derivative of the sine is proportional 
to the sine itself . But with finite differences a little more detail is necessary, and Arvabhata 
also specifies the constant of proportionality.

The above interpretation is also the one given by Nilakantha in his Aryabhatiyabhdsya, 
except that Nilakantha makes it more precise, by stating it in the form

(2)n
Rn
Ri

( 1 -  2)- (3.21)

The difference here is that for Aryabhata, working to the precision of minutes, 1 — 2 = 
225 — 224 = 1, while this is no longer the case with Nilakantha, working to the precision 
of thirds, who uses the earlier stated values, R\ — [224; 50; 22] and R2 — [448; 42; 58], so that 

2 = [223; 52; 36], and 1 -  2 = [0; 57; 46],
There is a suggestion, in the above verse, Ganita 12, of a play on words, leading to two 

possible interpretations, both of which are correct. Thus, it is possible to interpret the above 
formula also as relating solely to first differences,

_ R\ + R2 + • • • + Rn
5 (3.22)
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as has been done by Shukla and Sarnia, based on the interpretation of a variety of earlier 
commentators, such as Prabhakara, Suryadeva (b. 1191 CE), Yallaya (1480 CE), etc. It is 
even possible to interpret it as

n + 1 — n
1 + 2 + ‘ ' + n (3.23)

as has been done by Somesvara and Paramesvara. These different interpretations, however, 
give equivalent mathematical formulae, in the sense that we arrive at the same numerical 
values, whether we use first or second differences for the purpose of calculation.

My point is that it is quite possible that both interpretations are intended, and that the
term “second sine difference” refers ambiguously, as in the English-language translation

( 2 )above, to either the quantity 2 , or the quantity \ . In fact, if we further think of the term 
“unam” as “negated” (in addition to its meaning as “diminished”), this provides a very neat 
and clear interpretation of the verse. The difficulty in interpreting this verse is thus perhaps 
because it has sought to incorporate an extraordinary level of cleverness.

This author is not the first in modern times to have translated Ganita 12 as involving the 
second difference. Delambre 9̂ long ago made the same observation, although he could not 
reconcile this observation with the local historical narrative within which he situated himself 
and the Indians. Accordingly, he falls back on that stock Western re ex: Aryabhata might 
have noticed the relationship as a “mere empirical fact” (but was incapable of proving it; we 
have already seen the futility of this argument in Chapter 2).

Whether or not second sine differences were explicitly used by Aryabhata is not a matter of 
very great consequence, from a historical perspective, since second differences were certainly 
used for interpolation, from Brahmagupta onwards, about a century later, and this use was 
continued subsequently by Vatesvara, and Bhaskara II, as detailed below.

The formula (3.21) can be justified both algebraically and geometrically.40 Algebraically, 
for example, Shukla provides the following elementary derivation:

n n+1 R sin nh — R sin (n — 1 )/?.

— R. sin (n + 1 )h — R, sin nh

2R sin nh — R sin (n + 1)/?. — R sin (n

2 R sin nh ■ R cos h
2/tsm nh — ------------------------

R

2R, sin nh ■
R — R cos h

R

1 )h

R. — R. cos h
2 R ji ■ R

(3.24)
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Applying the last equation above, for the case n = 1, we see that

2R\ •
R — R cos h

(3.25)1 — 2 R

so that, (3.24) can be rewritten as

n (3.26)

which is the same as the earlier formula.

Computing Sine Values by the Finite Difference Method

The second key point about Ganita 12, and one which seems to have gone un-noticed so far is 
this: though Aryabhata’s formula admits some sort of an algebraic or geometric derivation, 
as has been suggested by Shukla, the equation cannot correctly be regarded as an algebraic 
equation. More precisely, it can be regarded as an algebraic equation for calculating the 
second difference, but not for its proper purpose, which is to calculate sine values. In view 
of the preceding algebraic derivation, this might seem a bit paradoxical, so let us take an 
example to illustrate what is meant. Thus, if we know Rn, we can calculate the second 
difference using (3.19); however, if we try to calculate Rn by multiplying (3.19) by R\ to 
obtain # i x ( n — n+i)> that would result in incorrect values, at least so far as Aryabhata is 
concerned. For example, for n — 23, 23 — 22, 24 — 7, while R\ — 225, so that we should 
have #23 = ( 23 — 24) x #1 = 15 x 225 = 3735 while the 23rd sine value actually given in the 
Surya Siddhanta (or by Aryabhata) is 3431, which is quite substantially different. In fact there 
will be a difference in every case, since none of the actual sine values is an integral multiple of 
225. (Rounding is not involved here, for the difference involved is much too large.) Had the 
rule been intended for use as an algebraic equation, he would have, in Gitika 10, stated the 
sine differences as fractions, without rounding them. Since the differences are actually stated 
as whole numbers (of minutes), it follows that for the purpose of calculating sine values, the 
equation is intended as a special sort of equation: a finite difference equation.

Thus, Aryabhata’s rule for calculating sine values is the same thing as the recursive process

with R() =  o = 0  and # 1 = 1  = arc = 225 , when 24 values are desired. Today we would
immediately recognize the striking similarity of this with “Euler’s method” of solving an 
ordinary differential equation, using finite differences, and this is discussed in more detail 
below.

(n 2):

(3.27)

n (3.28)
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Let us first see, with some examples, how this method of finite differences actually works, 
in the case of Aryabhata. By convention, the standard circle is taken to be one which has 
a circumference of 3600 x 60 = 21,600 , so that a quadrant of the circle has a length of 
5400 . As the first step in this calculation, we need the value of the radius of the circle. 
Using Aryabhata’s value of 7r, we can calculate the radius of this standard circle as R = 3438 
(rounded to the minute).

To compute the 24 sine values, we divide the quadrant into 24 equal parts, so that each 
part corresponds to = 225 or equivalently = 3°45 . The first Rsine difference (and 
value) is taken equal to the arc. This, in fact, is the reason for choosing the number to be 24. 
As the commentator Suryadeva Yajvan41 explains:

Now why should there be a rule that the number o{ jyd-s should be restricted to 
24, when the quadrant of a circle can be divided into any number of parts?... the 
quadrant should be divided in such a manner that the first jyd and the corre­
sponding arc are exactly equal. This is the case when the number of parts of the 
quadrant is 24.

Thus, R\ = 225 corresponding to sin 3°45 = = 0.06544, accurate to 4 places after the
decimal point.

There are now two ways to proceed. The first way is to compute the values by using Gttika 
10. This is a straightforward matter of successive addition. Thus R.2 = 225 + 224 = 249, etc. 
This is so easy that it deserves no further comment.

It is more interesting, however, to examine the method of Ganita 12, which also per­
mits one to simultaneously derive the sine differences themselves, as one goes along (and 
it noteworthy that this is the only method Aryabhata has indicated of deriving those sine 
differences).

Accordingly, by Aryabhata’s formula for sine differences,

2 = Ri -  ^  = 225 -  1 = 224 . (3.29)
R\

By definition, R2 — R\ 4- 2 , so that

R2 = 449. (3.30)

Similarly, 3 = 2 — 7̂  — 224 — 449 225 = 222, so that R% = R? + 3 = 671 . Further,
4 =  3 -  ^  =  219, and R4 = 890 .

The calculation can obviously be continued. The resulting trigonometric values are also 
found in e.g. the Surya Siddhanta,42 dated to a couple of centuries before Aryabhata, but 
probably updated after him.
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Rounding Again

A notable feature of the above calculation is the systematic (though implicit) way in which 
insignificant quantities are discarded or “zeroed”, through rounding. The “general” rule for 
rounding was rounding to the nearest integer, so that a quantity greater than | was rounded 
up to the next higher figure. But we have already seen an exception to this rule. In fact, as 
in Panim’s grammar (or in the way traffic rules are still observed in smaller towns in India 
today) there are a very large number of exceptions! We find in Ranganatha43 a comment 
about how to round the 24 sine values in exceptional cases which call for a departure from 
the rule.

In the 21st, 20th, 6th, 15th, 7th, 12th, 8c 17th there is a difference----

That is about 30% cases in which there is an exception!
In any case, it is clear that there was no mechanical rule in use for rounding, and that 

rounding as appropriate to ultimately greater precision was used. Thus, the numbers used 
in Indian mathematics, though very similar to oating point numbers, did not correspond 
exactly to any specific type of oating point numbers actually being used today, all of which 
involve mechanical rules for rounding.

There is a fundamental philosophical difference here, for it seems unlikely (and I believe 
it to be impossible) that one can at all reduce a purposive procedure to a mechanical (or 
causal) rule needed for routine numerical computing on a digital computer. To bring out 
this subtle philosophical difference between a purposive procedure, and a mechanical one, 
one can ask the question: would it be possible to design an expert system or an artificially 
intelligent computer which could mechanically reproduce such a purposive approach? This 
question is interesting because, as we have seen, Hilbert’s vision of mathematics is so pro­
foundly mechanical. This is too big a question to discuss here; however, I can summarize an 
answer that I have provided elsewhere:44 a truly purposive procedure cannot, in principle, 
be mechanized. Thus, though Indian mathematics was computational, given these scarcely 
noticeable features, it may well be that there is a very fundamental philosophical difference 
between computation in Indian mathematics, and present-day rule-based computational 
mathematics.

The subtle difference may perhaps be more easily explained, in a non-technical way, by 
means of an analogy, readily comprehensible to those familiar with the difference between 
Indian and Western music. In Western music, the phenomenon known as the “Pythagorean 
comma” creates a problem analogous to the problem of rounding: starting from a given 
note, if one ascends 12 times by perfect fifths, then this is not the same as ascending by 7 
octaves. (Alternatively, if one builds a scale of 12 notes by raising each note to a perfect 
fifth, and then reducing these 12 notes to the primary octave, then the 12th note in this 
scale will not be a perfect octave of the base note, so that these twelve notes will not form a
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perfect cycle—the musical cosmos fails to be exactly recurrent!) The failure of the musical 
cosmos to be recurrent is a catastrophe from the Pythagorean viewpoint. Since the perfect 
fifth (on the Pythagorean scale) is understood to have a frequency in the ratio of 3 2 to the 
frequency of the base note, and since an octave has double the frequency of the base note, 
the difference amounts to the ratio ^ Jl)7 = 524288 ~ 1-0136432, which differs very slightly 
from 1. However, Western music presupposes that 12 perfect fifths are exactly equal to 7 oc­
taves. No easy mechanical rule is available to settle the problem of the “Pythagorean comma”. 
However, in the West, the common instruments for music, like the piano, are mechanical, in 
the sense that they are given, and not open to tuning by the player. Therefore, a mechanical 
rule was thought desirable. Hence, the actual solution, that is today in use, is called the 
equal-tempered scale, which attens each note by a small amount. (The notes on the equal 
tempered scale are obtained by ascending by so that the 12 notes fit into a perfect 
octave.) While this solves the problem of the Pythagorean comma, and also standardizes 
all instruments, it also has the disadvantage that it makes every note in Western music very 
slightly off key. Though scarcely noticeable except to a musically trained ear, this is a very un­
satisfying consequence of marrying a mechanistic philosophy to something like music which 
seems intrinsically non-mechanical. With traditional Indian musical instruments, however, 
even a “fixed-pitch” instrument like a ute is so designed as to admit of substantial human 
adjustment during play. (Also, there is no compulsion to follow a pre-prepared musical 
score, which might have been composed by another person, using a different instrument.) 
Tonal problems, therefore, are left to he resolved by the expert player in real time without 
the need to degrade, even if ever so slightly, the quality of the music as a whole.

Finite Differences vs Square Roots

To return to the calculation of trigonometric values, it is evident that the numerical method 
is shockingly easy compared to the geometrical method using triangles and square-root ex­
traction. Using the stored table of differences, which are themselves small numbers, only 
simple addition is required. Even if the differences themselves are to be computed, the 
multiplication in (3.28) involves relatively small numbers, and absolutely no square-root ex­
traction is necessary. (Somehow this point seems to have been overlooked by more recent 
commentators on Aryabhata.) These differences become all the more important when we 
take into account the rounding that must necessarily accompany actual square-root extrac­
tion in the geometrical method.

The geometric method, apart from being quite cumbersome when a large number of 
sine values are involved, especially when square roots have actually to be extracted (and not 
merely indicated symbolically), has a further disadvantage: the geometric method enables 
the computation of sine values only at a discrete set of points. This is the third key point to 
observe regarding the Ganita 12 rule: it facilitates interpolation.
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Interpolation

1'his author is not aware of anyone who has commented on why Aryabhata chose to give 
a table of differences, instead of a table of sine values. Presumably, this was done because 
Aryabhata had observed that the tabulation of differences leads to the computation of sine 
values with greater economy. Thus storing a table of differences is more efficient, for dif­
ferences are what are directly required by the interpolation procedure: from the sine differ­
ences one can directly compute the values for any desired arc, and not merely the 24 values. 
As stated in the preceding paragraph, this is another key difference from the geometric 
method: what one obtains with Aryabhata’s method are not just 24 values, as would have 
been obtained on the geometric method, but values for any desired angle. With the geomet­
ric method, the concept of a sine function is only implicit. With the computational method it 
becomes explicit, for there is a way to compute the value of the function at any point.

That is to say, Aryabhata’s notion of the sine function is exactly the notion one has today 
of a function in numerical computing: a stored table o f values together with an interpolation 
procedure. From the computational point of view, as noted above, in the absence of such a 
technique for computing the values of the function, the notion of “the value of the function 
at a point” remains something of an impractical idealism.

This notion of function is not the set-theoretic formal definition, / : i? —» R, used in 
present-day mathematics. Though the set-theoretic definition of a function involves various 
supertasks, and is not intended to be useful for any practical purpose, since it belongs to the 
domain of mathematics-as-proof, it is nevertheless regarded as somehow “superior” to the 
practical and computational concept of a function in mathematics-as-calculation. This, as 
we have already seen, is mere cultural prejudice.

The interpolation rule used in Aryabhata’s time is simple linear interpolation, between 
a set of equally spaced values, which corresponds to an application of the rule of three. In 
modern-day notation, if we divide the quadrant into N equal parts, and set h =  then, 
using Rn = Rsirinh, n = 0 ,1 ,2 , . . . ,  N, the definition n = Rn — R,n- i, n = 1 ,2 , . . . ,  Ar, 
amounts to

n =  Rsin nh — Rsin (n — l)h, (3.31)

and the customary formula for piecewise linear interpolation, as given by the rule of three, 
amounts to

Rsin (n -(- )h = Rsinn/i+ n, 0 < 1 , n = 1, 2 , . . . ,  N. (3.32)

Thus, the unit change in the sine value (at the point n) is n, so that the change in the sine 
value for the fraction would be n. A change of notation, putting h = 9, and a slight 
rearrangement, allows us to rewrite the above formula in the form

Rsin (nh + 9) — Rsin nh + 9 -j1, 0 9 < /?,, n — 1, 2 , . . . ,  N. (3.33)
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From the computational mathematics point of view, the difference quotient, -j1, that en­
ters into the above rule for piecewise linear interpolation, is exactly the counterpart of the 
formal first derivative, and the interpolation formula is then the exact counterpart of “Tay­
lor’s” formula to the first order. It is noteworthy that in Europe it is the discrete version 
of the formula that appears first—in the correspondence of Gregory, as communicated to 
Newton through Collins.40 We will see below how this was extended to quadratic, and then 
higher order interpolation in Indian tradition. The (generalized) formula has been called 
the Gregory-Newton interpolation formula.

Finite Differences vs Derivatives

Though in later times, because of the epistemological struggle in which it was involved, the 
calculus somehow got identified with the use of derivatives as limits, these limiting methods 
are not essential to the calculus as used even in present-day computation. Finite differences 
suffice for all practical computation. They are, practically speaking, also necessary for all 
but the simplest computations.

Secondly, the interpolation procedure links naturally to the recursive method of numeri­
cally calculating the values of the function.

That is, given the initial datum sin 0 = 0, it is, of course, possible to derive the sine values 
proper, from a knowledge of sine differences, as in (3.28). Simply changing 0 6 < h
to 0 O h  extends the method of interpolation to a method which uses this technique 
to derive the Rsine values proper. (This suggests how Aryabhata might have arrived at his 
method of difference equations.)

Translated in terms of present-day formalist techniques, this would correspond quite ex­
actly to what is today known as Euler’s method of solving ordinary differential equations. As 
pointed out earlier, such an interpretation is necessary, since Aryabhata’s rule simply does 
not make sense as purely an algebraic equation, especially w?hen seen together writh the table
of differences he gives.

dy
Euler’s method is usually presented as follows. Given a differential equation = f(x , y), 

and an “initial” (or “final” or “intermediate”) value y(xo) = yo, one uses the analogue of 
piecewise linear interpolation to calculate y\ = yo + (x\ ~ xo)f(xo,yo). From this value of 
y(xi) = yi, one proceeds to calculate y-2 , etc. using yn = yn~\ + xn f ( x n- i ,  yn-i)-

In the present context, things are different in three ways. First, there is no explicit de­
pendence on x, so we are considering only the case of a simpler equation which would today 
be written in the form d?y dx2 = —y(x). Second, we are, of course, already using here the 
finite difference in place of the derivative: yn = f{y (x n)) xn, but there is no need for any 
intermediary in a “background” notion of a “continuous” derivative. (The word “continu­
ous” is here used only in opposition to discrete, but those who are worried about Lipschitz 
conditions, etc., are referred to Chapter 10.) Third, using the idea earlier explained of a



140 Cultural Foundations of Mathematics

function as a table of values plus a method of interpolation, we are here specifying the deriv­
ative function using a table of values, yn = h f(y (x n)) for the differences. There is a fourth 
difference which is not so important: we are tabulating the values only on a mesh of equal 
intervals, as is commonly done, even today. The value of yn is now built up from the value 
of yo = 0, and the values of yn as already explained above: yn = yn-L + h yn.

The similarity with the Euler solver may not be obvious, since part of the beauty of 
Aryabhata’s formula is that it eliminates the explicit dependence on step size. So let us 
quickly see how it works. First, the second-order equation y = —y is converted to two first- 
order equations, by the well-known process: t/1 = t/2, and y2 = —yi- Euler’s formulae are, 
then, yi(xn+i) = yi{xn) + hy2 (xn), and y2 (xn+i) = y2(xn) ~ hyi(xn). Replacing the deriv­
ative y2 (xn) by the finite difference, yi(xn) h, cancelling h from both sides and converting 
to the earlier notation, we see that the first equation is just the same as Rn+i = Rn + n+i> 
while the second equation gives n+i = n — h?Rn. Using this equation for n — 1, we can 
eliminate h2 by using h2 = ( 2 — l) R\, to obtain n+1 = n — (Rn Ri)( 2 — 1), which is 
Nilakantha’s form of Aryabhata’s formula, except that Aryabhata has 2 — 1 = 1» accurate 
to the precision to which he works.

It should not be presumed that Euler arrived at his technique of solving differential equa­
tions independently of Aryabhata, since Euler not only had access to Indian sources, but 
wrote an article around 1740 on how Indian astronomy texts used the sidereal year.46 He 
also diligently followed up the work done by Fermat, who, as we shall see, was greatly in­
terested in “ancient knowledge”. As we shall also see, in a later chapter, there is strong 
circumstantial evidence that links Fermat (and his famous challenge problem) to a solved 
example in Bhaskara II, who, as pointed out below, makes some interesting observations on 
the use of second differences for quadratic interpolation. As we shall also see below, this is 
systematically extended to higher-order interpolation in the Kriydkramakan, a Sanskrit com­
mentary on the work of Bhaskara II, which gives a detailed exposition of the rationale, in 
places more detailed than the Yuktihhdsd. Therefore, there is every possibility that the “Euler 
solver” was developed after a thoroughgoing study of the Indian procedures of computation.

Second Differences and Quadratic Interpolation

As regards the further development of the method, the use of the second difference is greatly 
furthered 130 years after Aryabhata by Brahmagupta (629 CE), who was presumably dissat­
isfied with the accuracy of the method of piecewise linear interpolation, when the step sizes 
are large (h =  15° or 900 apart). Brahmagupta improved the interpolation technique, 
using the second difference to enable greater numerical accuracy through quadratic inter­
polation, thus strengthening the foundations of the calculus. (This quadratic interpolation 
corresponded to using a second-order “Taylor” polynomial.)
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He used second-order differences to propose a second-order interpolation formula, 
nowadays called “Stirling’s formula”. Brahmagupta’s formula for quadratic interpolation is 
stated as follows.47

d < l fd < H  SRrTT 4 1 I ^\*MH II V  II

This has been translated (using Bhattotpala’s 10th c. CE [Saka 888] commentary) as:

Multiply the Vikala by half the difference of the Gatakhanda and the Bhogyakhanda 
and divide the product by 900. Add the results to half the sum of the Gatakhanda 
and the Bhogyakhanda, if their half sum is less than the Bhogyakhanda-, subtract, 
if greater. [The result in each case is the Sphutabhogyakhanda or correct “tabular” 
difference. ]

Here, the underlying table is that calculated for khandajyd-s or sine differences for intervals 
that are spaced h apart, where it is assumed that h = 15° or 900 . The gatakhanda or “past 
difference” (= n) refers to the interval that has been crossed, and the vikala (= 9) is the 
amount in minutes by which it has been crossed at the point at which we want to interpolate. 
The bhogyakhanda (= n+i) is the one yet to come. Thus, the formula states:

sphutabhogyakhanda = n n+1 y  —— n+1 (3.34)

Rsin (nh + 9) — Rsin nh = y  x sphutabhogyakhanda. (3.35)

This amounts to

Rsin (nh + 9) = Rsin nh + — n n+1 —̂ —— n+1. (3.36)
ft' Z ft £

This formula is nowadays called Stirling’s interpolation formula: just as linear interpolation 
leads to an Euler solver, so also quadratic interpolation easily extends to a second-order 
(Runge-Kutta) method of numerically solving an ordinary differential equation. (Indian 
tradition, of course, did not recognize differential equations, but it worked directly with dif­
ference equations from the time of Aryabhata: this is still the way most differential equations 
are actually solved today, even though present-day mathematics pretends that differential 
equations are somehow superior to difference equations.)

Just as a Runge-Kutta method can take much larger steps than an Euler solver, while 
retaining the same level of accuracy, the higher accuracy of quadratic interpolation enabled 
Brahmagupta to work with values 900 apart.

But Vatesvara (in 904 CE) works with arcs that are only 56 15 apart, and still uses 
quadratic interpolation, explicitly giving the second of the above formulae, among many 
others.48
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The translation goes as follows.49

(II. 1.64) Multiply one-half of what is obtained on dividing the residual arc (vikald 
[= 0]) by the elemental arc (cdpa [= h]) by the difference between the (traversed 
and untraversed) Rsine-differences (jydntara), and subtract that from or add that 
to the traversed Rsine-difference (hhuktaguna). That difference or sum divided 
by the residual arc (vikald) gives the residual Rsine-difference (i.e. the Rsine- 
difference corresponding to the residual arc, vikalajyd).

65. Multiply half the difference between the traversed (atita/past) and untra­
versed (agttto/future) Rsine-differences (agatdtitajydntaradala) by the residual arc 
(vikala) and divide by the elemental arc (dhanusa or cdpa). Add that to half the dif­
ference between the (traversed and untraversed) Rsine-differences (jyantaradala). 
Subtract that from or add that to the traversed Rsine-difference (hhuktaguna).
Then is obtained the (instantaneous) Rsine-difference (hhojya-guna).

66. Add 1 to the lahdha (i.e., to the result obtained on dividing the residual arc 
by the elemental arc), reduce it to half, and then multiply that by the product of 
the lahdha and the vivara (jyantar), i.e. the difference between the traversed and 
untraversed Rsine-differences). Subtract that from or add that to the product of 
the lahdha (dhanusapta) and the traversed Rsine-difference (bhuktajya). Then is 
obtained the residual Rsine-difference (vikalajyd).

Here, the cdpa or dhanus is the elemental arc (= h) which is 56 15 in Vatesvara’s case. The 
traversed (atita=past) sine difference is n_i = Rsin nh — Rsin (n — 1)/?.. The untraversed 
(agata= non-gone = future) sine difference is n = Rsin (n + 1)h — Rsin nh. The formula 
then states

9 9
Rsin (nh + 9) -  Rsin nh =  -  n- i  n ~  n -1 , (3.37)h 2 h

with the positive or negative sign being chosen according to the order in which the sines are 
traversed. The above may be rewritten as

Rsin (nh + 9) = Rsin nh + — n — — t + 1 —----- (3.38)h h h 2

As Shukla remarks, the usual interpolation formulae may be seen either as what is today 
called the Newton-Gauss forward difference formula, or as the Newton-Gauss backward
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difference formula. One of the variations of Vatesvara’s formula corresponds to a robust 
backward-differentiation technique of interpolation very useful also for the numerical solu­
tion of numerically stiff ordinary differential equations. It is quite clear that this quadratic 
interpolation is being used in the interests of greater accuracy, and that the precision of 
Aryabhata’s sine values is no longer satisfactory. Thus, Vatesvara also expressed his dissatis­
faction with the starting point of the procedure, with Brahmagupta having taken the Rsine 
of the 24th part of the quadrant (3° 45 ) as equal to the corresponding arc. He himself di­
vided the quadrant into 96 equal parts, each equal to 56 15”, and stated that the 96th part 
of the quadrant was indeed as straight as a rod. (In modern terminology', one would say 
that for this small value of 0, sin 9 ^ 9 ,  corresponding to the more formal statement that 
lim o sin (9 9 — 1.)

Again, in the interests of greater accuracy, Vatesvara also took the value of the radius R as 
3437 44 (nagagiinavedagnayo vedakrta), instead of the value 3438 used in the above example, 
and, since the circumference in the quadrant is still taken to be 5400 , this corresponds to 
using a more accurate value of 7r. The upshot is that, compared to Aryabhata’s sine values 
that are accurate to the first sexagesimal minute, Vatesvara’s sine values are accurate to 
the second sexagesimal minute (while Madhava’s values are accurate to the third sexagesimal 
minute).

Instantaneous Velocity and Bhaskara II s Justi cation of Quadratic Interpolation

Bhaskara II’s rationale for the above quadratic interpolation formula is interesting. The 
argument goes as follows. The Rsine-difference for the traversed elemental arc is n_i, while 
the Rsine-difference for the untraversed elemental arc is n. So the increase or decrease of 
the Rsine-difference is n — n-\. This increase takes place over an arc of length 2h, which 
corresponds to | ( n — n_i) for an arc of length h by a simple application of the rule of 
three. Now the Rsine-difference at the beginning of the arc is n_i, and the increase or 
decrease of the Rsine-difference for an arc of length h is  ̂( n — n_i); therefore, the Rsine- 
difference for an arc of length 9 is w_i +  ̂  ̂ ( n — n_i) by another application of the rule 
of three.

Hence,

Rsin (nh + 9) Rsin nh + — x (instantaneous Rsine-difference)

Rsin nh + j  n -  j  j +  1 " ~ 0 "~ 1. (3.39)n n h 2

Bhaskara II offers a similar justification for the other formula stated by Vatesvara. In this 
case the argument is that the past sine-difference being n, and the future sine-difference 
being n_i, the present or instantaneous sine-difference can be taken as the mean value 
2 ( n T n— l)-
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Bhaskara is here using the concept of tdtkdlika bhogya khanda or instantaneous sine- 
difference. This same notion is used in the notion of the tdtkdlika gati or instantaneous 
velocity of a planet,30 since it is in that context that these interpolations were typically 
required. Bhaskara explains that the instantaneous velocity of a planet is obtained from the 
instantaneous sine difference, which is nothing but the cosine.

I
TSTT gcflRT J J ^ T ^ r^ F d lc+ lie l*)  FTTT II ^  II

This may be translated as:
p   ̂ COS (777/   (̂ )

Multiply the kotiphala [i.e .,----------— —--------] by the rate of increase of the mean
oOU

anomaly of the apsis and divide by the radius: the result taken as minutes of 
the arc applied positively and negatively in six signs of anomaly beginning from 
Cancer and Capricorn respectively to the mean motion of the planet will give the 
instantaneous (dld«hlfH«h) daily motion of the planet as affected by the apsis.01

The background to this is as follows. Indian planetary theory used an epicyclic model in 
which the mean longitude m and the true or sphuta longitude of a planet l (both measured 
from the first point of Aries) are related by

P  x Rsin (m — a)
l = m

360
where a  is the longitude of the apogee, and P  is the periphery of the planet’s epicycle of 
apsis. Indian planetary models typically used epicycles with varying radii. For example, in 
the case of the sun, the Surya Siddhanta provides for a radius which varies from 13° 40 to 14° 
(depending on the quadrant). The quantity P  was the circumference of the corresponding 
epicyclic circle as expressed in units in which the larger circle was 360° = 21600 , and the 
radius B, = 3438 or a similar number, as seen earlier.

Nowf, if l and l are the longitudes of the planet on two consecutive days, and n and n are 
the mean daily motions of the planet and its apogee, then

P
l = (m + n)

360
R sin (m + n) — (a  + n )

so that

l = n

n

n

P
360

P(n  — n ) RA sin(m — a)
360

P(n — n ) 
360

sin[(m — a) + (n — n )] — sin(m — a)

)h

x ---- x tabular difference of Rsines at (m — a).
225 v J

(3.40)
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The last rule is found in the Surya Siddhanta, and a similar rule is mentioned by VarahamihTra 
(who uses a value of h different from 225, since he works with a sine table with fewer than 
24 values). Lalla attributes it to an unknown pupil of Aryabhata.

It is in this context that Bhaskara’s formula for the instantaneous velocity uses the cosine 
as the derivative of the sine. Certainly this formula was known earlier, and is explicitly 
found in Munjala’s Laghumdnasa.0- Nor was this was the only instance of a derivative that 
was worked out. Sengupta03 provides examples of more complicated derivatives worked out 
by Brahmagupta04 in the context of the corrected daily motion of a “star planet”, such as 
Mars, for which the longitude would be written:

l = M +  tan
p sin(# — M)

R + p cos(0 — M )
(3.41)

Since the derivative for this function is evaluated, Brahmagupta too knew that sine differ­
ences are proportional to cosines. Bhaskara, however, explains the method used in Brah­
magupta’s calculation, and calls it the instantaneous velocity.

In the interests of complete clarity, it should be stated that just as Bhaskara used finite 
differences, so also Bhaskara’s notion of time was essentially atomic. Just as linear measures 
built up the scale from the number of atoms in a dust particle, so also ordinary measures of 
time were built up from the smallest measure of time, known as a truti. In Vatesvara’s case,00 a 
truti is 1121-00 of a second, during which the motion (velocity) is treated as constant. Bhaskara 
takes a truti as 33̂ 50 of a second. Time is today treated as a continuum (i.e., time is treated 
as having the topology of the real line), solely for the peculiar reason that the “laws” of 
physics are formulated using calculus, which has been seen to require the underlying notion 
of the continuum or the real number to make it compatible with Western theology! This is a 
strange unverifiable hypothesis to put at the base of physics. However, to the extent that the 
topology of time is re ected in the nature of logic06 there is no real reason to suppose that 
this topology is like that of the real line! Furthermore, as reiterated several times earlier, it 
should not be automatically assumed that the continuum approach to the calculus is superior 
to the finite difference approach. On the contrary, with the finite difference approach there 
is no conceptual confusion here, as there is in Newton and Leibniz about the notion of an 
instant of time as a geometric point, which latter confusion is discussed in more detail in a 
subsequent chapter (and which notion of time requires a separate book in itself).

Bhaskara II s Use of Sine Values for Computation of Surface Area and Volume

Bhaskara II demonstrates an interesting use of sine values for computing areas and 
volumes—a typical application of present-day integral calculus. The volume of a sphere 
was first correctly expressed by Sridhara in his Trisatika°7 56. Bhaskara II provides a very 
interesting pedagogical demonstration.
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In order to make the point clear to the beginner, the teacher should demonstrate 
it on the surface of a sphere. Make a model of the earth in clay or wood, and 
suppose its circumference to contain as many units of length as there are minutes 
of the arc in a whole circle, i.e., 21600 units. Mark a point on the surface, with 
that point as the centre, and with 1 96 of the circumference as the “radius” [i.e., 
length of the cord stretched on the surface of the sphere] draw a circle. Again, 
with the same centre as before, and twice that thread, draw another circle; with 
three times that, another circle, and continue this operation till with 24 times that 
thread the 24th circle is described. Of these circles the radii [i.e. the radii in the 
plane of the circle] will be the jyd-s, viz. 225, 449, etc. From these, by proportion 
the lengths of the circle are obtained. Here, the length of the last circle is 21600 
units, and its radius is 3438. If the jyd-s be multiplied by 21600 and divided 
by 3438 (or more correctly multiplied by 3927 and divided by 1250) we get the 
lengths of the circles. Between any two circles there is an [annular] figure and 
there are 24 such figures, more if more than 24 jyd-s are used. In each figure [if 
the net is stretched out the figure is a trapezium, so that] the larger, lower circle 
may be taken as the base and the upper smaller circle as the opposite side, while 
the perpendicular is 225. Hence, by the rule for the area of a trapezium, the 
area of each ring may be found. The sum of all these areas is the surface of half 
a sphere; twice that equals the surface of the whole sphere. This is equal to the 
product of the diameter and the circumference.08

An actual calculation brings up the following interesting discrepancy. Let Ai denote the 
areas of the various rings, and let R, denote the ithjyd, or sine value, as before, and this is 
also now the radius of the hh circle. Then

circumference of the 1st circle
A i

A2

-̂ 3

225 x
2

225 x 3927 x 2i?i 
1250 x 2

62832 Ri
225 x ------- x —

10000 2
oor 62832 7?! + R2
225 x ------- x ----------

10000 2
ooc 62832 R2 + 7?3225 x ------- x ----------

10000 2

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

a  ook 62832 R2 3 + R‘24A24 = 225 x ____ x
10000

Hence, the surface of the hemisphere is 

24
v -  „ 62832y A% — 225 x x R\ T R2
i= 1 10000 + 7?23 +

R24

(3.47)

(3.48)
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= ^ 7^  x 6.23832 x 52513 (3.49)96
= 21600 x 3437. (3.50)

Bhaskara well understood that the discrepancy arose because only 24 jya-s were used. 
Bhaskara concludes:

This is as I have said in my Arithmetic:09 the area of a circle is equal to the prod­
uct of the circumference by one-fourth of the diameter. That result multiplied by 
4 gives the surface of the sphere, which is like the net surrounding a hand ball; 
the same (surface of a sphere) when multiplied by the diameter and divided by 
six becomes invariably the volume of the sphere.

These correct formulae and concepts for the the surface area and volume a sphere, are 
significant, since the correct formulae for the volume of a sphere was not known earlier. 
Thus Aryabhata gave the incorrect value of «  1.477rr3, in Ganita 7, for the volume
of a sphere. The error in Aryabhata’s formula for the volume of a sphere, thus, was probably 
due to the the particular numerical approximation he used.

Against this background of the use of infinitesimal methods to determine surface areas 
and volumes, four centuries before Europe, it is but natural that historians like Fillozat60 felt 
insecure enough to feel compelled to describe as an “accident” and “no general method” the 
precise value of 7r derived by Aryabhata, and they felt compelled to praise, in comparison, 
“general methods” like the formula (a + b)2 = a2 + b2 +  2ab, implicit in the technique 
of squaring described by Aryabhata!

The Widely Felt Need for Greater Accuracy

It is clear from the above example that there was a felt need for greater accuracy. This need 
for greater accuracy is found also in the earlier works of Govindasvamin (ca. 800 CE) who, 
long before Madhava, and even before Vatesvara, first attempted to carry out Aryabhata’s 
calculation accurate to the third minute,61 and gave a value for the radius as 3437 44 19 , 
to arrive at a value of tt more accurate than that of Vatesvara, but less accurate than that of 
Madhava. The same value, written as 12375859 , is used by Udayadivakara.62 This shows 
that from some live to six hundred years before Madhava, there was a felt need for greater 
accuracy, to the third minute, in Aryabhata’s trigonometric values, and the value of 7t. A few 
centuries later, we find that this need for greater accuracy becomes widespread.

The idea of mathematics as a practical technique of calculation (rather than a religious 
instrument of spiritual progress, or a theological yardstick of correct argumentation) was 
also widespread in various other parts of the world, including China, Central and West 
Asia. Of course, these parts were hardly isolated from each other, and it is well known 
how mathematics and astronomy were transmitted from India to the Arab world via the
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algorismus, and the sind-hind tradition of astronomy. It is also well known how calendar­
making in China was for centuries done by Indian Buddhists settled in China. The basis 
of these contacts was trade—since the mathematics in question was practically useful, and 
useful for commerce, it is not difficult to understand how this mathematics spread through 
commerce, in exactly the way the use of the algorismus spread to Europe through Florentine 
merchants.

From what we know, India, Africa, Arabia, and China formed a vast trading zone. From 
the archaeological evidence of ports in Harappan sites, it is evident that this trade stretched 
back to Harappan times. Since a good part of this trade was done by sea, the mathematics 
in question would also have spread through a sharing of celestial navigational techniques 
which obviously involved both mathematics and astronomy. In particular, celestial naviga­
tion involved both the stars and the globe. Measuring the globe involved a knowledge of the 
circle and the sphere. In particular, it required a knowledge of the ratio of the circumfer­
ence of the circle to its diameter, a ratio today most easily identified as the number t t .  This 
knowledge was a widely felt requirement.

Now, according to Needham,63 it so happens that about a century before Aryabhata, in 
China,

Liu Hui—by inscribing a polygon with 192 sides within a circle and calculating 
the polygon’s perimeter,—obtained [ i t  =] 157 50 or 3.14. Liu Hui also gave 
two other extreme values, and used a polygon of 3,072 sides for his best one, 
3.14159—the Greeks had never achieved a value as accurate as this.

Around the time of Aryabhata we find attributed to Tsu Chhung-Chih a value between 
3.1415927 and 3.1415926, corresponding to the approximation 355 113, as actually stated 
and verified by about 1300 CF by Chao Yu-Chhin, using a polygon of up to 16,384 sides.

Now, the Karanapaddhati (VI, 7) which gives 31,415,926,536 as the circumference for a di­
ameter of 10,000,000,000, also explains how the following approximations may be derived: 
ï ’ T» I l f ’ 21576’ 21689’ ifüüil’ etc- The interesting thing here is that the Chinese meth­
ods noted by Needham are purely geometric, while these rational representations of tt in 
India arise naturally as part of a numerical calculation. Mâdhava’s approximate contempo­
rary, al Kashi (d. 1429), the director of Ulugh Beg’s Samarkand observatory, had calculated 
the value of tt = 3.141,592,653,589,793,25 accurate to 16 decimal places, in his Risala al 
Muhutiyya (“Treatise on the Circumference”).

While increasing precision in the values of 7r is only a rough indicator of the overall math­
ematical sophistication, such precise values of t t  ultimately concern the origin of the integral 
and differential calculus, and one would like to understand how the calculus developed. It 
is clear that the questions being asked by contemporaries (give or take a century) in India, 
China, and Central Asia are roughly the same, that there is a widely-felt need for greater
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precision in numerical values, and that the numerical values being provided are also com­
parable. The differences therefore are only in the techniques.

What were the techniques used? Needham provides only a diagram from which one 
must guess the exact techniques used by Liu Hui and by Chao Yu-Chhin. A1 Kashi pushed 
the earlier techniques to new limits. However, all these techniques were purely geometric, 
and hence had no future, as Aryabhata understood long ago. Nevertheless, apart from the 
numerical technique of finite differences that he initiated, Aryabhata also had access to a 
geometrical technique, which must have been prevalent from before his time. It is interest­
ing that even this geometrical technique was different from any of the above geometrical 
techniques, and admitted a clearer understanding of the circle as a limit of polygons. This 
geometrical technique also led to a numerical algorithm which could be used to compute 7r 
to any desired degree of accuracy without excess labour.

IV
Ar y a b h a t a s  g e o m e t r ic a l  m e t h o d  o e  c a l c u l a t in g  tt

No other account has been given so far of this geometrical technique, at least not to my 
knowledge. Hence, I describe below the technique, as reconstructed from an unpublished 
draft translation of the Yuktibhasa. Unlike the numerical techniques, this technique requires 
the extraction of square roots (and the definition of area, both of which have been explic­
itly described earlier in the Aryabhatiya). This also is the technique described by Nllakantha 
in his commentary on the Aryabhatiya. Therefore, this was a technique that was in use in 
Aryabhata’s school, hence was closely related to the original geometrical technique available 
to Aryabhata. This is further reinforced by the fact that later-day techniques are given sep­
arately in the Yuktibhasa text, along with their advantages. In fact, the laboriousness of the 
geometrical techniques is used to motivate the later-day numerical techniques.

Moreover, the Yuktibhasa still is the earliest fully translated text from Aryabhata’s school 
which concerns an explanation of the rationale, and clearly the technique described here 
is one which had dehnitely been discarded by the school by the time of Madhava. The 
more precise sine values and infinite series attributed to Madhava clearly take off from the 
method of computing sines using finite differences which is described next by Aryabhata. 
Also the technique is of independent interest; though the technique itself is partly geometric, 
it ultimately leads to a simple numerical algorithm, based on the method of square-root 
extraction certainly known to Aryabhata.

“Archimedes ” Method of Calculating ir

By way of historical background, we recall that the “Greeks” knew of a way of approximating 
the circle by a polygon: inscribe a square in a circle, fill up the gaps by erecting an isosceles
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triangle on each side, and continue the process. We do not know from where the Greeks 
obtained this technique, nor whether the attributions to the Greeks are at all valid. In 
any case, an important variation of this technique is commonly attributed to Archimedes,64 
though I know of no serious evidence linking this technique to Archimedes. This method is 
described in more detail in Appendix 3.C.

Liu Hui s Method

Liu Hui’s method of computing 7t was rather similar. He used only inscribed polygons 
and his method corresponds to the recursion formula

P‘2n 1! -
2

where pn is the side of the inscribed polygon, and R, the radius of the circumscribed circle, he 
took equal to 1. Liu, too, started with the hexagon, which is the natural thing to do, since in 
this case pn — 1. Doubling to 12, 24, 48, and 96 sides he obtained his value of tt = 3.141024. 
Apparently Liu continued this process up to a polygon of 3072 sides. Of course, it is not 
likely that Liu used the above recursion formula. Also, 1 have been unable to determine the 
exact method used by Liu Hui to compute square roots, which is the critical ingredient. As 
far as I know, no one prior to Aryabhata states a general technique for extracting square 
roots.

Aryabhata s Method

Aryabhata, however, had an elegant method (essentially the current method) of extracting 
square roots, using the decimal place value. This method was applied to determine the value 
of 7r as follows. The geometrical idea here was to cut out a circle from a square (Fig. 3.1).

We reproduce the method in full from the Yiiktibhdsd commentary to bring out the avour 
of the techniques used, which have not before been explained. This process relies on oc­
tagons rather than the hexagons used by “Archimedes” and Liu. All calculations make re­
peated use of the “Pythagorean” “theorem”, better renamed the sine rule, for the Indian 
tradition introduced and worked with sines rather than Ptolemy’s chords, and the proposi­
tion in question is equivalent to the sine formula /?2sin2# + R2 cos2 0 — R2. Alternatively, 
for the sake of simplicity, it could be renamed the “diagonal rule” for in the sulba sutra the 
rule is described by linking the square root of the diagonals of a rectangle to the square of 
the sides.
Step 1. Construct a square with sides equal to the diameter of the required circle.
Step 2. Draw the north-south and east-west lines to form four small squares. The required 
circle meets the square at the four cardinal points. Draw a line from the centre to the south­
east corner.
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• f
Figure 3.1: Cutting corners. The desired circle is the one inscribed in the polygon. At each stage 
one cuts off from the corner of the polygon an isosceles triangle by measuring out the sides, from the 
corner. The base of the triangle is tangential to the desired circle.

Step 3. The idea is to cut the south-east corner C along the line AB, and to repeat this 
process at the remaining 3 corners of the square. The requirement is that the resulting 
octagon (Fig. 3.2) should be equilateral. Alternatively, the requirement is that the line AB 
should be tangential to the required circle at the point where the circle intersects the line 
OC from the centre to the south-east corner.
Step 4. Let x be the side of the required octagon, and r be the radius of the required circle. 
Applying the sine rule to the right-angled isosceles triangle ABC  with hypotenuse AB, we 
obtain the quadratic equation x2 =  2 (r — |)2, with positive root x = 2r(s/2 — 1) = 2(h — r), 
where h — \[2r is the diagonal of the smaller square.
Step 5. Since the triangle E SC  is similar to triangle ABC, -  = ,rf f -/2  ’ so by the rule of three 
r — | = Measure out this last quantity (= CA , CB, Fig. 3.2) and cut the corner. (Observe 
that this quantity corresponds to an irrational number, that is being calculated and measured 
out, a process inconceivable in the synthetic reinterpretation of “Euclidean” geometry.)
Step 6. The first approximation to the circumference (= 2-irr) is 8#, and this gives 7t «  
3.313708.
Step 7. (Fig. 3.3) The idea is to cut the corner B  of the octagon, along the line B 1B 2 , and 
to repeat this at the other seven corners, to get a 16-sided figure. Observe that the required 
circle meets each polygon tangentially at the mid-point of its sides. Thus, the line joining
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Figure 3.2: The octagon method. This method of calculating circumference or 7r starts with a square 
of side equal to the diameter of the desired circle, and proceeds by cutting off the corner of the square 
and of the successive polygons so obtained at each stage, to obtain the next equilateral polygon. This 
differs from the hexagon-doubling method attributed to Archimedes and Liu Hui. 
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Figure 3.3: Detail of the octagon-doubling method. The figure shows the situation in the south-east 
square where the h '\TO corners of the octagon at B and A are cut by calculating and measuring out the 
sides of an isosceles triangle. The key to the rec.ursion formula is that the required circle meets each 
such polygon tangentially at the mid-point of its sides. 
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the centre to the mid-point of the side of the octagon has length r. Solving the right-angled 
triangle OBO\, gives (OB)2 = r2 + hence BO2 = OB — r. But B B 2 = | — |, and 
O2B 2 = §, so we can calculate y by applying the sine rule to the triangle BO 2B 2 . In fact, 
this gives the formula y — r ft2~fc2, where a — s/2 — 1, k — yj(a, + a?) — 1, and tx — 16|.
Step 8. The method and calculations in the above step can be repeated indefinitely. Hence, 
we are led to the following numerical algorithm. Let

g(x) =  V(1 + x2) -  1,

The algorithm computes, to level n,

zq =  a =  (s/2 — 1),

Zi =  f ( Z i - 1),

7T «  2 2+i+1Zi.

It is clear that the algorithm involves computation of only squares and square roots, and 
Aryabhata had already stated efficient algorithms for these, which use the decimal place 
value notation. We took a short cut, and wrote a computer program, using the intrinsic 
sqrt function in Turbo C. The results show that Aryabhata used either the value n =  5, or 
the value n = 6, corresponding to a polygon with 512 sides or 1024 sides. In particular, 
Aryabhata’s octagon method could not have been the method used by Liu Ilui, who clearly 
used a technique similar to that of “Archimedes”, since 3072 = 3 x 1024 = 3 x 210 is not 
a power of 2 but is a number that would be obtained on the hexagon-doubling method. 
The same method of hexagon-doubling must have been used by al-Kashi, since he used a 
polygon with 3 x 228 sides.

V
THE DERIVATION OF THE SERIES EXPANSION 

Computation of the Circumference

Having outlined the above procedure of calculating the circumference of the circle, using 
square roots, the Yuktibhasa now points out that it is possible to avoid the cumbersome 
computation of square roots, and proceeds to calculate the circumference using a series 
expansion. (This is closely analogous to the avoidance of square-root extraction while com­
puting sine values.) Unlike the geometric technique of computing circumference which is 
restricted to the calculation of 7t,  the infinitesimal techniques can be used also to calculate 
various trigonometric values. This provides an important link between the computation of 
the circumference (“tt”) and the computation of sine values proper, using Aryabhata’s finite
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N p
1 n

Figure 3.4: The Yuktibhasa calculation of the circumference. In this method, the circumference is 
calculated as the sum of the chords QiQi+1, as the number of divisions becomes infinite.

difference method explained earlier. In the following we give a detailed presentation of this 
process, since it has not been explained earlier in a satisfactory way, as also noted earlier by 
Srinivasiengar.

The following presentation relies mainly on the TantrasahgrahaVyakhyd, Yuktidlpika, and 
*

Kriydkramakan, of Sankara Variyar, which are also the Sanskrit sources of the modern Yuk- 
tibhdsa commentary in Malayalam, as noted earlier. This has the advantage of using a criti­
cally edited version prepared by a knowledgeable scholar using several manuscript sources. 
It also has the advantage of being readily available in printed form. This helps us to give 
a complete account65 that is comprehensible from a contemporary perspective (though the 
methods are not those of contemporary formal mathematics). The process is as follows.

As usual, a circle of radius r is inscribed in a square of side 2r. Attention is focussed 
on the first (north-east-east) octant.66 The half-side of the square has length r, and this 
is divided into a number of small equal parts of length Ar, by marking off the points 
P, Pi, P‘2 , P ;j,. . . ,  Pn. These points are joined to the centre of the circle, (), by means of 
lines OPi, OP2,. . . ,O P n, called karna-s.67 These lines intersect the circle at the points 
Qi, Q2 , • • •, Qn> dividing the circumference into a number of (unequal) parts Qi Qi+i. A 
perpendicular is dropped from each Qi to the next karna, which it meets at the point S-i+\ 
(Fig. 3.5). The idea of the calculation is to approximate the length of the arcs Qi Qi+i by the 
length of the straight lines QiSi+1, and then sum up these lengths, in the limit as n —> oo. 
As an aid to calculate the lengths Qi Si, perpendiculars are dropped from the points Pi to 
the next karna, which they meet at the points Ri+i. The calculation now proceeds as follows.
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The first case is a special one. The triangles OP Pi, and OPR\ are similar (they are 
right-angled triangles with one additional angle _P\OP in common). Hence, by the rule of 
three,

PR 1 OP
(3.51)

or
PRi =

PPi OPi ’

PPi ■ OP A r-r
(3.52)

OPi OPL
The second case onwards is a typical one. The triangles P1R 2P2 and POP2 are similar 

(since they are right-angled triangles with one additional angle -OP2P1 in common). Hence, 
by the rule of three,

P.flo OP
(3.53)

so that
P 1 R 2 =

P1P2 OP2

OP ■ P1P2 Ar • r
OP2 OP2

(3.54)

Proceeding in this manner, we obtain

n—1 -O-nRn =
Ar • r 

OPn
(3.55)

We can now calculate Qn-\Sn as follows. The triangles OP\ 7?2 and OQ1S2 are similar 
(they are right-angled triangles with the additional angle S 2OQ1 in common). Hence, 
from the rule of three,

Q1S2 OQi

so that

Q1S2 =

P1R.2 OPi ’

P1R2 ■ OQi Ar • r r
OPi OP2 OPi

= r2 • Ar •
1

OPi • OP2

(3.56)

(3.57)

(3.58)

Proceeding in this manner, we obtain

Q n — 1 S n  ~  1' ' •
1

The arc PQ = circumference

OPn - 1 • OPn
(3.59)

^  = - f  can now be calculated.

P Q n
-nr

i.e.,

= Ar

P Q l  +  Q 1 Q 2 +  Q 2 Q 3  +  ‘ +  Q n - l Q n

P R i  +  Q i S 2 +  Q 2 S 3 +  • • •  + Q n - l S n

1 1

(3.60)

(3.61)

+ +

OP • OPi 
1

+
OPi • OP2

OP,n— 1 OPn
(3.62)
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To evaluate the sum, it is simplified by neglecting certain quantities that are negligibly 
small when n is large. In present-day terminology we would say that as n —> oo, the difference 
OPi — OP*+1 —» 0; therefore this quantity can be neglected relative to quantities like OP* 
or OP*+1 - The details of this argument are considered in more detail later on. But the basic 
idea of infinitesimal seems to have arisen as an extension of the technique of “zeroing” or 
rounding—as I have argued elsewhere, the term sunya represents not merely the number 
0, but also any quantity that was discarded or zeroed in the course of a calculation. For 
large values of n the difference OPi — OP*+i is negligible, and can be zeroed or rounded 
off compared to quantities like OPi or OP*+1 ; the discarded quantity is negligibly small in 
the sense that it cannot even be represented relative to the quantity being retained. Ironically, 
from a computational point of view this immediately makes good sense just because the final 
answer to the calculation is being expressed to an arbitrary but limited precision, i.e., just 
because the formal continuum is not being used!

From (OPi -  OPi+l)2 + 20P*0P*+i = O Pf + OP?+v  since (OP* -  OP*+i)2 0
(i.e., for large n this quantity is negligible compared to the other quantity on the same 
side of the equation), we can neglect it, so that (OP? + OP?+1) 20P*0P*+i, and
(OP? + OP?+l)2 40P?0P?+1, so that

1
OP* • OPl+1

The upshot is that one may legitimately use

2
O Pf + OPf+i

(3.63)

2 (OPi* + O if+1) 
(OPf + O P i J 2

(3.64)

2 (OP/ + OPi*+1) 
4 OPfOPf+1

(3.65)

1 _  1 
OP* ■ OP*+1 “  2

1 ( 1 
Ô P f + ÔPf,

for sufficiently large n, (3.66)

so that the earlier approximation may be rewritten (neglecting some further insignificant 

quantities) as

circumference 7tr 9-------------------  —  «  r
8 4

(The neglected quantity is Ar • r2 — -^pj -

be zeroed, the first equality following since OP2 =

Ar •
OP?

(3.67)

Ar (l — |) = -p , which can evidently 

OP2 + P P 2 = 20  P 2 = 2 r2.)
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We can also keep track of the earlier neglected quantities if we like. Thus, the first of the 
above approximations (3.64) involved

1 2
OPi • OPi+l OP? + OP?+l

OP? + OP?+l -  2OPi • OP,+1i ' vyjri+1 ■(OP? + OP?+ l)
(OPi-OPi+1)

(OP? -  OP?+1) 
(OPi-OPi+1) ' (OP? + OP?+ l)

(Ar)2
(OPi ■ OPi+i) ■ (OP? + OP?+ l) 

(Ar)2
r-4 ' (3.68)

Hence, the total quantity neglected is at most

(3.69)

Similarly, for the second approximation (3.65). As we shall see later on, this neglect 
of quantities is systematically based on order counting. Thus, Ar = r n so that the dis-

carded/neglected quantity is O —̂ , and the principle is the following.
TX

Principle: In comparison with a constant (rupa), for large n, we may neglect any quantity 

which is O — .

Here the “order of growth”, O, is decided not as is done today by an implicit appeal to 
limits, but is simply defined by order counting for any rational function, expressed using a 
novel place-value notation for rational functions, which we consider later. This principle is 
obviously valid for any calculation carried out to any arbitrary (but finite) precision. It is 
also evident that, for the class of functions (“quantities”) to which it applies, this principle 
will lead to exactly the same results that are today obtained by using formal limits. Finally, 
it is evident that the principle can be (and was) extended in the obvious way to two rational

functions which are respectively O and O .
1 7 ni nk

Thus, the whole issue of limits is neatly sidestepped because mathematics is not obliged 
to carry on its head the weight of a theological load by pretending to some imagined divine 
perfection, and instead takes into account the realities of non-representability.

Computation of Fractions and the Power Series 

The next step uses the elementary identity

n

1 1 b — c
(3.70)

b e  be
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to iteratively evaluate 1 b by the series expansion

1
b

1 b — c
c be
1 b — c 1
c c b
1 b — c b — c

1 )c c c

1 ( b - c )
+

1 to 1
c c2 c2 ' b
1 (b -  c)

+
(b -  c)2

c c2 c3

+
(b -  c f 1

—

c3 b

(3.71)

From an epistemological point of view, against the background of the problems with 
Leibniz’s infinitesimals and Newton’s uxions in Europe, and their amelioration by the -  
techniques of mathematical analysis, the key thing to note is that, as it stands, the above 
series expansion is indefinite rather than infinite. Thus, there are no difficulties about con­
vergence. Exact equality holds at each iterative stage, and if c is appropriately chosen, the last 
term becomes smaller at each stage, and can eventually be neglected as non-representable 
in the usual way to yield a valid numerical answer to any desired degree of precision.

As we shall see later on, this interplay of infinite and indefinite series has a very impor­
tant consequence: the exceptional term can be manipulated to accelerate the convergence 
of the corresponding infinite series, as was actually done in the TantrasahgrahaVydkhyd and 
Yuktidipikd. This point was overlooked by both Newton and Leibniz, who, like other Euro­
pean mathematicians, used the infinite series expansions in an intuitive way, overlooking 
the possibility of an exceptional term. So to say, they evidently believed in all rule and no 
exception!

In India, it was quite natural for the infinite series expansion to be understood in analogy' 
with the indefinite series expansion. Thus, the Yuktidipikd or Yuktihhasd is hardly the first 
to make use of this identity. This identity is found also a thousand years earlier in Brah­
magupta’s Brdhma-Sphuta Siddhcmta (12.57)68 as a technique for the computation of difficult 
fractions that was very much a part of the Indian mathematics preceding the algorismus. 
The verse states:

HFrCTTcT IVO -, vo ^

I’his may be translated:
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Divide the dividend by the divisor together with the desired [number] (ista), and 
indestructibly establish (anasta) the apta (result) so obtained. Multiply by the 
desired, and divide by the natural divisor. What is so obtained should be added 
or subtracted from the indestructibly established apta [depending upon whether 
the desired divisor is greater than or less than the original divisor].

Here the “indestructible” refers to the pdti-ganita (slate-arithmetic) procedure of erasing 
and writing over: “indestructible” means that it should be written in a place where there 
is no fear of erasing it, since it will be used repeatedly. Suppose a, b is the fraction to be 
evaluated. Take the desired number as h, so that we have to divide by b + h; therefore, the 
apta which has to be indestructibly established is a (b + h). The difference between the two 
is

1 1  h a  h
b ~ b + h = a ' b(b + h) = b + h ' b

(3.72)

Thus, for the evaluation of a fraction of the form a b we have the formula:

a a a h
b b + h b + h b

(3.73)

As a well-known example of the use of this procedure in the algorismus evaluation of frac­
tions, consider the case of the fraction Using h = 3, this fraction can be evaluated as 
follows:

1920 1920 1920 3 60
------  --------------b -----------------  20— .

93 96 96 93 93
As stated above, the key to the derivation of the various power series is the iterative 

application of the above formula:

1 _  i ( 1 h
b ~ b + h + b + h ' b ’

(3.74)

to obtain the preceding formula with c = b + h. A similar formula is obtained, with alternat­
ing signs, if h is negative.

Applying the Fraction-Series Expansion

Applying the above procedure to the quantity b = OP?, using c = r2, and noticing that 
b -  c = OP? -  r2 = OP? -  OP2 
= (A?’)2, we obtain

1 1 (Ar)2 1
OP? ~ r2 r2 OP?

1 (A,-)2 1 (Ar)2 1
— r2 r2 r2 r2 OP?

(3.75)

(3.76)
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».2 ~ (
Ar)2 (Ar)4 1 (Ar)'

+

(Ar).\2
+

r4 r2 

(Ar)4

r>2 OP2
(3.77)

.6

(Ar)6 1 (Ar)2 1•02

OP2

Hence,
r2 • Ar 

OP?
— Ar 1

(Ar)2 (Ar)4
+ +

(3.78)

(3.79)

(3.80)

It should be clearly noted that the ellipsis here indicates an indefinite expansion and not 
an infinite expansion. When this process is applied to 1 OP?, then we must use instead
OPl J2 _ (kA r)2. Thus, we obtain

Ar (kA r)2 (kAr)
OPl

Ar 1 — + + •

Hence, the original formula could be rewritten

circumference
8

7tr

T

r2
n 1

Ar ' Ç  OPl

= Ar 1 (Ar)2 (Ar)4
O A

+ Ar 1 

+ Ar 1

(2Ar)2 (2Ar)-

(nAr)2 (nAr)4

This gives, upon rearranging the terms,69

circumference
8

7tr
T

nAr

+

(Ar)3
r2

(Ar)5

l 2 + 22 + 32 +

l 4 + 24 + 34 +

+ n

+ rr

(3.81)

(3.82)

(3.83)

(3.84)
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l’he procedure now is to choose Ar as one unit (of length). Since the length r has been di­
vided into n equal parts of length Ar, in modern language, this corresponds to substituting 
r = nAr in the above. Further, dividing both sides by r we obtain

-  l 2 + 22 + 32 + • • • + n2n6

+ J_  l 4 + 24 + 34 + • ■ • + n4 
n°

-  • • • . (3.85)

Computing the Sum o f  the kth Powers: Step 1

It is now required to sum the various other series to which the sum of the original series
has been reduced. The computation of ™=i ik for k 3 was known for quite a long
time in Indian tradition, and predates Aryabhata by about a thousand years.70 In any case,
the relevant formulae for these sums are given, for example, by Aryabhata (Ganita 19, 22),
Bhaskara, etc. Aryabhata uses for these series the terms citighana, vargacitighana, and ghanac-
itighana. Citighana literally means the solid contents of a pile of units (grain?) in the shape
of a pyramid with a triangular base. Each layer of the pyramid contains l + 2 + 3-f---- + r
units, starting from the top layer which contains 1 unit. The term vargacitighana means the
solid contents of a pyramid with a square base which has 1 unit in the topmost layer, 22 units
in the next layer, and so on. Likewise, ghanacitighana means the solid contents of a pile of
units (cuboidal bricks) in the shape of a pyramid having cuboidal layers, with 1 brick in the
topmost layer, 2° bricks in the next layer, and so on. Bhaskara uses the term sankalana for 

✓
the series, while Sridhar, in his PdtiGanita, uses the terms sredhi and sankalita (varga sankalita, 
ghana sankalita, etc.). The term used in the TantrasangrahaVydkhyd, Yuktibhasd, etc. is sankalita.

The computation of ™=1 ik for k 4 is, however, not exactly elementary: currently one 
typically uses the “Euler-Maclaurin” expansion (very similar to the “Taylor” expansion, and 
essentially equivalent to it) for this purpose. Since many historians may he unfamiliar with 
how this computation is carried out, and what the result is, this is explained in Appendix
3.B. Most texts in the history of mathematics wrongly state that this formula was first derived 
by Bernoulli.

This sum was computed in an altogether different way in Indian tradition, using trian­
gular sums, first evaluated by Narayana Pandit of Benares in 1356 CE, centuries before 
Bernoulli. (As a matter of fact, we need to compute only the leading order term, which is 
a lot simpler. This is all that is required, since, according to the above calculation, we ac­
tually need to compute only ”_0 ik for large/infinite values of n.) This is not clearly
explained in the Yuktihhdsd. For example, Srinivasiengar laments,



162 Cultural Foundations of Mathematics

1'he result... [for the sum of the k th powers]... is not elementary, and its proof 
has not been indicated. 71

This is a very important point, since it shows that the work that has been attributed in 
its entirety to the “Kerala school”, depended critically on inputs from various other parts 
of India, not only from the time of Aryabhata, Bhaskara I up to Bhaskara II, but even 
up to the mid-14th c. CE. (A well established trade route between north and south India 
existed up to this point of time, as is clear from the account of travellers like Ibn Battuta, for 
example, who, in the 14th c. CE, regarded the natural route from Delhi to China as going via 
Cochin.) In particular, let us recall the earlier work of Govindasvamin and Udayadivakara, 
which unsuccessfully attempted (some five hundred years before Madhava) what Madhava 
achieved, viz. precision to the third sexagesimal minute. This was presumably the critical 
element responsible for their lack of success. Thus, Madhava’s achievement would not have 
been possible without the critical input of Narayana Pandit’s formula for the vdrasahkalitd.72 
Hence, also, it would be more appropriate to call the calculus the work of the Aryabhata 
school, which is, in fact, how most of the persons involved viewed themselves.

The sums in (3.85) may be reduced to the triangular sums or the vdrasahkalitd of Narayana 
Pandit of Benares, as follows.

Consider, first, the mula-sahkalitd or the series

si — l + 2 + 3 +  -- - + n. (3.86)

l'his case is well known, since expressions for the sum of this series were known long before 
Aryabhata, and are given by almost everyone, including Aryabhata, Sridhara, MahavTra, etc. 
The traditional derivation of this went as follows. If each of the terms in the above series 
were equal to n, then the sum of the series would be n2, i.e.,

on + n + n + • • • + n — n 
(n times)

(3.87)

Write the first series (3.86) in reversed order, and subtract it from the second series (3.87)

n + • • • + n + n + n n?
—n — ••• — 3 — 2 — 1 —.si.

Hence,
0 + 1 + 2 + • • • + (jl — 1) = 712 — 6'1,

(3.88)

(3.89)

i.e.,

so that

si — n = n2 — si, 

2 • si = n + n,

(3.90)

(3.91)
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or
«1

n ■ (n + 1) 
2

(3.92)

We are now in the situation where we need, in modern terminology, to proceed to the limit 
as n —> oo. Recall that the above series was obtained by choosing the size of the division, 
Ar, as one unit. We now take this unit to be infinitesimal (lit. anuparimdnam = of atomic 
dimension), i.e., we make the divisions of the side of the square, hence of the circumference, 
as line as is physically conceivable. (In the Naiyayika world view, the process of subdivision 
of the circumference would have had to terminate at the level of indivisible atoms.) In this 
case the number n of divisions is infinite (lit. ananta, or asahkhya = not countable). In this 
situation, we can simplify (3.92) to conclude that

si
n2 — (n oo). 

2 V ’
(3.93)

The neglected term is 1 (2n). What is happening here is, once again, that the term with 
the variable (rail = n) in the denominator is being discarded as non-representable relative 
to the constant (rupa) term. This is in line with the principle noted above of discarding non- 
representables by order counting. This is a perfectly general and valid procedure, which is 
repeatedly used in the course of the derivation.

In present-day notation, if we are doing standard analysis over an Archimedean field like 
that of reals,73 this same result for the sum of the arithmetic series would be expressed, in 
an equivalent form, as

lim 1 + 2 + 3 + + n
rr

1
2

(3.94)

However, there is no need to resort to formal limits, or even formal infinitesimals, re­
quired by Platonic idealism; one simply discards non-representable terms as usual. In fact, 
from the viewpoint of sunyavada, resorting to Platonic idealism, and invoking the existence 
of ideal limits in formal real numbers, that have no possibility of any real existence, would 
distinctly damage the argument. Thus, the above procedure is justified, whichever the way 
we look at it (so long as we do not mix the two opposing philosophies of sunyavada and Pla­
tonic idealism). In particular, it is justified according to the philosophy of non-representables 
(sunyavada).

In general, of course, one may need to allow for the possibility that a large number of 
discardable quantities may add up to a quantity that is not discardable. There is, however, no 
need to worry about that in the present context. Because of the interplay of indefinite and 
infinite series, at no stage does there arise a situation where we are required to consider “an 
infinite sum of infinitesimals”. This logic may not have been entirely clear to the modern 
commentators of the Yuktibhasa, and is certainly absent from the literature in English on the 
subject since Whish.
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That the tradition itself used infinite series in addition to indefinite series is clear from 
the way in which Nllakantha, in the AryabhatiyaBhasya,74 gives an expression for the sum of 
an infinite geometric series,

*pfpT:
d H IN ’r l M Ih Im ^  ■» I H I KJ1 :

^Rhrrfr

which may be translated:70

d’he sum of an infinite [anantya] series, whose later terms (after the first) are got 
by dividing the preceding one by the same divisor everywhere, is equal to the 
first term divided by one less than the common divisor.

(The divisor in question is assumed to be everywhere greater than 1, so that the common 
ratio is less than 1.) As pointed out earlier, such an understanding of infinitesimals, too, 
is a direct extension of the standard idea of non-representable built into the (non-idealist) 
number system.

Computing the Sum of the kth Powers: Varasankalita

Consider, next the varga-sahkalitd or the series

s2 = l 2 + 22 + 32 + ••• + n2. (3.95)

if each term in the mula-sahkalitd series (3.86) had been multiplied by n, then we would have 
obtained

1 • n + 2 • n +  3 • n +  • • • + n ■ n = si ■ n. (3.96)

Write the varga-sankalitd (in the original order) under the above series, and subtract, to 
obtain

1-n  + 2 -n +  3 -n  + ••• + n -n  n2(n +  1) 2 
—1-1 — 2 -2  — 3 - 3 — — n -n  — S2 -

(3.97)

That is,

n2 (n 1)
(n — 1) • 1 + (n — 2) • 2 + (n — 3) • 3 + ••• + (n — n) • n =  ----- --------- «2. (3.98)

Li

The series on the left of the above expression can be written as a triangular sum consisting 
of (n — 1) occurrences of 1, (n — 2) occurrences of 2, (n — 3) occurrences of 3, etc., each 
occurrence being stacked vertically:76
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1 + 2 + 3 + • • • + (n — 3) + {n — 2) + {n — 1)
1 + 2 + 3 + • • • + (n — 3) + in — 2)
1 + 2 + 3 + • • • + (n — 3)

1 + 2 + 3 
1 + 2 
1.

This is exactly the vdrasankalitd. It should be pointed out that the above triangular sum 
was long known to Indian tradition. To sum the above triangular sum by rows, we need to 
evaluate the sum l + (l + 2) + (l + 2 + 3) + -- -. This series was called citighana by Aryabhata 
I, and an explicit value of the sum to n terms was given by Aryabhata I (Ganita 21) in two
w :iv- a «  n (n + l)(n +2 ) (n + l)3- ( n + l )v\ ays ds g y ox 0 •

Of the [arithmetic] series (upaciti) which has one for the first term and one for the 
common difference, take three terms in continuation of which the first is equal 
to the given number of terms, and find their continued product. That (product) 
or the number of terms plus one subtracted from the cube of that, divided by 6 
gives the citighana.11

This series and its sum was, therefore, well known to the Aryabhata school.
However, we now require to sum this series to all orders, and not merely the second. 

The general formula for the sum of such series is given by Narayana Pandit of Benares as 
follows.78

W+Ti'S?n: I

This may be translated:

The numbers beginning with the number of terms in the vara, and increasing by 
one are the numerators. The [corresponding] denominators begin with 1 and 
increase by one. The product of these is the vdrasankalitd19

That is, if there are r repeated summations, then the sum is given by

n n + 1 n + 2 n + r n(n + l)(n + 2) • • • (n + r)
— X --------  X --------  X • • • X --------  — — --------------------+-------------- -
1 2 3 r + 1 (r+ 1 )!

(3.99)

In the Ganita Kaumudi a related formula80 is used for example to calculate the total number 
of descendants of a cow after 20 years assuming that each cow calves every year beginning 
from the age of three.
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Using Narayana Pandit’s formula, the triangular sum above can be easily evaluated:

E E (n — 1 )n(n + 1) 
1 - 2 - 3

(3.100)

where the double summation sign on the left has been used only as a notational convenience 
to save space and avoid rewriting the triangular sum all over again. Of course, this particular 
case could just as well have been evaluated by the formula in the Aryahhatiya, but the point 
is that Narayana Pandit’s formula works to all orders.

Substituting the above value in (3.98), one obtains

(n — l)n(n +  l) n2( n + l )
6 2 ,<?2’

(3.101)

whence
n(n +  l)(2n +  1) 

G (3.102)

and
§2 1.
— = -  (n sufficiently large).
Tb O

(3.103)

Again, for large n, only the leading order term (constant term) needs to be retained, and

terms O — or smaller can be discarded, as relatively non-representable for large n. 'Phis
n

is a perfectly valid mathematical procedure, as noted earlier. However, in the notation of 
currently dominant (idealist) mathematical analysis, the last result would be rewritten as

lim
l 2 + 22 + 32 + + rP

n-
1
3'

(3.104)

From a knowledge of the sum (3.102) of the varga-sahkalita, one can compute the ghana- 
sankalita. If we repeat the steps of the above derivation, we will run into a triangular sum 
of squares. The key point to notice is this: we have already, in the course of the above 
derivation, expressed the sum of squares using a vdrasahkalitd. Hence, a triangular sum of 
squares is nothing hut a higher order vdrasahkalitd, which can be evaluated using Narayana 
Pandit’s formula. The rest is a matter of elementary algebraic simplification. The algebra, 
too, is quite easy if we want to compute only the leading order term—adequate for the 
calculation to go through.

Computing the Sum of the kth Powers: Ghana-sankalita

Explicitly, consider next the ghana-sankalita or the series

,s3 = l 3 + 23 + 33 + ••• + n3. (3.105)

If each term in the varga-sahkalita series (3.95) had been multiplied by n, then we would 
have obtained

12 ■ n +  22 ■ n +  32 • n +  • • • +  n2 • n — S‘2 • n. (3.106)
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Write the ghana-sankalita (in the original order) under the above series, and subtract, as 
before, to obtain

(n — 1)-12 + (n —2)-22 + (n —3)-32 + ••• + (n — n + 1) • (n— l)2 -n = n -s2 — s3. (3.107)

The series on the left of the above equation can be written as a triangular sum consisting 
of (n — 1) occurrences of l 2, (n — 2) occurrences of 22, (n — 3) occurrences of 32, etc., each 
occurrence being stacked vertically:

l 2 + 22 + 32 + ••• + ( n - 3 ) 2 + ( n - 2 ) 2 + (n -  l )2
l 2 + 22 + 32 + ••• + ( n - 3 ) 2 + ( n - 2 ) 2
l 2 + 22 + 32 + ••• + ( n - 3 ) 2

l 2 + 22 + 32
l 2 + 22 
l 2.

To express the remaining argument more compactly for a contemporary reader, we use a 
slight change of notation. The above can be rewritten as

n— 1
n ■ s2{n) -  s3(n) = ^  s2{j), (3.108)

j =i

with the obvious notation that s2(n) is the sum of squares to n terms, etc. To evaluate the 
right-hand side, we need to evaluate the above triangular sum of squares. But, we have 
already expressed a sum of squares as a triangular sum of lower order:

n—1 k

s2(n) = n -si(n ) — E E *  (3.109)
k—1 i = 1 

n— 1

= n - s i ( n ) -  E * i ( fc) <3-110>
k =  1

n

= (n + 1) • s'i(n) — ^  s\(k). (3.111)
k = l

Further, we already have an expression for si, so that

t7 +  l ) - s i 0 ' )  =  (3-112)

=  \ ( i 3 + 2 f + J ) - (3.113)
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Hence, we obtain

n ■ S2 (n) — s3(n)
n — 1

£  *20) <3-U 4>
3=1
n —1 n —1 j

E ( i + i ) s i ( i ) - E E * i W  (» -n s)
j = l j = i  fc=i

i s 3(n -  1 ) + s2(n -  1)

j  n — 1 .? fc

+ - « ! ( » - 1 ) - £ £ £  *- (»-UB)
j = l  fc=l i = l

The last term on the right is just the vãrasankalitã, while the remaining terms are all 
known except for s3 which can hence be evaluated. The actual evaluation is a now a simple 
but tedious matter of elementary algebra. But the tedium is considerably reduced if we 
retain only the leading order terms, and obtain

go 1
—4 = — (n.sufficiently large), (3.117)

in the precise sense that the remaining terms are numerically non-representable or insignif­
icant, or infinitesimal for n infinite (or as large as is physically possible). The fourth-order 
varga-varga sankalitã, the fifth-order varga-ghana sankalitã, and higher-order series can be 
evaluated in away similar to theghana-sankalitã, using the result for the precedingsankalitã. 
Expressed in present-day terminology, the conclusion is that, for large n,

1
nfc+t

1
k + V

k = 1, 2, 3,• • • . (3.1 18)

The Results

Substituting the results (3.118) in the earlier expression (3.84), and remembering that 
nAr = r, we finally get the value of the circumference,

circumference
8

r r r (3.119)

The basic series is expressed through the slokasl

55TTÍ4 I
ft  f r o  n

This may be translated as follows.82

To the diameter multiplied by 4 alternately add and subtract in order the diam­
eter multiplied by 4 and divided separately by the odd numbers 3, 5, etc.
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This is described by the Karanapaddhati (VI, 1) as the accurate circumference. That is, if d is 
the diameter of the circle, then

circumference = 4 d —

This corresponds to the value of 7r given by

(3.120)

7r
4

1 (3.121)

This is the so-called Leibniz series. This series is not the best technique for calculating 7t, 
since the series (3.121) converges very slowly: some 10,000 terms are needed to obtain an 
accuracy of 4 decimal places. For an accuracy of four places after the decimal point, the 
above sum done on a computer needed to sum about 138,000 terms. Clearly, this sort of 
labour was impossible before digital computers, and, even with computers, one might have 
to pay some attention to the pile up of “rounding errors”. (For 5 places after the decimals, 
a calculation done using double precision arithmetic is obviously good enough, since 105 

oating point operations cannot propagate any “rounding errors” that far.)
This way of looking at things, however, overlooks some key points.

Deriving the Series Expansion for the Arctangent

First, once the idea was established, many other series expansions were obtained, and VVhish 
has already recorded in 1832 a variety of fast-convergent expansions for 7r. In particular, 
Madhava probably had obtained the series expansion for arctan, which involves only a slight 
extension of the above methods.

Referring back to Fig. 3.2, if Q is any point on the arc PQn, and if OQ is extended to 
meet the side square at P  , then the TantmsangmhaVydkhydi/Yuktibhdsdi states that an “equiv­
alent argument” (tulya nydya) shows that the arc PQ is given by replacing r, in the above 
expression (3.119), by P P  . That is,

PQ P P P P  P P  _  PP_
3r2 5r4 7r6

(3.122)

If the arc PQ subtends an angle 9 (= desired arc), and we use the notation s = Rsin 6, 
c =  Rcos 9 (= koiijya), then we get from PQ = r9, and P P  = r tan 9 =  that

arc PQ
rs
c

2 4rs s rs s
3c c2 5c c4

rs sG 
7c c6

(3.123)

This is expressed by the sloka83 for “arcification” of the sine:
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vrMNO JJW  fr^T W $1 <<bH I
^rr 4>tfdfd4j: II II

Id I
T̂ivHidi ^rqiftfr «r-pi^n ^ »

3t: ^K^Rhrfi^ Fp=PT I

This may be translated:84

The Rsine of the desired arc multiplied by the radius and divided by the Rcosine 
is the first result, 'lake the square of the Rsine as the multiplier, and the square 
of the Rcosine as the divisor, and multiply the first & etc. results to get the suc­
ceeding results. These are to be divided in order by the odd numbers, and the 
sum of the terms in even places is to be subtracted from the sum of the terms in 
the odd places. Remember to use the smaller of the two (Rsine and Rcosine) for 
this calculation.

It is clear that the expansion (3.123) is trivially equivalent to the more modern form

„ „ r tan3 0 r tan0 0 r tan7 9 „ ,  ̂_
r9  = r tan 9 -------------- + ---------------------------- + ■ • • , (3.124)

which, upon cancelling r, is the same as the “Gregory series” expansion for the arctan func­
tion:

tan 1 9 = 9 —
9:i
3~

(3.125)

Deriving Rapidly Convergent Series for ir

It is well known that the series (3.125) can be used to derive rapidly convergent expansions 
for 7T, using e.g. tan g = i ,  so that

7T _  ̂ _i  1 _ 1 1 1 , 1  1
— — tan -j= — (3.126)

This series requires only 9 terms for a precision of 4 decimal places. Small manipulations 
can be used to make the convergence even more rapid, and this was actually the way in 
which approximations to the value of 7r were calculated in Europe, by Sharp who in 1699 
used “Gregory’s” result to get 71 correct digits, by Machin who used a small improvement 
to get 100 correct digits, and whose method was used by de Lagny (1709, 112 digits), Vega 
(1789, 126 digits; 1799, 136 digits), Rutherford (1841, 152 digits; 1853, 440 digits), and 
Shanks (1873, 707 digits, of which 527 were correct). Indian mathematicians, however, being 
practical minded, computed 7t accurately to only the 1 1th decimal place, although 9 places
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were more than sufficient. (Much later, a mathematician of the Kerala school used exactly 
Madhava’s technique to calculate 7t to 17 decimal places, presumably as a demonstration.) 
Thus, the value of 7r is given by the Karanapaddhati (VI, 7), in the katapayadi system which 
gives the circumference of a circle to be

(31,415,926,536) for a radius of

(10,000,000,000).
It is curious, however, that a similar figure of 10,000,000,000 is used for the radius by 

Christoph Clavius in his table of Rsines published at the beginning of the 17th c. CE, as is 
clear from its very title.

To complete this history, let us ask: exactly how well does the arctangent series (3.125) 
enable us to compute the value of tt to the above precision?

Though the present-day answer to this question is quite elementary, and can be easily 
derived by any mathematician, this answer seems not to be properly known to many histori­
ans of mathematics, and may be especially difficult for those historians of mathematics who 
focus their expertise on languages and are unfamiliar with elementary numerical analysis. 
(Many such historians seem to exist today.) This elementary answer is explained in Appen­
dix 3.B. One conclusion is that the value of t t  can be computed by hand to an accuracy of 10 
places after the decimal, within an hour or so, using betw een 4 to 6 terms of the above series 
(3.125). This directly contradicts the conclusion of Srinivasiengar that the computation (of 
t t )  must have required a lot of labour: the point of the series expansion was to save labour, 
not expend it.

Secondly, though the treatment in Appendix 3.B builds on the method suggested in the 
calculus text of Lax et al., there is no great virtue to that method, except to illustrate wffiat is 
required. Apart from elementary trigonometric identities, the key ingredient that goes into 
that method is an error estimate. The treatment in Appendix 3.B uses an error estimate that 
builds on the infinite sum of a geometric series. From the point of view7 of a contemporary 
text on calculus, like that of Lax et al., that is quite acceptable, since the sum of an infinite 
geometric series is today taught (though not explained) at quite an early stage (Std. 7 or 8). 
Indian mathematicians, also, long knew about geometric series, which they called more cor­
rectly as gunottara sankalitd or multiplicative series, and methods of summing the geometric 
series were a part of the elementary curriculum.80 Even the use of infinite geometric series 
by NUakantha86 has also long been knowm to historians. Of course, Indian mathematicians 
certainly knew how to carry out manipulations using elementary trigonometric identities. 
Therefore, the above approach could wrell have been used by some Indian mathematicians.
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Nevertheless, for our immediate purposes, the error estimate used in Appendix 3.B is not 
the most appropriate. The reason is very simple. Our sources expound a different and 
more general method. While the above mentioned transformations of the series accelerate 
only the calculation of tt, our sources describe a rather general technique to accelerate the 
convergence of a variety of slowly convergent series, and this general method of accelerat­
ing convergence could be used also for various other trigonometric computations. Some 
background is needed to understand this method of accelerating convergence.

In nite and Inde nite Series

As explained above, there were two sorts of series expansions in use: infinite and indefi­
nite. An example of the infinite series expansion is Nilakantha’s expression for the sum 
of an infinite geometric series, or the computation of the sums of the above infinite ser­
ial, by computing the leading order terms, in which computation, the number of divisions 
of the circle are taken to be infinite. An example of indefinite series is the fraction series 
expansion, used by Brahmagupta. The idea of infinitesimal was a natural extension of the 
idea of rounding, using the additional notion of order of growth, and this is exactly how it 
is subsequently used: for infinite n the quantity  ̂ is non-representable (silnya) relative to 
b. This is quite similar to the statement (of non-standard analysis) that for n infinite,  ̂ is 
infinitesimal, relative to b. It did not, however, require recourse to any of the complexities of 
non-standard analysis, since the operational definition of the equality of two numbers, with 
rounding arithmetic, took care of the rigour.

The sum of the indefinite series requires nothing special, since exact equality holds at 
each stage, until the exceptional term is dropped as non-representable. The precise meaning 
of the sum of an infinite series is found in the meaning assigned to which sum
becomes constant for large n, when relatively non-representable terms are ignored (in the 
manner analogous to formal infinitesimals), based on order-counting. That is, operationally, 
one sums the series to n terms, and then discards (in relation to the rupa, or constant term) 
the terms in the sum which have the nisi n in the denominator. (Obviously, in all those cases 
the limit would exist, in the present-day sense.)

The Correction Term

However, the problem was not merely to prove that the series converged, but to calculate 
its sum. This was not a trivial task for a slowly convergent series like the “Leibniz” series. 
To actually calculate the sum, it was necessary to accelerate the convergence of the series, 
and this was done by adding to the infinite series, in analogy with the indefinite series, 
an exceptional or correction term. (It is interesting to notice how this rule-and-exception 
approach differs from the all-rule-no-exception approach used by Leibniz, for example, in 
thinking about the series.)
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Since the basic series (3.121) is alternating, the exceptional or correction term (assumed
positive) was hence to be added or subtracted according as the previous term was negative or
positive. Thus, the full series actually looks as follows (after discarding the non-representable 
terms):

7  = 1 -  5 + k  ~ \ + ■■■ ~  /(” + !)• (3-127)4 3 5 7 n
Some of the various forms of the correction term f(n )  that were tried were the following:

(3.128)

(3.129)

(3.130)

Thus, the quotation for (3.121) continues:87

*<f f r o  wtttT ii
fH'ftIT £Pd^ ^nftcTqT I

rfRTT FTTcTII W  II
rTgjif w jcfr «1'mifwr w :  stpw  i 
mvErmrccf ^ p r  f^r n w  n
v l^ r : T fr fV : ^ T T  p R l t s f ^ T :  FTT9TII II

This passage may be translated:

h (n ) =
1

2nd

h {n ) =
n \n

2 (n2 + 1) n2 + 1 ’

h {n ) = n2 + 4 {\n)2 + 1
2 n(n2 + 5) n̂(n2 + 4 + 1 )

'lb the diameter multiplied by 4 alternately add and subtract in order the diam­
eter multiplied by 4 and divided separately by the odd numbers 3, 5, etc. That 
odd number at which this process ends, four times the diameter should be mul­
tiplied by the next even number, halved and [then] divided by one added to that 
[even] number squared. The result is to be added or subtracted according as the 
last term was subtracted or added. This gives the circumference more accurately 
than would be obtained by going on with that process.

circumference = Ad
T

Similarly, we have88

4 d (n + 1) 2
— 4 d-fi------ ------- •n (n + l ) 2 + 1

(3.131)

gr^qcTtr^fr UH>K: I
wiwmi&rQjr: fNit w :  *r ^  w : ii 11
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iHIJjRildl WJcH fTT: I
fW rrM W wHwr^rrTcr T^rT^r WMfrn\ ii

which may be translated as follows.

A subtler method, with another correction. [Retain] the first procedure involving 
division of four times the diameter by the odd numbers, 3, 5, etc. [But] then 
add or subtract it [four times the diameter] multiplied by one added to the next 
even number halved and squared, and divided by one added to four times the 
preceding multiplier [with this] multiplied by the even number halved.

That is,

circumference

which simplifies to

circumference

Ad
T

Ad
(^±±)2 + l 4 + 1

Ad
T

Ady +
Ad
5

Ad m 2

Ady +
+ 1

Ad
n

[( n + 1)2+ 4 + i] (»£!)■

(3.132)

(3.133)

Correction Term (Samskara) and Acceleration of Convergence

In terms of present-day analysis, as described by Srinivasiengar,89 the addition of such a cor­
rection term amounts to accelerating the convergence to a desired order (and appropriate 
terms can always be found to accelerate the convergence to any desired order). This analysis 
proceeds as follows.

Let n = 4m + 1, and let S and S ( ẑ )  denote the sums of the first 2m + 1 and
2m terms of the uncorrected series, and let T  T ( 2î )  denote the corresponding
corrected sums:

T
n + 1

= 5 n + 1
2 2

T n — 1
= 5

n — 1
2 2

-  f ( n +  1) 

+ f ( n -  1).

(3.134)

(3.135)

The corrected sums, T 
eral term un is given by

(^2" )̂, can regarded as the partial sums of a series whose gen-

Un
n + 1

T
2

-  T
2

(3.136)
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That is,
un = -  ~ f (n  + 1) -  f i n -  1). (3.137)n

Using the above for n, n — 2, n — 4, . . . ,  3, and alternately adding and subtracting, we obtain

—us + us — ••• + un =  — -  + -  — ••• H—  + /(2) — f ( n + l ) ,  (3.138)3 5 n

so that one can just as well use un to obtain the value of the circumference, or, equivalently, 
the value of t t :

j  = 1 — /(2) -  us + us -  ■ • • + Un -  ■ ■ ■ . (3.139)

However, this last series converges more rapidly, since, by choosing / appropriately, we can 
arrange things so that

un = O n2P+\ • (3.140)

In contemporary mathematical language, we can easily understand as follows why this 
happens. To evaluate the right-hand side of (3.137) we momentarily suppose that the cor­
rection terms are functions of a real variable, and apply the “Taylor” series expansion to 
express both f{n  + 1) and f(n  — 1) in terms of the values of / and its derivatives at n. Then, 
we obtain

f ( n + l )  -  f ( n — 1) = 2 }(n)  + 4 M  + Z lijM  + . . .  . (3.141)

For the first correction term
2 f {n)  = n

so that we have

wn = i  -  f ( n  +  1) -  f i n -  1) = - 2  + •••

(3.142)

(3.143)

Since 2f in)  =

/ in) O n"
(3.144)

To make it easier to carry out this calculation for the second term, we re-express it as

2 f in)
n

(n2 + 1) n
1 1

~o H----cTV rr
1

~ —  + n ‘
(3.145)

and assume that the (power) series may be differentiated term by term in its (annular) do­
main of convergence. Calculating the derivatives, putting them in (3.141), and substituting 
(3.141) in (3.137), we find

u« «  2/<4 > (n ) O 4 .  . (3.146)
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In this case, the ^  term of / (n ) cancels with the ^  term of f (n),  because of the way in 
which f (n)  has been chosen.

Similarly, we may re-express the third correction term as

2f (n) =
n2 + 4 1

n
1 5
“ 3 +  “ +n rv- n ‘n(n2 + 5)

In this case all terms up to the fifth order cancel, and we are left with

(3.147)

Q{un) = O /(6) (n) O
n ‘

(3.148)

Obviously, these cancellations are not fortuitous—they depend upon the choice of f ( n )— 
and we shall see later on how the correction terms were actually derived. We note that cor­
rection terms can again be applied to the modified series to further accelerate convergence, 
and Srinivasiengar provides examples of how this was actually done.

The Samskara Term and Transformed Series

The modified series un, which are faster convergent, are explicitly worked out in various 
texts such as the TantrasangrahaVyakhya For example, the term (3.128) gives the value

1
n(n2 — 1)

(3.149)

and the corresponding series is given by the sloka in the TantrasangrahaVyakhya90 as:

«llW HSdld ' f i W  : I
f w #  ^ T Q f fr^ r fq "  T frfyR T^T : II II

This may be translated:91

Four times the diameter is divided by the cubes of [odd numbers] 3, etc., minus 
the numbers [lit. roots], to obtain separate quotients. To thrice the diameter, 
alternately add and subtract [the quotients], to obtain the circumference.

The corresponding series for ir is

7T — 3 1 1 1
4 ~ 33 - 3  ~ 53 -  5 ~ 73 -  7

Similarly, the term (3.129) gives the value

4
“  n [ ( n - l ) 2 + l ] [ ( n + l ) 2 + 1 ] ’ 

corresponding to the sloka in the TantrasahgraliaVydkhyd:92

(3.150)

(3.151)
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[^cFTt m] I
crrfir: <fr^jpjfwnr rt fwrgft-: n w  n

Fqrf^^TRT^ra-: qfrf^r: n w  ii

which may be translated as follows.93

The fifth powers of 1, etc., plus four times the number; with that, divide 16 
times the diameter separately for successive odd numbers and alternately add 
and subtract. The circumference is obtained for the desired diameter.

The corresponding series for 7t is

7T _ 1 1 1
16 “  l 5 + 4 • 1 ~ 35 + 4 • 3 + 55 + 4 ■ 5

(3.152)

Various other manipulations of the basic series (3.121) all proceed similarly, such as

4
5 +3(22 + l)(42 + l) 5(42 + 1)(62 + 1) + (3.153)

and a full catalogue of these series would take us too far afield.

Samskara and Sthaulya

The use of the correction term implicitly or explicitly involved a “Taylor” series expansion, 
and the summation of this series for a variety of functions. This refutes a claim that Indian 
mathematics used these infinite series only for trigonometric functions.

The exact method of deriving the correction term (called samskara) and its “error” (called 
sthaulya = grossness) is better explained in the TantrasangrahaVydkhyd/Yuktidipikd, and the 
Kriyakramakan94 both attributed to Sankara Variyar, wherein the process has been attributed 
to “the teacher”. A somewhat similar (but incomplete) explanation is also given in the edi­
torial notes of Rama Varma and Akhilshwara Aiyar, in their edition of the Yuktibhdsd, which 
used the same source. We will, however, refer to the original Sanskrit source rather than the 
more recent Malayalam commentary, for the reasons already indicated.

The Number of Terms to be Summed

Another way to look at the rate of convergence is in terms of the number of terms to be 
summed: the faster the series converges, the fewer the terms that are required to obtain its 
sum. How many terms of the series are to be summed? As explained in the Kriyakramakan,9° 
this is to be decided by the n for which the partial sums become constant, so that they satisfy

S(n) — S(n  +  1), (3.154)
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to the required level o f precision. That is, S(n) = S(n + 1) with equality in the usual sense that 
non-representables are ignored. (In particular, as already stated, there is no question of try­
ing to sum an infinite number of terms or trying to assign an idealized “meaning” to such 
a supertask.) We note also that the above practical criterion closely resembles the theoret­
ical Cauchy criterion for convergence, although in present-day terminology, it would seem 
that the above constitutes only a necessary rather than sufficient condition for convergence, 
since the difference is considered only between two successive terms. The logic, as explained 
in the Kriyakramakan, is that if the above equality holds for any two consecutive integers, it 
will hold thereafter. This justification shows that the real requirement is that the sum of the 
series should become constant, up to non-representable terms, as in the case of the geomet­
ric series. The argument—that if constancy holds for two terms it will hold thereafter—is 
certainly valid for the particular series that are considered. Though the “proof” of this ar­
gument has not been separately recorded, going through the above derivation of the series 
makes it clear why this should he so. The above criterion provides a means of fixing the 
correction term.

The Functional Equation

To understand how the correction term was originally derived, it helps to change the nota­
tion slightly, to bring it closer to the actual notation used in the text, as has also been done 
by Hayashi et ah,96 and to rewrite the basic series as follows.

1 1 1  1
-  «  1 ----- + -----------+ ■•• + ( - l ) n- 1 ----------  + ( - l ) nF(n)
4 3 5 7 K J 2n -  1 v J

= S(n) +  (—1 )nF(n), (3.155)

where S(n) denotes the sum of the first n terms of the series. Then the above requirement 
is equivalent to

F(n) + F(n +  1) = — l— . (3.156)
In +  1

T his is the basic functional equation that must be solved. The correction terms, which 
approximately solve this functional equation, may be re-expressed rather more neatly in 
the new notation, in which n is twice what it was earlier, as:

Fi (n) =
1

4n’
(3.157)

Fi{n) = n
(3.158)

4 n2 +  1 ’ 

n2 + 1
F3(n) - (3.159)

n(4n2 + 5)
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The Continued Fraction Expansion

The functional equation (3.156) is actually solved in the Kriyakramakan by means of a con­
tinued fraction expansion, and all three samskara terms are actually derivable from the con­
tinued fraction expansion:9'

F(n)  =
1 1 1

(3.160)
4 n+  n+ n+

The three samskara terms given above are exactly the first three convergents to this continued 
fraction.

This point made also by Hayashi et al. is identical with what had been earlier explained, 
without textual support, by Rajagopal and Rangachari. In terms of the earlier notation, 
Rajagopal and Rangachari point out that the correction function /(n), which renders exact 
the equation

7T _ 1 1 1  1

4 _ 1 _ 3 + 5 _ 7 + ' "  n 
can be represented by means of the continued fraction

-  f ( n +  1),

f(n) =  1 J _
71 2 n+ n+ n+ n+

(3.161)

(3.162)

Rajagopal and Rangachari unfortunately refer to this as “round off”. The functions j\{n), 
/2(n), /s(n), considered earlier, are exactly the first three convergents to this continued 
fraction. Rajagopal and Rangachari attribute to D. T. Whiteside a numerical calculation of 
the first 10 terms of the series, with the correction term /J, which gives a value differing 
from 7r only by 1 in the 8th place after the decimal, while a calculation of the first 25 terms, 
with the same correction term, gives a value that differs from 7t only in the 12th decimal 
place.

An interesting thing about the above continued fraction is that, for n = 2, it gives a value 
of 7r in terms of the continued fraction:

2 l 2 22 32
------- — 2 T  —  —  —
4 - 7 r 2 + 2 + 2 +

(3.163)

As Rajagopal and Rangachari point out, this continued fraction was used by William Brounc- 
ker in his 1654 reworking of John Wallis’ related continued product. Likewise, through some 
minor modifications, one can obtain the expansion

7T - 2
4

1
2

1 +

1
1 • 2

1 +
2-3

1 +
3-4  

1 + •••

(3.164)

used by Leonhard Euler in 1739, and published in 1750. This, however, is NOT anachronis­
tic, as Rajagopal and Rangachari state, for, as already noted, Euler was well aware of Indian



180 Cultural Foundations of Mathematics

astronomical works. In particular, transmission in the case of both Wallis and Euler needs to 
be studied a lot more carefully.

How the Samskara Term Was Obtained

There still remains the question of the way in which the samskara correction term was orig­
inally obtained. Here, as already stated, the analysis uses the concept of sthaulya, or the 
grossness of the correction term. This is the difference S(n) — S(n — 1). The best choice of 
F (n ) is that which makes this difference zero. As we have already seen, the actual choice of 
the correction term corresponds to the continued fractions which are exactly the convergents 
to that best choice of F(n).

How were these obtained? I do not think that the choice of F(n) was arrived at by search­
ing inductively for a general pattern, as has been suggested by Youskevich. The question 
of induction vs deduction, emphasized also by Hayashi et al., has already been exhaustively 
examined in Chapter 2, where we have already seen the incorrectness of asserting the supe­
riority of deduction. More to the point is the distinction we have earlier drawn between a 
truly goal-directed procedure and a mechanical procedure. Practically speaking, as we have 
also seen, Indian mathematics sought practical rules rather than formal rules of ever greater 
generality, and there is no practical way to make the error zero.

The argument in the Kriyakramakan proceeds as follows.
Step 1: If the difference S(n) — S(n — 1) is to be exactly zero, then we would have

^Tcfr fW 7W T*TT eT ^ T  ^  TPtT
T*TT cTOT WFFTT: I

the quotient obtained by dividing one by any odd number should equal the sum 
of the earlier (purva) samskara and later (uttara) samskara: this is the duty of the 
samskara.98

F(n) + F (n + 1 )  = (3.165)

Thus, the ideal samskara would satisfy F(n) = F(n  + 1) = 2(2n+i)' • ^ut t 1̂*s ’s asserted 
to be not possible, for if the first samskara were the reciprocal of twice an odd number, then 
the other samskara must be the reciprocal of twice the corresponding odd number. Thus, 
the possibility of making the error (grossness) zero is rejected. 'Phis argument is not fully 
intelligible until it is pointed out that the tacit assumption here is that the samskara F {n ) 
must be a rational function of the rasi (n). We explain later on why this may be legitimately 
assumed.
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If it is not practically possible to make the error zero, then one must choose that samskdra 
which “minimizes” the error or the grossness (sthaulya). But, how does one carry out this 
“minimization”?
Step 2: As a trial solution, close to the above “ideal” value, 4r<1+2, we are, therefore, asked to 
consider

F(n) =  — . (3.166)
4n

To compute the sthaulya, a “novel” place-value notation is used in the Kriydkramakari to 
express polynomials, and rational functions. As explained, each place denotes the successive 
powers such as “the square, cube, fourth, fifth and sixth powers”. Thus, [1,0] means that the 
first power of the variable (rdsi) has a coefficient of 1, and the constant (riipa) is zero, i.e., the 
polynomial 1 • x + 0, which is nothing but the rdsi itself.

[1,0] 1 • x + 0 = x.

This is, of course, a straightforward extension of the usual place value notation for numer­
als where coefficients of the various powers of 10 are expressed by places, without stating 
explicitly the powers of 10. The novelty arises only from the training imparted in schools 
today, where students at an early stage are taught to put the symbol x and explicitly indicate 
its powers, to express a polynomial. Negative coefficients are denoted, as is customary, by 
putting a small 0, like a degree symbol on top of the number. This notation extends also to
rational functions by using what we would today call a table with two rows. Thus, [ q io j

2
is the same thing as which is the negative of the rdsi.

[0 1° 0] - x

Incidentally, Hayashi et al. are completely wrong in maintaining that this notation cannot 
be used to express factors: for example, (x + l)(.x + 2) could perfectly well be expressed as 
[1,1] x [1,2], etc., exactly as one expresses the multiplication of two numbers using posi­
tional notation. Though this is certainly not a limitation of the notation, which is perfectly 
general, it is another matter that the terms actually occurring in the Kriydkramakari are all 
fully expanded, as was thought to be the proper way to express the final result whether an 
arithmetical one or an algebraic one.

The key point here is this: using this novel place-value system, not only were rational 
functions represented in a way analogous to rational numbers, but non-rational functions 
were also treated, like non-rational numbers, using a sequence of fractions or a continued 
fraction. Hence, the tacit assumption that the correction term must be given by a rational 
function is only the first step of the argument, and not a limitation to it.
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Taking m = 2n + 1, so that 4n = 2m — 2, 4(n + 1) = 4n + 4 = 2m + 2, and the above trial 
for F(n), Sankara explains that the teacher found that

F ( n )

F(n  + 1) 

1
277. T  1

1 2m? +  2 777
2777 — 2 4m3 — 4777 ’

1 2m? — 2m
2m, + 2 47773 — 4777, ’
1 4t?72 — 4

777 4 t?73 — 4777

(3.167)

(3.168)

(3.169)

The last term, for instance, is expressed in the Kriyakramakarf>g as [ J 4q q ] • 1 he sthaulya 
or error is now readily computed as (4 times the diameter times)

f ( „ ) + f ( „  + 1 )_ _ L _ 4
47773 — 4-777

(3.170)

The author of the Kriydkramakan (Sankara Variyar) now says that “on seeing this sthaulya, 
the teacher was not satisfied”.
Step 3: The right-hand side of (3.170) above ought to have been zero, but it is positive. 
This error shows that the correction is a little in excess (kincid adhik), of what is required, and 
hence the correction F(n) must be diminished, so that the denominator of F(n) must be 
increased. Therefore, as a second trial solution, the teacher considered the possibility

F(n)
1

477 + 1
(3.171)

Proceeding exactly as before (and disregarding the baseless speculations about notation by
/e 77?, — 277 + 1, so that 4t?, + 1 = 2777 — 1, 4(n + 1) + 1 = 4t7 + 5 = 2 777 + 3,

F(n) =
1 27772 +  3777

(3.172)2m — 1 777(2-777 — l)(2m + 3) ’

F (7 7  + 1) =
1 27772 — 1t77

(3.173)
2m + 3 m(2m  — 1)(2m + 3) ’

1 1 47772 + 4777, — 3
(3.174)

277 + 1 777 777,{2m — 1)(2t77 + 3) ’

and the sthaulya works out to be

F(n) + F (77 + 1) -
1 -2m + 3

277 +  1 4t773 + 4r?72 — 3777
(3.175)

Comparison of this error (r.li.s. of (3.175)) with the preceding one (r.h.s of (3.170)) requires 
a clear knowledge of the rate of growth of various rational functions.
Step 4: To this end, the Kriydkramakan now makes a key observation. To understand this 
observation let us first note that the above error in (3.175) is negative. This indicates that 
the correction is in excess, and must be reduced. So the Kriydkramakan explains the logic of
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the teacher by saying that “all of unity should not be added” to the previous trial correction, 
i.e., only a fraction must be added. However, nothing very much changes if we add a fraction 
like 1 2 or 1 3, or try, say, F(n) =  * j . Why? The Kriydkramakan explains this by saying
that the numerator of the sthaulya term in (3.175) has now reached the “place of the rdsi 
(variable)”, while the numerator of the earlier sthaulya in (3.170) had only the “place of the 
rupa (constant)”. This is the Kriydkramakan way of stating that the numerator now grows 
faster, while the two denominators grow at the same rate, so that the error now grows faster.

Hayashi et al. have unfortunately missed the significance of this key observation, and 
have consequently lost the thread of the argument. They say that “Sankara continues with 
an enigmatic expression”, and proceeds to consider

F(n) =  -----p  (3.176)
4 n + — 

n

without offering any further explanation. Hayashi et al. then incorrectly accuse Sankara of 
having resorted to “induction” after having tried and failed to provide a “deductive” ap­
proach. First, the author of the Kriydkramakan is only trying to explain the logic used by his

✓
teacher, and this argument in the Kriydkramakan certainly cannot be attributed to Sankara, 
who comes later. Secondly, this “induction-deduction” dichotomy, as stated several times 
earlier, is an incorrect yardstick obsessively used by Western historians to try and establish 
Western superiority in mathematics, and is irrelevant to Indian tradition. More to the point: 
present-day mathematical proof is, in principle, addressed to a machine, and is expected 
to be so detailed that it can, in principle, be mechanically checked, without the application 
of intelligence. This was not the case in Indian tradition which aimed to be succinct and 
expected the student to exercise his or her intelligence.

To explain the argument in the present-day manner, it is clear from the above considera­
tions that neither unity nor a constant fraction can be added to the denominator. Something, 
however, must be added to the denominator to reduce the error. Since that fraction cannot 
be a constant, it must be a variable (i.e., it must involve the rdsi). It is now obvious that what 
is being stated is that one needs to add a fraction with the rdsi in the denominator. Accord­
ingly, no further explanation is given, since no further explanation is necessary, except to 
compute the error with the new trial function. As in Step 1 above, the Kriydkramakan now 
proceeds to explain what happens if the fraction  ̂ is added to the denominator:

F(n) =  -----l— . (3.177)
An + — 

n

The error in this case is approximately computed. The key point of interest, from the 
present-day perspective, is the use of the relation, 2m, 2 «  2m, which again involves a
consideration of order of growth, this time quite explicitly.
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Step 5: Since the sthaulya with this samskara, too, is not satisfactory, the added fraction is 
reduced:

F{n) =  -----!— p  (3.178)
4n + — 

n
Proceeding as above, the sthaulya in this case works out to be

1
2 n + 1

F (n ) — F(n  + 1)
16

4m5 + 16m’
(3.179)

which last quantity is expressed in the Kriydkramakari100 as [4 q q ~ q ig q ] •
It is now amply clear how the minimization process proceeds iteratively, at each step, 

exploring the bounds by computing the error in two cases, one excess and one deficit, and 
adding a fraction (containing the variable [rasi]) to the denominator. Any further explana­
tion would invite the charge of prolixity, so no further explanation is considered necessary. 
It is also clear how the continued fraction is no artificial construct, but arises very naturally 
as a part of this iterative minimization process.

We note particularly, how the minimization was achieved by the simple process of order 
counting. Thus, the grossness (sthaulya) of the correction (samskara) is iteratively min­
imized by finding, at each stage, that largest continued fraction which gives the lowest 
order of growth for the difference S(n) — S(n — 1 ). This analysis obviously remains unaf­
fected by present-day definitions of convergence. It would still go through in much the same 
way.

VI
CONCLUSIONS

1. Finite differences and series expansions were in use in India since the time of 
Aryabhata in the 5th c.

2. The numerical solution of difference equations (“Euler solver”) was used (as a superior 
alternative to the “fundamental theorem of calculus”) since the time of Aryabhata, and 
it was through this process of numerical integration that the volume of a sphere was 
first accurately derived in India, as explained by Bhaskara II.

3. Differentiation was carried out for complicated functions, since Brahmagupta, and 
Bhaskara II relates this to the instantaneous velocity of the “planets” on the Indian 
planetary model.

4. By extending linear (Aryabhata) to quadratic (Bhaskara I) to higher order interpola­
tion (Madhava), the series expansions in India developed over a thousand year period 
into a systematic method of interpolation via high order polynomials, which came to
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be known as the “Taylor expansion” several centuries later (when these very same series 
expansions abruptly started appearing in Europe).

5. Although accuracy to the third minute was first attempted in the early ninth century, 
it was achieved only after another five centuries. Hence the above long-drawn process 
was the work of the Aryabhata school, and continuously involved inputs from various 
regions across India up to the 14th c. CE.

6 . From the time of the sulba sutra-s there was a clear understanding of real numbers, 
which were understood realistically in Indian tradition (rather than metaphysically as 
Dedekind millennia later attempted to understand them).

7. Order counting and the usual discarding of non-represen tables was used to clearly 
comprehend and evaluate limiting values of a variety of rational functions, expressed 
using a novel place value notation. (This was in contrast to the Western idealistic 
tradition of mathematics which could not comprehend this process in terms of the 
perfection it attributed to mathematics, which purported perfection did not allow it to 
discard the smallest quantity.)

8 . Infinite series, like the geometric series, were deemed summable, and summed, since 
the sum became constant up to non-representables. (This was in contrast to the West­
ern tradition of mathematics, which, for long, saw the summing of infinite series as 
involving a supertask, and then regarded it as purely a matter of formal definition.)

9. The interplay of infinite with indefinite series led to the introduction of exceptional 
terms in infinite series. The introduction of these exceptional terms was equivalent 
to transforming the series to accelerate convergence. The transformed series were 
explicitly worked out. (This was in contrast to the all-rule-no-exception understanding 
of these same infinite series in Europe.)

10. The exceptional terms were derived by a technique of iterative minimization which has 
been overlooked in the Western historians’ semi-religious obsession with the issue of 
induction vs deduction.

11. For the above understanding, there was valid pramana at every step. (This was in con­
trast to Newton and Leibniz who ritualistically attempted proof, but could not provide 
a valid proof either by current standards or by the standards acceptable to their con­
temporaries.)

Hence, what developed in India was the calculus—epistemologically more secure than 
the half-digested proto calculus to which various European mathematicians of the 17th c. 
CE incorrectly laid claim.
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APPENDIX 3.A
EULER-MACLAURIN SUM FORMULA

The “Euler-Maclaurin” expansion attributed to Euler101 and Maclaurin,102 gives a formula 
for approximating a definite integral, using the sum of the areas of quadrilaterals and a 
correction term, as explained, for example, in Whittaker and Robinson.103 This formula is 
of some historical interest since Gregory104 used a similar formula for numerical integration, 
with finite differences in place of derivatives. The basic idea remains that of approximating 
a function by a piecewise linear curve.

1
w

a + r w
f(x)dx

a
ÿ f o  + f l  +  Î 2  +  ■ ■ ■ + f r —1 +  - x f r

B 1w
2 !

B 3 w °

6 !

( f r  ~  h ) + O ' "

/r(5)-/ o <5> + •••

So )
(3.180)

Here,/j = f ( a  + iw), primes denote derivatives, and (a + iw), while the B i are
Bernoulli numbers, in old notation,

1 1
B n  =  — ,

6 ’ 2 30’
1 5

b 4 30’ * ‘  = 65
B *

1
42’

691
= 2730’

Taking, a = 0, w =  1, f(x )  = xp, we get 

rp+1
= l p + 2p + 3P + ■

p + 1
+ (r -  l)p +

—p r p 1 + -̂ —p (p —l)(p — 2)rp 3 
12f  7 2 (rKy y

1
30240

p(p -  l){p  -  2)(p -  3){p -  4)rp 4 +

Consequently,

l p + 2p + 3P + • • • + (r — l)p + rp —
~p+l 1

+ - r p 
p + 1  2

+ — r 
12
V ,,P-1 _  P{P~ 1)(P~ 2 )^ .3

720
P(P~ 1)(P — 2){p — 3)(p — 4) p_5 _

30240 r

The series terminates with the last term in either r or r2. Thus, for example,

l 5 +  2° + 35 + + nl
1 1 1
-n 6 + - n 5 + — n4 — — n~ 
6 2 12 12

(3.181)

(3.182)

(3.183)

(3.184)
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As can be seen, the leading-order term is always jppp- The formula was first printed in 
James Bernoulli’s work Ars Conjectandi, posthumously published in 1713 (p. 97). Bernoulli 
obtained his result for up to p =  10, using the figurate number triangle (very similar to 
Pascal’s triangle).100

In present-day notation, Bernoulli numbers are defined a bit differently.

x
ex -  1 E

n=0
(3.185)

so that B n is the coefficient of in the expansion of &xx_ 1. The relationship of the old and 
new notation is I?2n = (—l )nBn. We can also view the Bernoulli numbers as coefficients in 
the expansion of 0 cot 9 (for —tt 9 7r).

/j2n
9 cote = V  ( - l ) nS 2n— — . (3.186)

;s> ^

This, incidentally, opens a possibility of a connection to the work of Ramanujam106 who 
derived a number of curious relations between Bernoulli numbers using infinite series.

The new notation allows us to express the sum of ip more neatly as follows.

n
E =
i—1

We see that the leading term is always •

p +  1

P+1 ,
P + 1 Bp+l. knk

k=1

—  + —  Y j - l ) * * - ' - * )  B p+i - knk.
P + 1  P + 1  ^  '  k P +k= 1

(3.187)
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APPENDIX 3.B
COMPUTATION OF ARCTANGENT USING THE SERIES:

HOW ONE MIGHT DO IT TODAY

Step 1: Large y ( y > 1). From the elementary identities sin (tj — x) = cosx, and 
cos (2 — x) = sinx, we have the relation tan (2 — x) = ta„ x- Setting y = tanx, and taking 
arctan of both sides, we have the elementary relation

7T 1arctan y = — — arctan-. (3.188)
2 y

Thus, the computation of any value of arctan for y > 1 can always be reduced to a computa­
tion of arctan y for y < 1. For y < 1 the series (3.125) obviously converges faster, and this is 
the only case that it is necessary to examine.
Step 2: Small y ( 0 < t / < 0 . 1 ) .  To estimate exactly how fast the series converges is an 
elementary matter. Starting from the identity

y 1
arctan y = -------k dx, (3.189)

0 1 + x 2

we approximate the integrand by the finite geometric series

n
Sn(x) =  £ ( - l ) V *  = l - x 2 + x4 ------+ ( - l ) nx2n. (3.190)

A:=0

Clearly, integrating the finite series term by term,

y
Sn(x)dx

0
y

r + y l
5

+ ••• + ( - 1 )n y_____
2n +  1

T„(y).

From the formula for the sum of a geometric series, we then have

1 ___ - ‘in-K

m ?  “ Sn{x) = ^  (_1)V‘ =
k = n + 1

Hence,

arctan y — Tn(y)
1 + x/

Sn(x) dx

y

0

x2n+2
1 +  X 2

dx

x 2n+2dx =
y ‘2n+ 2>

2 71 T  3

(3.191)

(3.192)

(3.193)
0
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Thus, for y = 0.1, if the series (3.125) is used to approximate the arctangent, we can expect 
an accuracy of nearly 10 places after the decimal (error < ) simply for n = 3.

That is, for y = 0.1, we can use the easily computed approximation

yS y5 y 7
arctan?; «  y — — + — ------

J  J  3 5 7
(3.194)

for an accuracy of nearly 10 places after the decimal point.
As is clear from the case of sine and cosine, the actual computations typically used the 

“Taylor” polynomials of the 11th or 12th order, so that we could add two more terms to the 
above,

arctan y
y3 y5 y7 y9 y11
3" + T _ y  + " 9 " _ T ^ , (3.195)

to ensure the required precision, allowing for rounding.
Step 3: Intermediate y ( 0.1 < y 1). It remains to consider the case of a y (such as 
y = -f=) where we have 0.1 < y < 1. This case can be easily reduced to the case in Stepo
2, as follows. From the addition formulae for the sine and cosine functions, so well known 
from the time of Aryabhata, we can easily get the addition formula for the tangent function:

tan x — tan x
tan (x — x ) = ----------------------1 + tan x tan x

(3.196)

Putting y = tan x, and y = tana: , and taking arctangent of both sides, we have

, y -  yx — x — arctan--------- ,
1 + yy

(3.197)

te.,

That is,

y — yarctan y = arctan y + arctan --------
i + yy

arctan y = arctan y + arctan yi,

(3.198)

(3.199)

where

tn =
y - y (3.200)
1 + y y

'Faking y = 0.1, we see that the computation of arctany has been reduced to the case 
of the computation of arctanyi, where y\ is clearly a number such that yi < y — 0.1. If 
it so happens that yi < 0.1, then we can compute arctanyi by using the four-term series 
expansion of Step 2. Otherwise, we repeat the above procedure to obtain

arctanyi — arctany + arctan y2, (3.201)

where
y i -  y 
i + y i y

y2 (3.202)
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Clearly, t/2 < 2/1 — 0.1 < y — 0.2. Proceeding in this manner, we see that in at most 9 steps 
we must arrive at a yn < 0.1, which can be evaluated as in Step 2. This value would then be 
connected to the desired arctan value by

arctan y = n arctan y + arctan yn. (3.203)

Thus, the case of a y between 1 and 0.1 requires only slightly more labour.
As an example, let us see how 7t can be computed by hand today, using the series expan­

sion (3.125) and the above procedure. We know from the most basic table of six sine and 
cosine values that tan (g) = - i ,  which gives

7r = 6 arctan — 
\/3

(3.204)

Here, y = -L  = 0.57735026918963 (correct to 12 places after the decimal). Applying 
the above procedure, we need to compute

2 / - 0 . 1
tn =

1 +  0 . 1 y
2/1 -  0 . 1

V2 =
1 +  0 .1 t/ i

2/2 -  0 . 1
y-3 =

1  + 0 . 13/2

2/3 -  0 . 1  _
i/4

1  +  0 . 13/3

2/4 -  0 . 1
2/5 =

1 + O + 2/4

This is followed by a computation of

0.451294754396176, (3.205)

0.336125583146920, (3.206)

0.228446898450927, (3.207)

0.125578105577671, (3.208)

0.025260884179622. (3.209)

a arctan 0.1

0.0000001 
7

0.00000000001
n

0.001 0.00001
0.1 — —  + — -—

+
0.000000001

9

0.099668652491154, (3.210)

and of

b arctan 2/5

2/5
d  . vI
3 5 ’

7 9
v l , yt
7  9

y f
11 ’

0.025255513142489. (3.211)
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These simple ealculations are enough to yield tt correct to 10 decimal places, through the 
formula

7t «  30a + 66 = 3.141592653589564. (3.212)

The computation of each y* requires 4 oating point operations, so that a total of 20 oating 
point operations are required to compute y$. The computation of a and 6 requires some 10 

oating point operations each (up to 7th order, or 15 oating point operations up to 1 1th 
order), so that the job can be accomplished in a total of 42 oating point operations (not 
counting the square-root extraction). Thus the entire job is quite do-able by hand, within an 
hour, or so, assuming an average speed of around 1 oating point operation per minute.

There is no great virtue to the exact procedure followed above, except that (1) the arct­
angent series converges very rapidly for small values of y, (2) for intermediate values of y 
one has to use some way to connect values of arctan y to its values for smaller y. Apart from 
the algebraic relation that has been used above, another possible way to do this would have 
been to use a finite difference technique (“Euler solver”) as in the computation of the sine 
series.
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APPENDIX 3.C
“ARCHIMEDES’ ” METHOD OF COMPUTING 7r

Our actual “knowledge” of the works of Archimedes is much worse than our knowledge of 
the Elements. One gets to hear endless stories about Archimedes, but of concrete evidence 
there is nothing. The earliest report of a work related to Archimedes is a report of a 13th c. 
translation by a high priest, William of Moerbeke, of the works of his commentator Eutocius. 
We know nothing whatsoever of the sources used in the translation, and have nothing better 
to go by than William of Moerbeke’s word for it. In the appendix to chapter I we have already 
acquired some understanding of the process by which the author of the source might have 
been identified as an early Greek called Archimedes. In fact, given the character of the 
Inquisition, it is interesting to speculate what might have happened to the translator for 
contradicting the Bible which states that the value of 7t is 3! This Eutocius, whose work is 
believed to have been translated, is believed to have been a student of Ammonius, a student 
of Proclus, but we know nothing about Eutocius either, beyond the name. We have only faith 
piled on faith to go by, and nothing for those who lack faith.

Now, some 800 years are believed to have passed between Archimedes and Eutocius, and, 
of course, no one knows exactly what Archimedes wrote, or how Eutocius differed from him, 
but then, as one historian remarked, that is the way history is built—at least that is the sort 
of evidence on which the stories of present-day Western historians of science about Greeks 
are built. Finally, we don’t actually have those 13th c. CE original translations either, but we 
do have copies of some of those. Western historians believe that the works of Archimedes 
were faithfully copied verbatim by later writers, so it should come as no surprise that the 
mythical Archimedes anticipated many of the things that were done later elsewhere in the 
9th and 10th c.—a conclusion inferred from originals from perhaps the 15th c.!

Apart from this, there is a reportedly a very early (i.e., 10th c. CE) work of Archimedes 
that is reconstructed from a 13th c. CE palimpsest—a book that has been washed and 
reused to write another religious text on. The believed-to-be-lOth c. “Archimedes” in this 
palimpsest was reconstructed by Heiberg. Now that the palimpsest is finally on display, there 
are numerous puzzling issues about the exact correspondence between the palimpsest and 
Heiberg’s reconstruction. The natural interpretation of these discrepancies would be that 
where Heiberg ran out of imagination, he resorted to plain dishonesty, and misrepresented 
his source material. However, there would no doubt be those historians who would like to 
pile on the hypotheses in defence of Heiberg. Therefore, let us say that such discrepancies 
presumably arise because not all people can take the imaginative leaps to see what Heiberg’s 
scholarship enabled him to see!

In any case, the very short text, attributed to Archimedes, starts by asserting that the 
ratio of the area of a circle to the square of its diameter is 11 14, corresponding to the 
well known approximation 7r = 22 7. It then goes on with two hexagons, one inscribed
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and one circumscribed, and continues this procedure by doubling the number of sides at 
each stage. Today this procedure is often described using a recursion formula to compute 
the perimeter, by alternately computing the harmonic and geometric means. If Pn and pn 
respectively denote the semi-perimeters of the circumscribed and inscribed n-gons, then the 
formulae are

P'2n
P̂ti Pn 

P n T  Pn

P ‘2n  —  \ /P n  P ‘2n •

(3.213)

(3.214)

The above is the standard way of presenting what Archimedes did, from the reports we have 
of it from at least some 1600 years later. In actual fact, the above neat algebraic formula is 
derived with techniques of trigonometry, and Archimedes had access to neither algebra nor 
trigonometry. Further, the second formula involves the computation of square roots, and 
Archimedes had no means of computing those. Further, like Eutocius in the Roman empire, 
the clumsy Roman numerals made ordinary addition, multiplication, and division so difficult 
that square-root extraction was surely a forbidding matter. The author of the “Archimedes” 
text had no particular algorithm for the extraction of square roots, and engages in lengthy 
estimates, eventually using 96-gons to estimate 7t as lying between 310 71 (= 223 71) = 
3.1408 and 310 70 (= 22 7 = 3.1428).
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APPENDIX 3.D
CHRONOLOGY OF INDIAN MATHEMATICIANS

ca. —1350 CE, Vecldnga Jyotisa.

Baudhäyana, Katyäyana, Apastamba, ca. —500 CE, Sulba sütra.

Pingala, ca. —3 rd c. CE, Chandahsütra. (Binomial expansion, “Pascal’s” triangle.) 

ca. 3rd c. CE. Sürya Siddhânta.

Àryabhata, b. 476 CE, Kusumapura (identified with Pätaliputra by Bhäskara) = Patna, 
Bihar. Principal work ÄryabhaMya, composed at age 23, as he describes in his chrono­
gram. Manuscript sources and other details, in K. S. Shukla ed.

Bhäskara I, b. ca. 6th c., . 629 CE, Saurashtra? Asmaka (Nizamabad, Andhra
Pradesh) Mahd Bhäskanya, Laghu Bhäskanya, Äryabhatiya Bhdsya.

Varähamih'ra, 6th c. Ujjain (d. 587 CE), Pancasiddhäntikä. Also attributed Brhatfätaka 
(first Indian book on astrology).

Brahmagupta, ca. 628 CE, born Bhinmal (Gujarat, near Mt Abu) worked in Uÿain, 
Khandakhddyaka, Brdhma Splvuta Siddhânta.

Lallä, ca. 748 CE, Dasapura (Mandsaur), moved to the Kusumpura school, author of 
the well-known Sisyadlimrddhida.

Mahäv'ra, ca. 850 CE, Karnataka, GanitaSdra Samgraha.
*
Sr"dhara, 9th. c. CE, Bengal, Pdtiganita.

Vatesvara, 904 CE, Anandapura/Nagar (Vadnagar, Gujarat), Vatesvara Siddhânta, Gold. 

Àryabhata II, ca. 950 CE, Mahäsiddhänta.

AL B"rün", b. 976 CE, Afghanistan/North India (translated Vijay Nandi’s Karana Tilak 
of 966 CE) Kitâb al Hind contains a detailed account of the knowledge of contemporary 
Indian astronomy and mathematics that he gathered.

Bhäskara II, 12th c., Lilävati, Bijaganita, Siddhäntasiromani.

Näräyana Pandit, 1350 CE, Benares, GanitaKaumudl.

Kamaläkara, 1658 CE, Agra (Jehangir’s court) Siddhânta tattva viveka.

Jai Singh, Delhi/Jaipur/Ujjain (Malwa), observatories built ca. 1730 CE. Commissioned 
the first translation of the Elements into Sanskrit (from Persian) as Rekhdganita (“line 
mathematics”) by Pt. Samräta Jagannätha ca. 1723.
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Aryabhata school of mathematics and astronomy in Kerala (some key names and works) 

Haridatta, ca. 650-700 (founder of Parahita school of astronomy).

Govindasvamin, ca. 800-850, Bhdsya on Mahdhhdskariya.

Madhava (of Sarigamagrama), ca. 1340-1425. Known works: Venavaroha, for true 
position of the moon every 36 minutes. Mahdjydnayanprakdra (lost).

Paramesvara I (of Vatsrem), ca. 1360-1455. Author of Drgganita (which revises and 
extends the Parahita system), and Goladipikd.

N'lakantha Somayaji (ofTrkkantiyur), 1444-1545, Bhdsya on Aryahhatiya, Tantrasangraha

Jyesthadeva, 1500-1600, Yuktihhdsd.
/
Sankara Variyar (of Trkkutaveli), ca. 1500-1560. Commentaries Vydkhya and 
Laghuvivrti (1556) on Tantrasangraha. Closely similar text called by the alterna­
tive name Yuktidipika. Author of part of Kriydkramakari (a commentary on the Lilavati), 
which has some 400 verses in common with the Yuktidipika.

Narayana I (ca. 1500-1575)? Brother of Sankara Variyar. Kriydkramakari (short com­
mentary on Lilavati), and Karmadipika (long commentary).

Karanapaddhati (still in current use). Date unknown, possibly mid 16th c. CE.

Sankara Varma (Appu Tampuran) of Katattanat, 1800-1838, Sadratnamala (1829).

Rama Varma (Maru) Tampuran, 1948. Commentary on Yuktihhdsd with Akhileshwar 
Aiyar.
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C H A P T E R  4

Time, Latitude, Longitude, 
and the Size of the Globe

Why precise trigonometric values were needed in India for  determination 
o f time, latitude, longitude, and the size o f  the earth

499 CE), the second minute (Vatesvara, 904 CE), and the third minute (Govindasvâmin 9th 
c. CE, Mâdhava 14th c. CE). Why were trigonometric values needed? What social processes 
related to this drive for ever-increasing precision?

Trigonometric functions were introduced in the context of time measurement. (Accurate 
planetary models were developed for the same reason, but we will not examine that here.) 
Time-measurement and calendar-making had a special significance in the Indian context, 
since the economy relied (and still relies) on agriculture, and agriculture relied (and still 
relies) on the monsoons, so that a good calendar was (and still is) required to calculate the 
seasons and especially the rainy season. In contrast, in the West, the calendar was, for a long­
time, used mostly for ritual purposes, so that the role of the calendar as a key technology 
enabling monsoon-driven agriculture (and hence the prosperity and wealth of pre-colonial 
India) has not been appreciated.

An immediate illustration of the role of the calendar in agriculture is provided by the 
events of the preceding years. There was widespread panic, as evinced by newspaper head­
lines, because the monsoon was “delayed” according to the Gregorian calendar, which how­

OVERVIEW

i saw in the previous chapter how the calculus developed through a continuous 
effort, spanning a thousand years, to obtain the numerical values of trigonomet­
ric functions precise to the first minute (Surya Siddhanta ca. 3rd c. GE, Aryabhata,
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ever lacks the very concept of a “rainy season”. The matter was not confined to newspapers: 
some state governments geared up for drought relief, and requested and actually received 
vast sums of money from the central government, in anticipation of drought. The monsoon, 
however, came right on time according to the traditional Indian calendar. Nevertheless, 
there was partial crop failure due to the mistiming of agricultural operations, by those farm­
ers who had been advised to go by the Gregorian calendar.

Agricultural activities in India were naturally tied to various festivals, and to a common 
calendrical tradition spread across India. Calculations related to the calendar were tradi­
tionally done for a single place—UjjayinI, for at least the last 1500 years. The calendar was 
then recalibrated for the local place.

Because the common Indian culture was spread over so wide a geographical area, re­
calibration of the calendar required a knowledge of the local latitude and longitude, which 
was determined mainly by celestial observations, and accurate values of trigonometric func­
tions. For example, as described by Bhâskara I, local latitude could be determined from a 
measurement of solar altitude at noon, using precise values of trigonometric functions (and 
supposing that the day of the equinox had been correctly identified on the calendar, unlike 
the Julian calendar).

Another essential input that went into the determination of local latitude and longitude 
was the size of the earth (assumed spherical). First, accurate angle measurements made 
locally were adequate to calculate the radius of the earth using precise trigonometric values, 
as documented by al Bïrûnî. Precision in trigonometric values was important because the 
earth is very large, so that even small imprécisions in trigonometric values would lead to 
large inaccuracies in calculating the radius of the earth. Secondly, the circumference of 
the earth needed to be calculated from its radius. This required a precise knowledge of 
the relation of circumference to radius, or a knowledge of the number today known as 7t. 
Again precision was important because of the large size of the earth: small imprécisions in 
the value of tt would have led to large inaccuracies. Further, as we have already seen in 
the preceding chapter, increasingly precise knowledge of 7r was also needed as an input to 
calculating increasingly precise values of trigonometric functions.

The knowledge of ways of accurately determining local position, using celestial observa­
tions and calculations, was also useful for navigation. And navigation was a prerequisite for 
overseas trade—the other key source of early Indian wealth. The archaeological evidence 
of ports in Harappan sites shows that sea trade was already important in Harappan times. 
Sea trade routes to Alexandria certainly existed from pre-historic times (and were already so 
famous by the time of Alexander that he appointed an admiral, Nearchus to try to find the 
sea route to Alexandria from “India”, i.e., present-day Afghanistan). Herodotus similarly 
expresses his conviction that Egyptians had practised navigation.1 Around the 3rd or 4th c. 
CE, Indian trade with the Roman empire had expanded so tremendously that Roman his­
torians were complaining about the significant loss of Roman wealth to high-priced goods
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imported from India. It was more efficient to transport heavier items like wood and ele­
phants via sea, and some 120 ships sailed annually to Alexandria during Roman times. This 
trade with Alexandria was apart from the trade with Arabs, sub-Saharan Africa, and China. 
This kind of bulk and long-standing sea trade suggests secure routes, hence an established 
and reliable technique of navigation.

What technique of navigation did these vessels use? It is clear enough from early histor­
ical accounts like those of Fa-IIsien that, contrary to garbled Western histories of shipping 
and navigation, and contrary to the method followed by Nearchus, trading vessels did not 
creep along the coast, but navigated across the open sea, though they did not use charts 
and maps as in the West. Fa-Hsien states that his ship was unable to navigate when the sky 
became overcast, and this shows that celestial navigation techniques were used. Increasing 
volume of overseas trade (with Africa, Arabs, and China) required increasingly reliable trade 
routes, and hence increasingly reliable techniques of navigation. This, in turn, required 
increasingly precise trigonometric values. For example, longitude at sea could well be de­
termined by Bhaskara Fs method of determining longitude using a clepsydra, to measure 
the time difference between the time of observed phenomena and their calculated time for 
a reference longitude: typically the meridian of Ujjayini, which then played a role similar 
to the present-day (and presumably derivative) notion of the meridian of Greenwich. These 
methods, however, could only be as accurate as the trigonometric values used, and hence a 
great interest in precise trigonometric values also characterized early European navigational 
theorists of the 16th c. CE like Nunes, Clavius, and Stevin.

The new finite difference method of computing precise values of trigonometric functions, 
expounded in the Aryabhatlya, breaking away from earlier geometric methods, was the key 
breakthrough enabling this precision, as we have already seen. Because of its great practical 
value, this knowledge was also vigorously pursued by Arabs and Moghuls (al Kashi), and the 
Chinese.

I
TRIGONOMETRIC VALUES AND LIME MEASUREMENT

The calculus, as we saw in the previous chapter, developed in the process of deriving ever 
more accurate values of trigonometric functions. Trigonometric values are unknown to Hel­
lenic tradition, howsoever broadly interpreted to include a big part of the African continent. 
Egyptians certainly developed astronomy—presumably for its practical value for navigation, 
for example. Some of this Egyptian knowledge of astronomy is presumably incorporated 
in the work of “Ptolemy of Alexandria”, whose astronomical “observations” were reportedly 
carried out in the Great Library of Alexandria.2 Nevertheless, even in the 11th c. Almagest, 
as Toomer remarks, “Ptolemy” used only the chord. As we have seen, “Ptolemy” had 
difficulty with multiplication and fractions, and did not even remotely have a technique of
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square-root extraction, so it is not clear how or why (or even whether) he actually derived his 
table of chords, in the form in which it is presented to us today through the diligent work of 
historians. Trigonometric values first appeared in Europe with Regiomontanus (1434-1476 
CE), who undoubtedly obtained these values from unacknowledged Arab sources, using 
them in the context of astronomy, with a view to navigation, as in the lunar ephemerides 
that he published.

Twelve hundred years earlier, in India, trigonometric values were already in use in the 
Surya Siddhanta, and we saw how Aryabhata I, in the 5th c. CE, modified the method of 
obtaining those values, shifting from earlier geometric techniques to a finite difference tech­
nique. Why were trigonometric values important? They are found in the context of'jyotisa.

The Meaning o f  Jyotisa

What is jyotisa , and why was jyotisa important? In the typical character of Western histories 
of science, Western historians like Pingree have referred to jyotisa as “astral knowledge”— 
perhaps the sort of religious and astrological thing that Kepler and Newton3 were deeply 
interested in. (Newton was not the only scientist to reconcile his belief in prophecy with 
science; scratch a physicist today, and he will tell you that the test/value of a physical theory 
relates not to refutability but to its ability to predict the future! As for Kepler, we will soon 
see the relevance of his profession of astrology.) The belief in prophecy has a long and deep 
seated cultural history in the West. A key objection to Islam, listed by Thomas Aquinas, was 
that its founder, Paigamber Mohammed, made no prophecy. In fact the Western belief in 
prophecy dates back to the time when the first oracle was introduced in Greece by a black 
woman abducted from Egypt.4

This belief in prophecy and divination related to the strong anti-scientific bias in Greek 
culture already noted: at his trial, Socrates was accused of not worshipping the moon as 
a god, but of regarding it as a clod of clay—for this offence he was to be punished with 
death. Socrates responded that his accuser was confounding him with Anaxagoras (who had 
earlier ed, after being found guilty of the same offence), and that he was innocent of any 
dangerous physical speculations, and that he believed in gods, since he believed in demi­
gods, and Socrates went on to swear by Zeus to establish that he was not a disreputable and 
scientific atheist.0

It would, however, be a gross misrepresentation of early Indian tradition to attribute to it 
any such belief in astrology or prophecy, or any similar anti-scientific bias. Varahamihlra (6th 
c. CE) is the earliest person to whom astrology in India is attributed. Irrespective of whether 
this attribution is correct, astrology in India postdates Varahamihlra so, in all likelihood, 
astrology was transmitted into India.

This is in contrast to Indian astronomy which has a long history of some 3000 years 
of indigenous development, in response to local practical needs, from about —1350 CE6
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to about 1550 CE (Yuktibhdsd) or, perhaps 1730 CE (Jai Singh). The Vedanga Jyotisa places 
timekeeping7 at the head of all sciences (sdstra-s), describing it to be like the plume of the 
peacock or the crest-jewels of serpents.

Hence, also, unlike Greek tradition which abounds in oracles, no respectability is attached 
to astrology in early Indian tradition. Indeed, the Buddha states, quite categorically in the 
Diglia Nikdya,8 that common people regard fortune-telling as an unethical means of livelihood.

“It is, monks, for elementary, inferior matters of ethical practice that the 
worldling would praise the Tathagata__ ” “Whereas some ascetics and Brah­
mins make their living by such base arts as predicting good or bad rainfall... the 
ascetic Gotama refrains from such base arts and wrong means of livelihood.”

It may be noticed that the Buddha is here referring to the then common perceptions of 
ethical ways of earning a livelihood—and at the time of the Buddha, the common people 
were not already Buddhists, but were what Westerners would call “Hindus”.

Jyotisa, as in the Vedanga Jyotisa, referred to timekeeping, which Western historians have 
purposely mis-translated as astrology, astral knowledge and the like. As I have repeatedly 
pointed out in other contexts,9 the entire Vedanga Jyotisa10 does not contain a single sentence 
relating to astrology or prophecy—it is entirely a practical manual of timekeeping relating 
the time measured by a clepsydra to solar and sidereal days etc., for example, as follows:11

A vessel which holds (exactly) 50 palas of water is the measure called adhaka. From 
this is derived the drona measure (which is four times the adhaka). This lessened 
by three kudava measures (i.e., three-sixteenths of an adhaka) is the volume mea­
sured (in the clepsydra) for the length of one nadika of time.

(As explained in (R-VJ 16) and (Y-VJ 38), 2 nadika-s make a muhurta, 30 muhurta-s make 
a day, so muhurta had exactly the same meaning as it has today, so that 60 nadika-s make a 
[civil] day.)

Neither can we find a word of astrology in the works of Aryabhata, Bhaskara, Varaha- 
mihlra’s Pancasiddhantika, or in Vatesvara, or Aryabhata II, or Madhava, or Jyesthadeva, 
which tradition oli jyotisa collectively spans some 3000 years. This is in stark contrast to the 
Greek belief in oracles, and the related belief in the religious value of prophecy, which con­
tinues right down to Kepler who cast horoscopes and, quite naturally, extended his practice 
of deliberate fraud also to his scientific “observations”.12 The Indian approach to science 
was practical, not religious like that of Newton13—in whose religious beliefs prophecy was a 
key element.

To su mm arize, jyotisa mistranslated as astrology (phalita jyotisa) is of no concern to us or 
to any of the texts under consideration. In our contexts, jyotisa refers to its original sense of 
timekeeping, and to related questions about astronomy and mathematics. In India, unlike 
the case in the West, astrology did not precede astronomy, but came some 2000 years after it.
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The Practical Importance of Timekeeping

From very ancient times, timekeeping has been done by observation of the sun, moon, and 
stars. Many ancient civilizations have left behind numerous evidences of their consequent 
interest in astronomy and mathematics. One would imagine that (if our ancestors were 
not utterly foolish, as Western historians have continuously sought to portray) all this effort 
would have had some practical purpose in mind.

Astronomy was used for timekeeping, but why was timekeeping important? In the Eu­
ropean tradition, for a long time, the only function of timekeeping was ritualistic. Time 
meant the time for saying prayers. Notwithstanding the doctrine of progress, the Christian 
calendar regressed into a purely ritual calendar, as follows.

The word “calendar” derives from the Latin calends; in pre-Christian Rome, this meant 
the first day of the month, and especially the first day of March on the Julian calendar, 
from which the new year commenced, near the vernal equinox. (Prior to the Julian calendar 
there prevailed in the Roman territories only confusion regarding timekeeping—correctly, if 
unwittingly, characterized as “ultimate” confusion by Julius Caesar, who sought to end it by 
recourse to a year of 445 days!) The Roman year was primarily a civil year, with only a coarse 
correlation to astronomy— 14and the calends seem to have been used mainly for accounting 
purposes.

This Roman civil year acquired a ritual significance for Christians. Prior to Constantine, 
the Christians in the Roman empire celebrated “Easter” (called pascha in Greek) along with 
the Jewish festival of Passover.10 On this day a goat is sacrificed, as in the Islamic festival of 
Bakr-Id (Id-uz-Zuha, Eidul Azha, which is however celebrated in the 12th month). However, 
the Jewish calendar, like the Islamic calendar, is a lunar calendar, derived from Babylon 
(Iraq), and has some 354 days in a year, with an additional inter-calary month.16 Conse­
quently, the festival of the Passover which occurs after the 14th day of the first month after 
the vernal equinox, may occur on any day of the week.1'

This situation was displeasing to a certain section of the Christians in the Roman empire, 
for they wanted their holy day to fall always on the Christian Sabbath, viz., Sunday, and this 
was decreed accordingly by the Council of Nicaea, regarded as the critical turning point in 
Christian history, which however had the sole agenda of fixing the date of Easter. (Easter was 
fixed as the first Sunday after the first full moon after the vernal equinox, provided it did 
not coincide with the Passover—in which case it was to be moved to the next Sunday.) The 
Easter festival relates to the Roman and Jewish new year, and what then was the Christian 
new year—it is obviously not possible to accept in any literal way the Christian myth that 
Easter commemorates the “historic” event of the resurrection of Christ.18

This reliance on the cycle of the week—7 civil days—to determine the key festival which 
marked the new year, shows how the Christian calendar came to be disconnected from astro­
nomical phenomenon. This rift widened with the long-term drift between the tropical year 
and the Roman civil year of 365 \ civil days. Furthermore, while the date of Easter fixed by
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the Nicene council was determined relative to the first full moon (at Alexandria, after the 
vernal equinox), and hence was “moveable”, later Christian festivals occurred on fixed days 
of the civil calendar, further alienating the calendar from any natural phenomenon.

Thus, in European tradition, only moneylenders and priests needed to know how to 
tell the time of the year: and the latter especially were little concerned with astronomical 
phenomena, and were too innumerate to handle it.19 Thus, the Julian calendar came to 
be ritualised and completely divorced from both natural phenomenon and the process of 
economic production. This completely ritualistic approach to timekeeping is evident even 
today in the names for the times of the day itself, like noon, that are derived from the time of 
saying prayers. But this sort of totally ritualistic approach to time was exclusive to European 
tradition. It would be wrong to generalize this to other traditions, as some historians and 
sociologists have attempted to do.

The Calendar and Indian Agriculture

What was the practical importance of timekeeping? In Indian tradition there is a straightfor­
ward answer. The calendar was and is closely related to key aspects of economic production. 
Idle entire economy was (until recently) dependent upon agriculture (although in the last 
few years the contribution of agriculture has declined to a little less than 60%). And agricul­
ture in India was (and to a substantial extent remains today) dependent upon the monsoons. 
Quite unlike the English notion of “a rainy day”, in India the arrival of rain is widely cele­
brated, and this celebration has long been re ected in traditional songs, poems, literature, 
annual festivities, etc., all of which underline the great importance of the monsoons to In­
dian tradition. Hence also the importance of timekeeping: a calendar is required to know 
the timing of the seasons, and in particular the rainy season.

l ire successful practice of agriculture in India required a successful method of timekeep­
ing, to synchronize agricultural activities with the start and end of the monsoons, for exam­
ple. Consider, for example, what befell the European calendar (Julian calendar) when it first 
came to India, in Goa. The European calendar lacked (and still lacks) the concept of a rainy 
season. After the Christianization of Goa, through forcible mass conversions, destruction of 
all temples in Goa, etc.,20 marriages had to be performed in church halls, and the church 
fixed an “appropriate” time for weddings, depending upon the convenience of the church in 
Europe. T his created great consternation among the people in Goa, since this “appropriate 
time” happened to fall bang in the midst of the harvesting season, so the families themselves 
suffered great loss, and the guests were most reluctant to come. This led to a number of ap­
peals to Rome to permit a revision in the allowable dates of marriage. That was eventually 
done, but the calendar (and later the Gregorian calendar) continued to lack a fixed date to 
mark the start or end of the rainy season. So, there may be some point after all in consulting 
a jyotisi (in the sense of timekeeper, not astrologer) for the appropriate date of marriage!
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A calendar does not simply refer to that piece of paper which decorates the walls— 
pandering to the vanities of petty Roman dictators. In the Indian context, the calendar 
must be able to determine the rainy season just as the year (varsa) relates to rain (varsd) in 
the language. To this end, consider the more recent event of three years ago, which demon­
strated the continuing contemporary importance of the calendar for purposes of Indian 
agriculture, and shows the havoc that can even today be caused by a “delayed monsoon” or a 
bad calendar. To bring out the avour of the events as they were experienced, the boxes 4.1 
and 4.2 draw verbatim from articles written at that time.

Box 4.1. The not-too-soon monsoon of 2004

“Drought grips half the country: 274 of 524 Met Districts Get Deficient 
or Scanty Rainfall” screamed the top-left headline of The Times o f India (New Delhi, 
Friday, 30 July 2004, Late City Edition). It is raining cats and dogs outside, and 
the Hindustan Times, Bhopal HT Live of the same day (31 July) points out on its front 
page that, after the recent heavy showers, only one district in MP remains classified as 
having scanty rainfall (—60% of average). The Met department has issued a warning 
of further heavy rains. The basis of the Times o f India report is clear from the punny 
“Wither report” graphic which accompanies the headline, but is based on nine-day 
old data (as of July 21). Admittedly, it has been many years since I have thought 
of The Times o f India when I was looking for an instance of responsible journalism; 
however, what is one to make of the fact that the MP government itself had already 
prepared a plan asking the centre for Rs 200 crores as drought relief? Obviously, the 
government could not have waited for the drought to become full blown. According 
to another report, the Central government has already released Rs 50 crores to MP 
by way of drought relief. However, with reports of oods from Assam to Mumbai, and 
various places in between, it might have been better to prepare for ood relief!

More seriously, although the HT Bhopal Live report tells us that the rains have 
arrived just in the nick of time to save the crop, the TOI in a related report (p. 8) 
sounds the sombre warning that normal rainfall now may not save the crop a signifi­
cant proportion of which was sowed long ago.

Clearly, agricultural operations were significantly mistimed, and that can be po­
tentially damaging to the crop. But what was the reason for this mistiming? To repeat 
the question I raised last year: was the monsoon delayed or is the calendar wrong?

India has officially recognized two calendars, and according to the traditional 
pancanga, the current month is an adhika mdsa—an intercalary month—it is an addi­
tional Sdwan, and, as any child knows, Sdwan and Bhadon are the months in which it 
rains. The second month of Sdwan commences on 17th Aug 2004, and since there are 
two Sdwan-s, Raklii comes as “late” as 29 August. So the monsoon has arrived pretty 
much on time according to the traditional calendar, exactly as happened last year, 
when, too, the monsoon was declared to be delayed according to the Gregorian calen­
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dar, according to which the monsoon should have arrived long ago, by the first week 
of July. So who or what is to blame for the wrong timing of agricultural operations: 
the monsoons or the Gregorian calendar?

As an illustration of the old adage—that those who don’t learn from history are con­
demned to repeat it—it should be pointed out that the same point had been made a year 
earlier, but it did not quite register with those in authority.

Box 4.2. Could India s “failed” monsoon have been predicted by the right 
calendar?

Agriculture traditionally was the mainstay of the Indian economy, and still remains 
vital to the Indian economy. Accordingly, a method of timekeeping in the form of a 
good calendar remains a critical technolog)' in India. Traditional calendar-making 
techniques, calibrated over centuries, therefore, deserve serious consideration and 
evaluation, and should not be rejected in a cavalier manner.

Consider the current situation. This year [2003] the monsoon did not arrive for 
so long that there was a severe water crisis, and the government declared the state 
to be severely drought affected. Eventually the monsoon has arrived, after nearly a 
month of delay, and in Bhopal at least, the deficit has been wiped out, with oods 
in nearby rivers. (It is still raining heavily, but water is still being supplied only on 
alternate days!)

The question is this: was the monsoon delayed? or is the calendar wrong?
The background to this question is as follows. The traditional Indian calendar 

uses the sidereal year, while the Julian and Gregorian calendar uses the tropical year. 
The sidereal year is the time period in which the sun returns to the same position 
with respect to the stars—it is the orbital period of the earth around the sun—while 
the tropical year is defined as the time between two successive vernal equinoxes. The 
sidereal year involves the motion of the earth relative to the stars, and is MORE than 
365.25 days (365.256363 days, approximately), while the tropical year involves the 
motion of the sun relative to the earth, and is LESS than 365.25 days (365.24219 days 
approximately, at the present epoch). The difference between the two types of years is 
approximately 20 minutes per year (1223 s), which can become substantial over long 
periods. The difference is attributed to the precession of the equinoxes: the axis of 
the earth is thought to precess like a top, so that it points to different points in the sky 
at different times along a cycle of some 26,000 years (i.e., Polaris was not the north- 
star a few thousand years ago, and will not be the north star a few thousand years from 
now). One sidereal year is roughly equal to 1 + ^oo or 1-000039 tropical years.

The Julian calendar was based on the tropical year or the equinoctial cycle; so is 
its corrected version—the Gregorian calendar (which is the calendar in current use).
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The Gregorian calendar reform committee tried to consult Indian calendrical 
sources, as I have pointed out elsewhere—in connection with the transmission of the 
differential calculus from India to Europe. Christoph Clavius was the head of the Gre­
gorian calendar reform committee, and just prior to the Gregorian calendar reform 
of 1582, Clavius’ student, Matteo Ricci, was in India, in Cochin, searching for Indian 
calendrical manuals, after having been appropriately trained for this purpose. (I have 
a photocopy of Ricci’s original handwritten letter.) Europe then lacked the knowledge 
needed for a precise determination of the length of either the tropical or the sidereal 
year.

The Gregorian calendar reform itself was initiated because the Julian calendar 
fixed the length of the year very crudely—in my opinion just because the Romans 
were not adept with fractions. Because of the error in the second decimal place (the 
Julian calendar took the year to be exactly 365.25 days) the Julian calendar slipped 
by about 1 day every 128 years or so (365.25 — ^  = 365.24218 days), and had, by 
1582 CE, slipped about 10 days out of phase in the 1250 odd years since the Council 
of Nicaea fixed the date of Easter, by fixing the date of the vernal equinox on XII 
calends (21 March). Thus, towards the end of the 16th c. CE, the vernal equinox used 
to arrive around 11 March on the Julian calendar. The Gregorian calendar reform 
corrected that by (a) advancing the calendar by 10 days, and (b) by making every 
centennial year (e.g. 1700, 1800, etc.) not a leap year, except when divisible by 400 
(e.g. 2000). Basically, by removing some 3 leap days in 400 years (or 1 day in 133 
years) the Gregorian reform corresponded to a more accurate figure for the fractional 
part of the length of the tropical year, which it set at 365.25 — = 365.2425 days.
This correction of the calendar was needed for the very practical purpose of fixing 
latitude from observation of solar altitude at noon. (Navigation was, then, extremely 
important for Europe, which was then way behind the Indians and Arabs.) Although 
everything in Europe, including the mode of dress, required clerical approval, there 
could not have been any serious doctrinal considerations: the date of Easter was fixed 
at Nicaea more from a desire that Christians ought to differ from the Jews, and that 
objective would have been unaffected by a change in the date of the vernal equinox 
on the calendar. There was no doctrinal pressure from the Protestants for such a 
change—quite to the contrary they initially opposed the change, then later accepted 
it. Furthermore, the difference of ten days was too little to have had a visible effect 
on the seasons. But such a major step obviously had to have had a strong practical 
motive, which was why it was accorded religious approval.

The critical input needed for the reform of the Julian calendar was the exact 
length of the tropical year, sometimes called the problem of epacts in theological ter­
minology. The Roman church had tried to find a solution to this problem since pope 
Hilarius in the 6th c. CE, but these attempts were unsuccessful, despite access to all 
works in the Roman empire, including obviously the works of “Claudius Ptolemy” of 
Alexandria—in the form in which they then existed, if they did. The length of the 
year was, however, very accurately known in India at least since about the 3rd c. CE.
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Gregory’s bull only mentions a book by one Alyosius Lilio brought to his attention 
by his brother Antonio Lilio, who apparently used the Alphonsine tables, and thus 
obtained this information from Arabic sources like Copernicus did. While this infor­
mation from Arabic sources had been around for some time in Europe, Europeans 
lacked the means to verify it. Hence, quite possibly the critical input that the Jesuits 
in India provided was an “independent” confirmation of the validity of those figures, 
giving the green signal to Gregory.

The change of calendar did initially become a religious issue, since this changed 
also the date of Easter on the civil calendar (the sole point on the agenda at the Coun­
cil of Nicaea, which hence practically defined the Nicene creed). Protestants, among 
others, opposed the papal bull. The reformed calendar was eventually accepted in 
Britain and in USA (then a British colony) only in 1752, by advancing the calendar by 
11 days and implementing the rest of Glavius’ recommendations.

Though neither calendar has changed significantly in the last 500 years, percep­
tions have. Therefore, ironically, after independence, the Indian calendar reform 
committee adopted the Gregorian calendar without much ado! In its report, the 
Indian calendar reform committee,21 dominated by M. N. Saha (and N. C. Lahiri), 
simply stated that it is obvious that seasons depend on the tropical year.

For calendarical purpose [sic], it is unmeaning to use the sidereal year... as 
then the dates would not correspond to seasons. The use of the tropical year 
is enjoined by the Hindu astronomical treatises like the Surya Siddhanta and 
the PancaSiddhantika. But these passages have been misunderstood, and 
Indian calendar makers have been using the sidereal year with a somewhat 
wrong length since the fifth century AD.

If that is so, then the traditional Indian calendar ought to have slipped out of 
phase by around 21 days over the last 1500 years. Such a major failure should be 
pretty obvious, but is it? (Also, I don’t see the part about “misunderstanding”, since 
Aryabhata, prior to Varahamihira and the PancaSiddhantikd, unambiguously advocates 
the sidereal year.)

Exactly how is it obvious that one must use the tropical year? While it is true that 
physically the sun is the main source of heat, one does not merely want to determine 
the hot and cold seasons—for the key feature of the calendar in India relates to the 
monsoons, which are the mainstay for agriculture. The monsoons depend upon the 
wind regime.

The wind regime or global circulation is not, however, decided solely by the po­
sition of the sun. Hot air rises at the equator, but it does not descend at the poles. 
Because of the so-called Coriolis force, due to the earth’s rotation, the air is de ected 
and descends before the horse-latitudes.

The monsoons, thus, depend also upon the Coriolis force. The Coriolis force is 
an inertial force. The only possible inertial frame being a frame fixed relative to the
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distant stars, the Coriolis force hence relates to the sidereal motion of the earth. Thus 
it might be that the monsoons relate also to the sidereal year.

At any rate, the monsoons have arrived on time according to the Indian calendar, 
since Rakhi too was “very late” this time, and the current month is still Sravana. (The 
calendar we are talking about was calibrated for Ujjain, about 150 km from Bhopal.) 
The monsoons, however, are delayed by a month according to the Gregorian calendar: 
or, to put it differently, the Gregorian calendar has given the time of the monsoons 
in a grossly incorrect way. If the monsoons depend only on the tropical year, then, 
because of the difference between the tropical and the sidereal year, it is the Indian 
calendar that ought to have been out of phase by three weeks (around 21 days).

Admittedly, the argument sketched above is no more than a conjecture at this 
stage, but it does show that there is no particular basis to the belief that the tropical 
year decides the periodicity of the monsoon. Actually solving the Navier-Stokes equa­
tions over a long period to ascertain what the periodicity of the monsoon depends 
upon is a supercomputing problem (still a “grand challenge problem” according to 
NASA). In the absence of an actual solution, the assertion that the monsoons should 
have a simple periodicity depending upon the tropical year is also not particularly 
credible, but is merely an article of belief. At any rate, one cannot consider as obvi­
ous that the seasons depend only on the tropical year, and that the traditional Indian 
calendar is hence wrong. Perhaps this is so, but there is nothing obvious about it, and 
a study at least is needed, to establish things either way. The tropical year might well 
work for the seasons in Europe, but the considerations in India are obviously differ­
ent. (I may note in passing that what is required obviously is a causal rather than a 
statistical account.)

There could, of course, be other reasons why sidereal time was used in Indian 
astronomy. The rotation of the earth varies less than the apparent motion of the sun 
around the earth, so that the sidereal year provides a better method of timekeeping. 
It is better suited to planetary models, for the sidereal year is the “actual” time for the 
earth’s orbit. It is also a more convenient method of timekeeping: for stellar transits 
are easy to observe, etc.

A sidereal day is 23 hours, 56 minutes, 4.09 seconds, about 4 minutes less than a 
tropical day (in contrast to the sidereal year), so that there are 366.2422 sidereal days 
in a tropical year, compared to 365.2422 tropical days.

If the matter of the traditional calendar is re-opened, it will be necessary, of 
course, also to summarize—if not sort out—the whole vexatious issue of the precession 
of equinoxes vs libration: whether or not the precession of the equinoxes is actually 
taken into account in the Indian astronomical literature.

(A similar story was repeated in 2006, but it is too late to include those details in this 
book.22)
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Accordingly, known methods of timekeeping date back to the Vedanga Jyotisa (ca. —1350 
CE). (Doubtless, Harappans too had a calendar, but that script is yet to be deciphered, so 
there is nothing further to be said about that as of now.) There was and is no doubt a relation 
of the calendar to rituals: but the rituals related to festivals, and so many major festivals in 
India related (and still relate) to agriculture, or other productive activities. Underpinning 
the idea of rituals as a stratified, hence possibly degenerate, form of knowledge, those en­
trained into the rituals, like Holi, say, automatically carry out harvesting at the “right time”, 
after which it might get hot, and the crop might be damaged.

Calendrical Recalibration and Determination of Latitude and Longitude

India is a large country. While political boundaries have obviously varied over time, the 
preceding sentence is also historically true in the sense that we find similar cultural prac­
tices spread across a wide geographical area. The similarity of cultural practices made it 
natural for a calendar made in one place to he used in another. But, just because India is 
so large, the calendrical calculation made for one place cannot be used directly in another 
place within India—they need to be recalibrated. Despite a profusion of local colour, the 
various pancanga-s were based on essentially similar principles, so that a comparison of two 
calculations could also required recalibration. In any case, the practice evolved of doing the 
calendrical calculations for one place (Ujjayini), and then recalibrating as appropriate for 
another place.

This recalibration of the calendar, however, is not a trivial matter. To do this recalibration, 
it is necessary to have an understanding, for example, of how the sun, the moon, and the 
stars will be seen from different parts of the earth. In particular, this requires (1) knowledge 
of the shape and size of the globe, and (2) the ability to determine the latitude and longitude 
of a given place, to be able to relate the astronomical observations made at one place with 
those made at another.

II
THE SPHERICAL EARTH IN INDIAN TRADITION

In Indian tradition, definitely from the time of the Silrya Siddhanta and Aryabhata, and 
probably from long before that, the earth was regarded as a sphere. As Aryabhata describes 
it (Aryabhatiya, Cola 6-7):

The globe of the Earth stands supportless in space.. . Just as the [spherical] bulb 
of a Kadamba ower is covered all around by blossoms, just so is the globe of the 
Earth surrounded by all creatures, terrestrial as well as aquatic.
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While Aryabhata does not feel the need to defend the idea of a round earth, later writers 
like Lalla (748 CE) do. Lalla, in the 20th chapter of his Sisyadhwrddhida23 examines various 
false notions, and states that some people have the following false notions about the earth.

(20.6) Some think that the earth is infinite; others that it is plane like a mirror. 
Again, others say that it extends to many yojanas and oats on water like a boat.

(20.7) Some say that the earth is supported by a tortoise, a serpent, a boar, an
elephant or by mountain ranges__

He then refutes the belief that the earth is plane through a variety of arguments, some of 
which are the following.24

(20.31) The eclipse, the conjunction and rising of planets, the cusps of the Moon, 
and the length of the shadow (of the gnomon) at any time—the calculation of 
all these five depends upon the measurement of the earth, and agrees with the 
observed result.

(20.35) Mathematicians say that one hundredth of the circumference of the earth 
appears to be plane.

(20.36) If the earth is level, why cannot tall trees like the date palm, alas, be seen 
by man, though at a very great distance from the observer.

He separately refutes the belief that the earth is supported:2̂

(20.39) Clay is destroyed by water, so it is not possible for the earth [made of clay] 
to remain in water or to oat on it like a boat.

(20.40) If the heavy sphere of the earth can remain on water, which water stands 
supportless in space, why can the earth not remain in space?

(20.41) If the earth is supported by a tortoise or other things, by whom are they 
supported in space? If they can remain in space [unsupported] what prevents 
the earth from remaining thus [unsupported]?

This idea is elaborated by Vatesvara in his book also called Gola (meaning round or spher­
ical, since this too deals with the same subject of spherics).26

(V.2) Just as an iron ball surrounded by pieces of magnet does not fall through 
standing (supportless) in the sky, in the same way this Earth though supportless 
does not fall__
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(V.5) If the earth is supported by Sesa [serpent], tortoise, mountains, and ele­
phants, etc. how do they stand supportless (in space)? If they are believed to 
be endowed with some power [to stand supportless], why is not the same power 
assigned to the Earth?

He also refutes the idea that the earth would fall down, on the grounds that “up” and 
“down” are decided by reference to the centre of the earth.

(V.3) If you are inclined to believe that it falls down, say what is up and down 
for an object standing in space. The globe of the Earth... in what direction then 
should it fall?

(V.7) As here in our locality a ame of hre goes aloft in the sky and a heavy mass 
falls towards the Earth, so is the case in every locality around the Earth. As there 
does not exist a lower surface (for the Earth to fall upon), where should it fall?

He goes on to comfort people who are afraid they might fall off the earth.

(V.8) Just as a house lizard runs about on the surface of a pitcher [pot] lying 
in open space, so do the human beings move about comfortably all around the 
Earth.

Writers who precede Lalla and Vatesvara, e.g. writers like Aryabhata, or Bhaskara, or 
Brahmagupta, all invariably state that the earth is spherical, they state its dimensions etc., 
but they do not refute any such beliefs in a at earth. This suggests that the view was not 
seriously contested in their time.

(However, Aryabhata’s idea that the apparent movement of the celestial sphere is an 
illusion, “just as a man seated in a boat moving forward sees the stationary objects [on the 
river banks] moving backwards, just so are the stationary stars seen... as moving exactly west” 
(Gola, 9), is entirely his own, and is rejected by almost every one else in Indian tradition, 
including Varahamihira2' and Vatesvara, who regard the earth as stationary.)

Likewise, Varahamihira28 and al BIrunI20 not only stated this but they also arrived at 
fairly accurate estimates of the radius of the earth. (They erred in taking the earth to be a 
perfect sphere; but this was a legitimate approximation.) It is possible to compare the last 
estimate with current estimates, since the Arabic mile is accurately known in terms of current 
measures of length.

These estimates, like those of the 9th c. al Ma’mim (accurate to within 1%) were far, far 
superior to the European estimates from Columbus to Newton: Columbus, for instance, 
hawked the theory that the distance from Portugal to the Chipangu (Japan) of Marco Polo 
was 2760 miles, when the actual distance is closer to 12,000 miles.30 Thus his estimate was 
less than 25% of the actual value. (Newton’s initial estimate was marginally better off at 40%.)
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Being relatively isolated, the traditional navigational techniques of the Lakshadweep islands 
give us a fairly clear picture of the navigational techniques then used in the Arabian Sea. 
This knowledge of the round earth and its size was embodied in the traditional navigational 
practices: in the definition of the mm as the “distance from here to the horizon”.31

Calendrical recomputation for a given place depended upon the location of the place, 
and Indian astronomers used a system of latitude and longitude to fix location on both the 
celestial and terrestrial spheres. For the determination of terrestrial longitude, they took 
as a standard the meridian through UjjayinI (modern-day Ujjain). The present-day idea of 
the meridian of Greenwich may well be a direct (though unacknowledged) copy of this early 
Indian idea of the meridian of UjjayinI as a time standard for longitude determination.

Aryabhata and subsequent astronomers had a clear idea of how the sky is perceived from 
different parts of the globe. In particular, they had a clear idea of how drastically things 
vary with latitude. Thus, Aryabhata asserts that day and night last for six months each at the 
poles {Gold 16-17):

The gods living in the north at the Meru mountain (i.e., at the north pole) see 
the Sun, after it has risen, for half a solar year; so is done by the demons too 
[who live at the south pole].

Hence, in the computation of the duration of a Mahayuga, in the Visnu Purana, there is 
the equation 1 year of mortals = 1 day and night of the gods, because it was believed to be 
literally true!

Calendrical recomputation required an answer to the famous triprasna (three questions) 
about direction, place, and time. Hence, it required methods of determining the local lati­
tude and longitude, and some of these methods of determining the local latitude and longi­
tude had obvious applications to navigation.

Ill
EARLY NAVIGATION

Navigation did exist. Charts being central to Western techniques of navigation, Western 
accounts of the history of navigation have concluded with facility that the absence of charts 
indicates an absence of navigation. Perhaps one should not judge this erroneous conclusion 
too harshly, for at least an attempt has been made to provide evidence, which is a decided 
improvement over the usual fantasies substituted for history in the West.

It is very easy to see the untenability of the argument that navigation was impossible in the 
absence of charts, so that early navigators simply crept along the coast. Admittedly, this was 
the method adopted by Nearchus,32 and Vasco da Gama, who was ultimately compelled to 
accept the advice that this technique could only lead him to the Red Sea and that he had to
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strike out across the ocean to get anywhere near the source of the spices that he sought. But, 
the “Guzerati Moor”, Malemo Cana33, who brought Vasco da Gama to Calicut, certainly 
understood how to navigate across the sea from Africa to India—and it is well-recorded 
that he navigated without the use of any charts. (Although it was Vasco da Gama who was 
doing the “creeping along the coast”, it was he who is today regarded as navigator, while the 
actual navigator is called a “pilot”—one who only knows how to “creep along the coast”.) A 
variety of islands were known: Mahal DvTpa (Maldives) is found in every Arabic mariner’s 
manual, though Arabs hardly used charts. Sailing out to these islands certainly involved 
sailing out of sight of land; hence it necessarily involved sharp problems of navigation, for 
small islands can easily be missed, as is recorded in European navigation manuals of even 
the 19th century. In view of this sort of clear evidence of the existence of navigation without 
charts, the argument linking the existence of charts to the existence of navigation can only 
be regarded as an attempt to falsify history in a crude sort of way.

If we discard such fabricated accounts of the history of navigation, it is clear that naviga­
tion has existed from the earliest pre-historic times. The size of Harappan docks suggests 
organized large scale trade, hence navigation. The same suggestion emerges from the earli­
est records, like those of the Buddhists and Jains. From the earliest recorded times, islands 
such as Lanka and Java were known. Sri Lanka is recorded in the Ramayana, of course, but 
Ashoka also sent his daughter Sanghamitra there. One could hardly travel from India to 
Sri Lanka without sailing out of sight of land. Kautilya mentions the appropriate times for 
crossing the sea, suggesting that this was an established routine by his time.34

It has been alleged that though Indo-Arabic contacts stretch back to antiquity, the volume 
of sea traffic was small until Ilippalus. The “discovery” of the monsoon winds by Ilippalus 
seems inauthentic, and is perhaps a product of the historians’ imagination like the “discov­
ery'” of India by Vasco da Gama. Perhaps this really was a discovery for the Romans, who 
learnt of navigation rather late.

The sea route also extended to China. As described by Fa-Hsien,3° on his way back he 
stayed out at sea for a rather long time of ninety days. From Fa-IIsien’s account it would ap­
pear that people could not navigate when the sky was overcast. This suggests the inference 
that the magnetic compass was not then in wide use, and that the navigational techniques 
in general use then were purely celestial. It should be pointed out here that navigational 
problems were particularly acute on the eastern coast of India due to the erratic monsoons, 
sudden shifts in wind direction, and a practically east-west course. There are also problems 
associated with uneven sea depth, sunken reefs, and magnetic anomalies. These acute navi­
gational problems faced by the Gholas may have been part of the reason for wanting better 
sine values in astronomical techniques of navigation. Fa-Hsien’s account is reproduced in 
box 4.3 as it is an early record which explicitly speaks of the celestial navigation techniques 
used in a long sea voyage.
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Box 4.3. Fa-Hsien s description of a sea voyage

“The great ocean spreads out, a boundless expanse. There is no knowing east or 
west; only by observing the sun, moon, and stars was it possible to go forward. If the 
weather were dark and rainy, (the ship) went as she was carried by the wind, without 
any definite course. In the darkness of the night, only the great waves were to be seen, 
breaking on one another, and emitting a brightness like that of fire, with huge turtles 
and other monsters of the deep (all about). The merchants were full of terror, not 
knowing where they were going. The sea was deep and bottomless, and there was no 
place where they could drop anchor and stop. But when the sky became clear, they 
could tell east and west, and (the ship) again went forward in the right direction. If 
she had come on any hidden rock, there would have been no way of escape.

“After proceeding in this way for rather more than ninety clays, they arrived at a 
country called Java-dvipa, where various forms of error and Brahmanism are our- 
ishing, while Buddhism in it is not worth speaking of. After staying there for five 
months, (Fa-hien) again embarked in another large merchantman, which also had on 
board more than 200 men. They carried provisions for fifty days, and commenced 
the voyage on the sixteenth day of the fourth month.

“Fa-hien kept his retreat on board the ship. They took a course to the north-east, 
intending to fetch Kwang-chow. After more than a month, when the night-drum had 
sounded the second watch, they encountered a black wind [ta fung = the great wind = 
typhoon = toofan] and tempestuous rain, which threw the merchants and passengers
into consternation__ After day-break, the Brahmans deliberated together and said,
It is having this Sramana on board which has occasioned our misfortune and brought 

us this great and bitter suffering. Let us land the bhikshu and place him on some 
island-shore. We must not for the sake of one man allow ourselves to be exposed to 
such imminent peril.’ A patron of Fa-hien, however, said to them, If you land the 
bhikshu, you must at the same time land me; and if you do not, then you must kill 
me. If you land this Sramana, when I get to the land of Han, I will go to the king, 
and inform against you. The king also reveres and believes the Law of Buddha, and 
honours the bhikshus.’ The merchants hereupon were perplexed, and did not dare 
immediately to land (Fa-hien).

“At this time the sky continued very dark and gloomy, and the sailing- masters 
looked at one another and made mistakes. More than seventy clays passed (from their 
leaving Java), and the provisions and water were nearly exhausted. They used the salt­
water of the sea for cooking, and carefully divided the (fresh) water, each man getting 
two pints. Soon the whole was nearly gone, and the merchants took counsel and said, 
At the ordinary rate of sailing we ought to have reached Kwang-chow, and now the 
time is passed by many days;—must we not have held a wrong course?’ Immediately 
they directed the ship to the north-west, looking out for land; and after sailing day 
and night for twelve days, they reached the shore on the south of mount Lao,__ ”36
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Like calendrical recalibration, navigation required a way to answer the triprasna, and de­
termine latitude and longitude of a given place. By Fa-Hsien’s time many such methods 
existed and were widely known.

IV
LATITUDE DETERMINATION

Latitude from the Pole Star

The latitude of a place on earth coincides with the altitude of the celestial pole. Since the 
pole star is approximately at the celestial pole, the simplest way to determine the latitude is 
by measuring the altitude of the pole star. This method was certainly well known to Indian 
tradition. While this method works for all of India, it is not so convenient to use at lower 
latitudes, on land, where the horizon may be obscured by trees etc. We take this up in the 
next chapter.

Latitude from the Equinoctial Midday Shadow

Another popular method was to determine the local latitude using the equinoctial midday 
shadow. This method is described by Bhaskara.

On level ground erect a gnomon at the intersection of the direction lines (east- 
west and north-south lines), and test it for perpendicularity. Square the equinoc­
tial midday shadow of the gnomon, and add to it the square of [the height] the 
gnomon. By this result divide the radius multiplied by [(a)] the gnomon, and 
[(b)] the shadow. This gives respectively the Rsines of the coaltitude and the 
latitude.37

That is, if
s = length of the equinoctial midday shadow, 
g = height of the gnomon,
R = radius of the celestial sphere,

= latitude of the place, and 
C = coaltitude of the place (= 90° — ), then

and

R sin C

R. sin

g x  R
(4.1)

\Jg2 + s2 ’

s x R,

V  (.92 + s2)
(4.2)

The above corresponds to
tan

s
9

(4.3)
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so that there is a very simple way to determine local latitude, provided one has, for example, 
an accurate way of calculating arctangents or arcifying sines.

Equinoctial Midday Shadow from Observations of the Pole Star

The equnioctial midday shadow can be determined directly by observations carried out at 
midday on equinox. But, of course, it is not necessary to wait until equinox to know the 
equinoctial midday shadow at a given place. One can determine the equinoctial midday 
shadow even by making observations on any night!

Thus, one can also find the equinoctial midday shadow by observations of the pole star, 
as is clear from the following verse of Vatesvara.

One should observe the Pole Star towards the north along the hypotenuse (karna) 
of the triangle-instrument, assuming its base to be equal to the gnomon; then the 
upright (of the triangle instrument), which lies between the line of vision and the 
base, will be equal to the equinoctial midday shadow.38

As Shukla elaborates,

The triangle-instrument referred to here, is of the shape of a right-angled tri­
angle. When it is held in the meridian plane towards the north with its base 
horizontal, its hypotenuse points to the Pole Star.

Since the angle between the sides meeting at the eye is equal to , the latitude of the place, 
and the base of the triangle has been assumed to be g, the size of the gnomon, therefore, 
the upright of the triangle instrument is equal to g tan , which by (4.3) is just the length of 
the equinoctial midday shadow.

Equinoctial Midday Shadow from Observations at Sunrise

The local latitude or the equinoctial midday shadow can also be determined in various other 
ways, for example through observations made at sunrise. For example, one can proceed as 
described in the Vatesvara Siddhanta (3.1.12-14):

12. One should build an earthen platform which should be large, circular, as high 
as one’s shoulders, with surface level with water, with circumference graduated 
with signs and degrees, and with well ascertained cardinal points.

13. Let a person, standing on the western side of that (platform) observe the 
rising Sun through the centre of the circle. Then the Rsine of the degrees of that 
point of the circle where he sees the rising Sun is the Sun’s agrd.
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14. The (Sun’s) agra multiplied by 12 and divided by the Rsine of the (Sun’s) 
declination is the hypotenuse of the equinoctial midday shadow (palasravana or 
palakarna). By the difference between the hypotenuse of the equinoctial midday 
shadow and the gnomon multiply their sum and take the square root (of the 
product): the result is the equinoctial midday shadow (aksabha or palabha).

There are a couple of implicit assumptions here. First, the circumference of the circular 
platform is supposed to be so graduated that the east mark is the zero. Hence, the point 
at which the Sun is observed to rise measures its actual angular deviation from the east. 
Accordingly, the Rsine of that angle is just the distance of the Sun’s rising point from the 
east-west line. Second, the figure 12 comes from the assumption that the gnomon (sanku) is 
12 angula-s (fingers) as usual.

The verse corresponds to the following. Let

a = the observed angular deviation of the Sun from the east,
Rsin a = agrd,

= Sun’s declination,
h = hypotenuse of the Sun’s equinoctial midday shadow7, 
s = the Sun’s equinoctial midday shadow. 
g = height of gnomon = 12.

Then

and

h =
Rsin a x g 

Rsin

s = V {h -  g)(h + g) -  \f h2 -  g2

(4.4)

(4.5)

The above relations (4.4), (4.5), when combined with (4.3), relate the local latitude to 
solar declination through observations made at sunrise.

This relation can be used in various ways. If the local latitude is known, it can be used 
to determine the solar declination on a given day. Alternatively, it can be used to fix local 
latitude as follows.

Ahargana System, Declination, and Latitude

The Indian ahargana system involved a simple day count from a fixed day. This ahargana 
system is remarkably similar to what is today known as the Julian day-numbering system 
(except for its zero point). The Julian system is so named by Julian Scaliger, a contemporary 
of Clavius, who claimed to have “discovered” it just when he had ample opportunity to learn 
about the Indian ahargana system.

Indian texts stated several algorithms which enabled ready computation of the ahargana 
corresponding to the calendar date in question, and the ahargana corresponding to the
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(nearest) equinox. That is, because the ahargana system was prevalent, it was an easy matter 
to compute the number of days elapsed since equinox. (As we shall see, this was not pos­
sible with the Julian calendar.) From a knowledge of the number of days elapsed since the 
equinox, and the sun’s maximum declination (taking it as approximately 24°), it is possible 
to approximately calculate the declination for any given day by a simple application of the 
rule of three.

Thus the local latitude (and the equinoctial midday shadow) could be readily calculated 
from a simple observation at sunrise, and a good calendar which embodied a knowledge of 
the precise date of the equinox.

Latitude Measurement from Solar Altitude at Noon

Similarly, local latitude could be determined by measuring solar altitude at noon. The ad­
vantage of this method is that it can be used anywhere (e.g. at sea) since it does not require 
a knowledge of the cardinal directions. (While cardinal directions are easy to determine on 
land, using the fish-figure, there may be a problem determining them at sea.) The (slight) 
disadvantage is that this method works best at lower latitudes. It is therefore a method 
complementary to the pole-star method, which works best at higher latitudes. It is also com­
plementary in the sense that it is a method which works during the day while the pole-star 
method works at night.

The general relationship between solar altitude a, azimuth A and declination , at a place 
with local latitude , is the following:

sin = sin sin a + cos cos a cos A. (4.6)

At latitudes between the tropics, when the sun comes on the prime vertical, cos A = 0, so 
that the relation simplifies to

sin = sin sin a (4.7)

when the sun is on the prime vertical.
This relation is described by Bhaskara I as follows.39

The Rsine of the Sun’s northern declination—when less than the Rsine of the 
latitude—multiplied by the radius should be divided by the Rsine of the lati­
tude: the result is the Rsine of the altitude of the sun when it is on the prime 
vertical.

The square root of the square of the radius diminished by the square of the 
Rsine of the Sun’s altitude when multiplied by twelve and divided by the same 
Rsine of the Sun’s altitude gives the shadow (of the gnomon corresponding to 
the Sun on the prime vertical.)
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That is, when the sun is on the prime vertical, if a is its altitude, is its declination, and 
is the latitude of the local place, then

„ . Rsm x R
Rsin a — ------ :-------

Rsin
(4.8)

which is the same as (4.7).
The next stanza gives the method of determining the solar altitude by observing the 

shadow s of the gnomon of length g = 12. It says,

s =  — R2 -  (Rsin a)2 * . (4.9)
Rsin a

The above equation would be rewritten in present-day notation as

s = g cot a. (4.10)

Thus, using the knowledge available in widely circulated early 7th c. CE Indian texts, local 
latitude could be fixed at any location on land or sea, by day or night, either by observing 
the pole-star altitude, or, on any day of the year, by making simple observations at sunrise 
or midday or sunset, provided the solar declination for that day was known, i.e., provided 
the number of days elapsed since the equinox or solstice was precisely known.

V
LONGITUDE DETERMINATION

Time and Longitude

Present-day methods of navigation determine longitude using a chronometer. The basic 
idea is that the local time varies with the longitude, so by knowing the difference between 
the local time and the time at a fixed longitude, one can determine one’s local longitude. 
This principle was long known to Indian astronomers. For example, Aryabhata has a clear 
idea of how time varies across the globe (Gola 13):

When it is sunrise at Lanka, it is sunset at Siddhapura, midday at Yavakoti, and 
midnight at Romaka.

(The four names correspond to four imaginary cardinal points on the equator. In particular, 
Lanka is the point at which the meridian of UjjayinI meets the equator, somewhat below the 
island known today as Sri Lanka. The other points are all 90° apart. Lanka, here, does not 
correspond exactly to the actual island of Sri Lanka any more than Romaka corresponds to 
Alexandria, or Siddhapura to Singhpur (Singapore).

Thus, this principle of time varying with the meridian was known to Aryabhata, Varaha- 
mihira, Brahmagupta, and hence to Arab astronomers in the Sind-LIind tradition.
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The Prime Meridian

How was this principle of time varying with the longitude actually used? First, there was a 
concept of a prime meridian, as in the presumably derivative concept of the meridian of 
Greenwich that is in use today. The Indian prime meridian is described by various authors. 
For example, Bhaskara says,40

I ’he line which passes through Lanka, Vatsyapura, AvantI, Sthanesvara, and 
the “abode of the gods” [= Mount Meru = north pole] is the prime meridian 
[desantara vidhayani, lit. the prime meridian for longitude differences.]

(Here, AvantI is present-day Ujjain, and Sthanesvara is present-day Thanesar in Pakistan; 
while there is some doubt about the precise location of Vatsyapura, this is irrelevant for our 
purpose.)

Eclipses and Longitude

Various calculations were standardized for the prime meridian. In particular this included 
the time of the eclipses. This provides one method of telling the time difference between 
the local longitude and the prime meridian. This is indicated by Bhaskara as follows:41

The difference between the computed and observed times of an eclipse is the 
longitude in terms of time.

The computed time here relates to the time of the eclipse as observed from the prime merid­
ian, while the observed time relates to the time of the eclipse as observed at the local longi­
tude.

Eclipses are occasional occurrences, so this method, of course, is suitable only for deter­
mining longitude on land.

Bhaskara s Use of a Clepsydra to Determine Longitude

How would this principle have been used to tell the time difference at sea? Though the 
mechanical clock, which could mechanically indicate the time of far-away places had not 
been invented, highly portable clepsydras (water clocks) were readily available. The simplest 
of these clepsydras was that very common thing found in every south Indian household: 
half of a coconut shell, with a hole in one of its natural eyes. More elaborate versions of 
this clepsydra were available in the form of a copper vessel with a minute hole at its bottom. 
One measured time by the duration that this shell (or a more elaborate copper vessel) took 
to sink. Longer periods were measured by immediately emptying the shell and repeating 
the process. Such a clepsydra, though highly portable, could not directly tell the time at a 
distant place. But, Bhaskara I explains how such a water clock may be used to determine 
the local longitude:
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On any day calculate the longitude of the Sun and the Moon for sunrise or sun­
set without applying the longitude correction, and therefrom find the time (since 
sunrise or sunset), in ghatis, of rising or setting of the Moon; and having done 
this, note the corresponding time in ghatis from the water clock. From the differ­
ence, knowledgeable astronomers can calculate the local longitude in time.42

That is, instead of measuring the time difference between the local place and the prime 
meridian by a mechanical clock or by the time difference between the observed (local) time 
and the calculated (prime meridian) time of an eclipse, Bhaskara recommends that one 
should use the time difference between observed and calculated time of a more frequent 
event like the rising or setting of the moon, relative to the rising and setting of the sun.

The method suggested by Bhaskara I was called the method of ephemeris time in Europe, 
and was first known to Europe through the work of Regiomontanus, who compiled a table 
of lunar ephemerides for navigational purposes, and specifically longitude determination. 
It could not be used for long in Europe because European lack of knowledge about various 
astronomical parameters made the ephemeris tables like those of Regiomontanus unreliable.

Solving the Longitude Triangle Using the Size of the Globe

Apart from the methods of eclipses and ephemeris, Bhaskara I lists a third method of deter­
mining the local longitude. Though Bhaskara I calls this method “gross”, it seems to have 
been very popular, and is also mentioned by several other authors. This method involved 
solving the longitude triangle.

'l’he longitude triangle was obtained as follows (Fig. 4.1). First one identified a nearby 
town on the prime meridian. The line joining the local place A to the identified town B  was 
regarded as the hypotenuse AB of the longitude triangle. The perpendicular dropped from 
the local place on the prime meridian, and meeting the prime meridian at C  gave the base 
AC of the triangle. The latitude difference, expressed as a distance, BC, was the upright 
of the triangle. The longitude triangle was then solved from a knowledge of the size of the 
globe, which enabled a calculation of BC  from a knowledge of the latitudes of A and B  and 
the distance AB “as known from common people”.

This is described by Bhaskara as follows.43

Subtract the degrees of the latitude of one of the towns mentioned above from 
the degrees of the [local] latitude, then multiply [the difference] by 3299 minus 
8 25, and divide [the product] by the number of degrees in a circles [i.e., 360].
The resulting yojana-s constitute the koti [upright of the right-angled “longitude” 
triangle]. The oblique distance from the local place and the town [on the prime 
meridian] chosen above, which is known in the world by the utterance of com­
mon people, is the hypotenuse. The square root of the difference between their
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Longitude in yojana-s 
(Meridional departure)

B

Figure 4.1: Indian longitude triangle. T h e longitude triangle used in India as a “gross” method of 
determ ining local longitude

squares [i.e., between the square of the hypotenuse and the upright] is defined 
by some astronomers to be the distance [in yojana-s of the local place].

The only point which requires explanation in the above quote is the figure of 3299 — 
Bhaskara takes the radius of the earth to be 1050 yojana-s,44 and the value of 7t to be 3.1416, 
so that the circumference of the earth works out to 1050 x 3.1416 = 3298.68 = 3299 — 
When divided by 360° this gives the distance per degree latitude. So, what Bhaskara is 
saying is only that the difference (in degrees) of latitudes of A and B  when multiplied by 
the distance per degree latitude gives the arm BC  of the triangle. From a knowledge of the 
hypotenuse AB and the side B C  one can evidently calculate the remaining side CA.

Longitude and Departure

Several possible objections may be raised to the third method of measuring longitudes sug­
gested above. First, the above method yields what are called meridional departures rather 
than longitudes. Second, the method suggested above uses plane triangles, whereas accurate 
navigation would require spherical trigonometry.

These objections are easily met. As regards the first objection, it is quite true that depar­
ture differs from longitude, for the distance between meridians decreases from a maximum 
at the equator to zero at the poles. However, using accurate sine values and an accurate 
knowledge of the size of the earth, it is easy to convert between longitudes and departures. 
Bhaskara I states the rule explicitly.

The yojanas (of the distance of the prime meridian) from the local place are 
obtained on multiplying the longitude in gliatis by the local circumference of the 
Earth and dividing (the product) by 60.4o
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Here, yojana is a measure of distance, ghati is a measure of time, and the concepts of de­
parture and longitude are replaced respectively by “longitude measured in yojana-s” and 
“longitude measured in ghati-s”. The “local circumference of the Earth” refers to the cir­
cumference of the local circle of latitude; its value is given earlier by Bhaskara I:

3299 (yojanas) (the circumference of the Earth), multiplied by the Rsine of the 
coaltitude (of the local place), and divided by the radius (i.e., 3438’) is known as 
the (Earth’s) circumference at the local place.46

Furthermore, let us recognize that the reliance on charts for computing distance was an 
outcome of European reliance on the technique of dead reckoning for navigation. One need 
not be tied down to the European technique of dead reckoning for navigation, or to the use 
of charts for navigation, and for mechanically computing distance. So there is no reason 
why one should not simply use a coordinate grid consisting of latitude as one coordinate, 
and departure from a fixed meridian as the other coordinate.

Plane vs Spherical Triangles

The method of determining departures by solving a plane triangle was known to Arab navi­
gators as a tirfa calculation. Some authoritative Western historians of navigation like Tibbets 
have given crude examples of actual tirfa calculations, to suggest that Arab navigators were 
unaware of elementary plane geometry in the 16th century CE. This is strange, consider­
ing the criticism of the use of plane triangles mentioned by Bhaskara I (629 CE) nearly a 
thousand years earlier.

Thus, after stating the above rule, Bhaskara hastens to add in the very next verse that the 
longitude so obtained is not particularly accurate, and that the resulting longitude

.. .  has been stated to be incorrect by the disciples of (Arya) bhata . . .  on the 
grounds that the hypotenuse is gross... [and] on account of the sphericity of the 
earth__

That is, (a) distances obtained from accounts of common people need not be reliable, 
and (b) spherical triangles should be used instead of plane triangles.

Vatesvara explicitly comments in his Siddhanta (904 CE) that “the Earth’s surface being 
spherical, this [method of using plane triangles] is incorrect and unacceptable.”47 Spherical 
triangles should be used instead. A1 Biruni explicitly does this for longitude determination, 
using Brahmagupta’s formula for cyclic quadrilaterals.

Finally, it is clear that the distance as obtained from common people need not be reliable. 
This point is belaboured by SrTpati’s commentator Makkibhatta, who states:48
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The above rule is incorrect because of the curvature of the Earth and because of 
the uncertainty of the distance in yojana-s depending on hearsay. No intelligent 
person has verified the popular [estimates of the distances in] yojana-s by actual 
measurement with the help of hand, staff, or rope. Therefore, in the face of 
plurality of popular estimates of distances, this rule is improper.

But the rule nevertheless seems to have remained popular, and is given by Brahmagupta,49 
Lalla,°° etc., and long lists of towns on or close to the prime meridian have been provided 
by Lalla, Vatesvara, Srlpati, etc.

VI
SIZE OF THE GLOBE

The Longitude Problem of European Navigation

Before examining further details about Indian tradition, let us turn to the role played by 
this gross rule in European navigation a thousand years later. Prior to the invention of the 
mechanical clock, European navigators tended to rely on the disastrous method of “Dead 
Reckoning” (pun intended), which determined the departure (hence local longitude) by 
solving a plane triangle, in a somewhat similar manner.

The differences were as follows. Even the above gross way of determining longitude 
was not initially available to European navigators for a strange reason. The plausibility of 
Columbus’ idea of sailing west to reach east rested on an erroneous belief in an earth much 
smaller than the accurate Arabic estimates from al-Ma’mun’s Musali expedition. Presumably, 
Columbus de ated the accurate Arabic estimates, pretending that the earth was only ^th its 
actual size, to help obtain funding for his project of reaching India by sailing West. Perhaps 
he genuinely believed it. In any case, Columbus’ “success” lent weight to this wrong estimate 
for nearly two centuries: for example, Newton initially underestimated the size of the earth 
by some 60%, compared to the error of 0.25% in al Blrurri’s estimate 6 centuries earlier. 
It was only after Picard’s observations of 1671 that Newton revised his own estimates, and 
incorporated them in his later work.

The first consequence of Columbus’s erroneous estimate was that the use of the globe 
for navigation by Europeans led to disasters, so that the carrying of globes aboard ships 
was banned by Portugal as early as 1500.°1 Therefore, even though we today retrospectively 
realize that Picard’s estimate was accurate, this was not so clear to his contemporaries, and 
navigators in the 17th c. CE did not rush to change over to a new technique of navigation. 
The marine chronometer developed by the time (a century later) this revised estimate of the 
size of the earth became generally acceptable to European navigators, together with reliable 
and accurate sine tables. Moreover, there appears to have been a generalized cultural pref-



Time, Latitude, Longitude, and the Globe 229

erence in the West for instrumentation that helps to avoid the mental exertion involved in a 
computation.

Since the European navigators of the 16th and 17th c. CE lacked a clear idea of the size 
of the globe, they could not correctly relate latitude differences to physical distances. They 
could however use the course angle to solve the same triangle. That is, they solved the 
longitude triangle from a knowledge of (a) course angle, and (b) distance travelled.

The other difference was that the input for the distance travelled was obtained by mea­
surement all right, but the technique of measurement was the crude method of “heaving 
the log” and maintaining a continuous record of it in a log book. The more sophisticated 
form of this method was to use a rope with standardized knots, and measure the speed of 
the ship in “knots”, which measured the length of the rope taken up, as the log oated out. 
It was well recognized, as we shall see in more detail in Chapter 7, that this resulted in very 
unreliable estimates of the speed of the ship, and hence of the distance travelled: estimates 
that were probably much worse than the estimates by common people of the distance be­
tween two towns. Ehis led to the well-known problem that European navigators had with 
determining longitude at sea. The key part of the story that has not been told to date is that 
this was a problem peculiar to European navigation.

The irony is that the same plane triangle could have been solved from a knowledge of 
the course angle, the measured difference of latitudes between two points, and the distance 
per degree latitude, without having to rely on the distance.

Thus, if p is the departure, l is the difference of latitudes, d is the distance, and C is the 
course angle, in the plane sailing triangle (Eig. 4.2), the European method was to determine

p = d x sinC, (4.11)

while the triangle could also have been solved by

p — a x l x tanC, (4.12)

where a, the distance per degree latitude, enables one to convert the measured latitude 
difference from degrees of the arc to physical distance. Having an accurate value of a is 
equivalent to having an accurate estimate of the size of the earth. Such an estimate of the 
size of the earth was also required to convert from departures to longitudes, as done by 
Bhaskara I.

However, during most of the 16th and 17th c. CE, European navigators could not use 
the second method, since Columbus promoted a wrong estimate of the size of the earth, so 
Europeans lacked an accurate value of the constant a. It was this blunder which led to the 
specifically European problem of an inability to determine the longitude at sea. This seems 
never to have been discussed earlier in the literature for curious historical reasons, although 
longitude could have been determined by this method without the need for any complicated
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Meridional departure

Figure 4.2: Two ways to calculate departures. T h e right-angled triangle shown above, also called 
the plane sailing triangle, can be solved from a knowledge o f either (1) course angle and distance 
travelled, or (2) course angle and the difference o f latitude. T h e first method was used by Europeans 
in dead-reckoning navigation. T he second method requires an accurate estimate o f the size o f the 
earth: such an estimate was available to Indians from at least the 5th c. CE and to Arabs from at least 
the 9th c. CE, but not to Europeans until the late 17th c. CE. Hence, European navigators could not 
use the second method. This is w hat led to the famous problem o f determ ining longitude at sea— a 
problem specific to European techniques o f navigation.

instrumentation. Thus the European longitude problem was due to the difficulties that the 
Europeans had since they lacked an accurate knowledge of the size of the earth.

A trivial sort of objection that can be raised is about what would happen on the alternative 
method proposed above, in the case of “latitude sailing”, when one travels on a course which 
is directly east-west, so that the difference of latitudes is not available, so that longitude 
cannot be determined. This objection cannot be countenanced once we have shifted our 
mathematical philosophy from the formalistic approach, which strives towards complete 
generality, to a computational approach which seeks efficient algorithmic solutions, possibly 
on a rule-and-exception basis.02 A course due exactly east or wrest may be regarded as an 
exception—a set of probability/measure zero—something that would almost surely not arise. 
For any other course, one can obtain the departure (hence longitude) from a knowledge 
of latitudes and course angle, by solving the triangle of Fig. 4.2. (In the exceptional case 
of latitude sailing, the precise departure was not critically important in an age w hen time 
was not money.) So, in this exceptional case one could fall back on the use of less accurate 
methods based on estimating the distance travelled by other methods such as estimates of 
the speed.

To reiterate, glancing at Fig. 4.2, we see that departure calculation on the “Dead Reck­
oning” method solved the right-angled triangle from a knowledge of (a) course angle and 
(b) distance travelled. But the same right-angled triangle can also be solved from a knowl-
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edge of (a) the course angle, (b) the difference of latitudes, and (c) the distance per degree 
latitude.

Measuring the Size of the Globe

This last was a figure that was certainly known to Indian astronomers of the siddhantic 
period, but was known also to every Arabic astronomer from the time of Caliph al Ma’mun 
(reigned 813-33 CE), at the very beginning of the Sind-IIind tradition. While the Indian 
units of distance (the yojana) cannot be readily related to contemporary units, Arabic units 
can be. Al Ma’mun simply sent a team of surveyors to the Syrian desert: they physically 
travelled one degree north-south, and carefully measured out the distance so travelled. 
They arrived at a figure of 561 Arabic miles per degree of the meridian. There is the 
question of conversion from medieval to modern units. “This question was exhaustively 
investigated by Nallino 1892-3. He concluded that 56| Arabic miles is equivalent to 111.8 
km per degree which is astonishingly close to the accurate value of 111.3.”°3

'fhis estimate was no coincidence, and this accurate estimate of the size of the earth was 
confirmed by al BIrunI using the Indian method. All Indian astronomy texts state their 
differing estimates of the size of the earth, but do not document how they arrived at it— 
presumably since it involves very elementary geometry. Al BIrunI, who visited India and 
extensively studied and commented upon Indian astronomy, even translating an Indian text 
in astronomy, was, of course, very well conversant with the techniques of Indian astronomers. 
Hence, the method used by al-BImni is presumably the one used by Indian astronomers, as 
the reference to units in the following quotation further suggests. Since al-BIrunfs method 
is implicit also in the definition of the (fixed) zdm (Chapter 5), as a unit of distance, it is 
worth recounting in detail. Al BIrunI described it as follows in his Kitab al Tahdld.

You climb a mountain situated close to the sea or a level plain, and then observe
the setting of the sun and find out the dip of the horizon__ [Then] find the value
of the perpendicular of the mountain. You multiply this height into the sine of 
the complementary angle of the dip, and divide the total by the versed sine of 
this dip itself. Then multiply (twice) the quotient into 22 and divide the result 
by 7. You will get the.. .earth’s circumference (in the same units) in which the 
height of the mountain has been found.04

That is, one measures the height h of a hill by measuring the angle on subtended by the 
hill at a point, preferably at sea level. One then moves a known distance d towards the hill, 
on a level plane, and again measures the angle «2 subtended by the hill at that point. The 
height of the hill is obtained by applying the elementary trigonometric formula:

d
COt Ql — COt £*2

h =
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Assuming that the earth is a perfect sphere, when one climbs the mountain, and measures 
the angle of dip of the horizon, the line of sight is tangential to the sphere, hence orthogonal 
to the radius, and a simple calculation (Appendix 4.A) gives the above formula for the radius 
of the earth, hence the circumference.

Remaining Questions: Instruments and Precise Trigonometric Values

The only questions that remain are this: a precise estimate of the size of the earth re­
quires (1) an accurate instrument for angle measurement, and (2) accurate trigonometric 
values. The availability of precise trigonometric values we have already seen, in the previous 
chapter, and we move on to the question of an accurate but simple instrument for angle 
measurement—the kamdl or rdpalagai.
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APPENDIX 4.A
CALCULATING THE SIZE OF THE EARTH AND THE VALUE OF THE FIXED ZAM

We give below (Fig. 4.3) the simple geometry involved in al Blrunfs determination of the 
size of the earth, and the similar geometry involved in fixing the value of the zdmA3 

It immediately follows from the figure on the left, with 9 as the angle of dip, that

r
(r + h)

cos 9, (4.13)

so that

Figure 4.3: The size of the earth and the value of the zäm . T h e figure on the left shows the geometry 
involved in the Indian method of determ ining the size o f the earth, as documented by al BIrönl. T he 
earth is assumed to be a perfect sphere, so that the line o f sight which is tangential to the sphere at 
the horizon must hence be orthogonal to the radius at that point. T h e figure on the right gives the 
geometry involved in fixing the distance corresponding to one mm . T he “horizon” now refers to the 
base o f the tallest objects (e.g. tree tops) that are visible (i.e., are above the line o f sight).

r = (r + h) cos 9,

or
r (1 — cos0) = h cos9 = h sin#i,

so that
h sin 91

r = ------------.
1 — cos 9

The last expression is the same as al-BIrunl’s formula, since versin 9 = 1 — cos 9.
To fix the value of a zam, we observe that the distance to the horizon may be approximated 

by the side d\ of the above right-angled triangle. Clearly,

d\ = y/ (r + h i)2 \J 2rh\ = \Î2r\/h,i. (4.14)
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Similarly, an object of height h -2 is first visible over the horizon, when it is at a distance 
d/2 = s/2rs/h,2, over the true horizon. The fixed zdm or the “distance from here to the
horizon” refers to the distance

di + d2 = V2r (Vhi + V/^)- (4.15)

'baking the equatorial radius r =  6.378 x 106 m, h\ = 5 m (height of odarn°6), and
I12 =  10 m (height of coconut tree), we see that d\ + (I2 = 19.28 km, approximately 12
miles. These figures are illustrative—I have not checked out the typical height of odams 
and coconut trees—but it seems fair to say that the unit of a zdm incorporates within it a 
reasonably accurate estimate of the size of the spherical earth.
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Navigation: Kamal or Rapalagai

Precise measurement o f  angles and the two-scale principle

OVERVIEW

T he techniques of navigation, prevalent in the Indian ocean, though they did not 
require any charts, assumed an accurate means of measuring angles. Instruments 
for accurate angle measurement were used by navigators from pre-Islamic times, 

for they definitely sailed out on the open sea, out of sight of land, for example, in sailing 
to small islands like Lakshadweep, or to larger islands like Sri Lanka, known from earliest 
recorded times, or as described in Fa-Hsien’s travelogue. I describe one such instrument for 
angle measurement which I recovered from the Lakshadweep islands, and which is called 
the kamal in Arabic and rapalagai in Malayalam. This was definitely the instrument used 
by the Indian pilot who navigated Vasco da Gama across the Indian ocean from Melinde to 
Calicut, and Vasco Da Gama, who lacked the foggiest idea of its functioning, carried copies of 
the instrument back with him. (Based on a partial understanding of this instrument, many 
similar instruments were constructed in Europe in the 16th c. CE.) It was also probably 
the instrument used by al Biruniin his record of Indian techniques of determination of the 
size of the earth. The curious thing is this: the actual instrument we obtained, called the 
kamal or rapalagai, though made simply of pieces of wood and string, uses the golden ratio, 
and a sophisticated two-scale principle, nowadays most commonly used in the instrument 
known by the name of Vernier (callipers), but earlier named in the West as Nonius after 
Pedro Nunes’ use of this principle in another instrument to measure angles. Consequently, 
our kamal, despite a huge overall range of 1500 miles north-south, has an accuracy of 11 
miles at the lower end of the range, corresponding to an angular accuracy of 10 , needed to 
navigate to small coral islands.
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I
BRIEF HISTORY

A little over live hundred years ago, Vasco da Gama, having rounded the cape, was creeping 
along the African coast, full of imaginary fears about the motives behind traditional African 
hospitality. Equally, he was afraid to strike out across the “uncharted” deep sea. Ultimately 
he accepted the advice to do just that if he wanted to proceed towards the land of spices. But 
he needed a pilot to bring him from Africa to India so that he could “discover” India. There 
is a controversy whether the pilot who brought Vasco da Gama from Melinde to Kozikhode 
(Calicut) was an Arab (the legendary Ibn Majid) or a “Guzerati Moor”, Malemo Cana, as 
earlier accounts called him.1 (Vasco da Gama himself did not mention any nationality, for 
the obvious reason that he was unaware of Gujarat, and simply thought of all Muslims as 
Moors.) 'l'ibbets2 believes the latter is likely since Indians lack any sense of national iden­
tity. While agreeing with Tibbets’ conclusion, and without needing to deny his irrelevant 
observation (which applies equally to Europeans), the connection between observation and 
conclusion is nevertheless far fetched, for the Arabs then tended to regard the Portuguese 
as barbarians. As is amply clear from the organized arrangements for traders that Vasco da 
Gama encountered in Calicut, sea trade between India, Arabs, Africa, and China was at that 
time carried out in a peaceful and honourable way.

In any case, everyone agrees that the pilot3 {Mudllm, or Mdlmi, or “Malemo”) of that 
fateful voyage used the kamdl, a copy of which the mystified Vasco da Gama carried back 
with him. Vasco da Gama thought the pilot told the distance with his teeth! How did the 
pilot manage to do that?

Kamdl means complete, so kamdl. denotes a complete instrument. Rd means night as 
in rdtri, while palagai (usually spelt palaka) means a block of wood or instrument, so that 
rdpalagai means a night instrument.

It is now generally agreed that, during Vasco da Gama’s time, the boat-building and 
navigational techniques existing in the Arabian Sea and the Indian Ocean were superior to 
those possessed by the Europeans. The Arabs then ridiculed the European method of using 
charts.4 But things changed. According to l'ibbets, by the mid-nineteenth century, pilots in 
the Arabian sea had abandoned the kamdl for the sextant. However, the navigational needs 
of the Lakshadweep islanders (excluding Minicoy) were limited to travel to the mainland and 
back. They travelled for barter, and not for commerce or adventure. So the Lakshadweep 
islanders continued using the kamdl, and shifted to the kamdn (sextant) later.

In 1923, R. H. Ellis, a British officer, inspected the islands. He recommended0 that 
schools should teach a course on modern navigation. The recommendation was intended 
to make the British government and its institutions more popular with the islanders. Even­
tually, a textbook called Ndvik Shdstram written in Malayalam, was published in 1939, and 
teaching of modern navigational techniques commenced at Amini. 4bday, no Amini islander
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recollects seeing the rdpalagai in use. I spoke to two of the oldest Amini-based navigators, 
Syed Bukhari (b. 1929), and Ahmed Pallechetta (also around 70 years at that time), who too 
learnt from Syed Bukhari’s father; both used Ndvik Shdstram and “Noorie tables”.

As regards the Arabic-sounding “Noorie”, it should be clarified that the reference is to 
Nories Nautical Tables, a book first published by Capt. James Norie, in 1803, which has 
remained in print continuously since then, though it has undergone numerous revisions. 
The enormous success of the book presumably enabled Capt. Norie to acquire a stake in 
a publishing company, which now publishes the tables. The Norie tables in the present 
Rehmani of Kunhi Kunhi Maes try of Kavaratti refer to the declination tables for the sun from 
the 1864 edition of None s Tables, which he consulted from the Kavaratti library. However, 
the idea of using solar altitude and declination to determine latitude is detailed in numerous 
Indian and Arabic astronomy books from the 5th century CE onwards. So this idea was 
already very much a part of the navigational traditions prevalent in the Indian ocean—but 
the sources have changed.

Contrary to what one might expect, a priori, the navigational traditions vary substantially 
between the islands: a knowledgeable navigator at Kavaratti may be quite unable to explain 
an instrument such as the kolpalagai used in Bitra. Similarly, though the Amini mdlmi-s were 
quite unfamiliar with the rdpalagai, it was the Kiltan mdlmi-s who were most knowledgeable 
about it. (The distance between Kiltan and Amini is around 30 km: Amini is adjacent to 
Kachnath, and there is a point in the sea between Kiltan and Kadmath from which one can 
simultaneously see both islands. Mr Abdullah Koya of Kiltan was able to supply us with a 
copy of the Arabic literature on the construction of the kolpalagai.)

Mr Ali Koya of Kiltan had a kamdl which he discarded for he had no use for it. Mr Harris, 
also of Kiltan, kindly constructed a model, but could not explain how the instrument was 
calibrated. The most knowledgeable person was Kazi Siraj Koya of Kiltan. He could not 
offhand recollect the calculations used to calibrate the instrument, but referred to a book 
containing the calculations. Though Dr C. H. Koya had a copy of the book in Arabic- 
Malayalam he was unable to translate it for us.

Ultimately, a model of the kamdl was obtained from Mr Aboo Backer of Kavaratti, who 
had preserved it along with the kamdn used by his father Mr Ahmed Malmi of Kavaratti.

The rdpalagai is clearly a lost tradition. None of the malmi-s I talked to, in the various 
islands, was able to explain the construction or use of the rdpalagai. One took the smaller 
piece in his mouth, and raised the knots above the block, as one might do with finger 
measurements. One divided the string into eight equal parts, but was unable to explain how 
to add five more equal parts he thought would be needed for Kavaratti at a lower latitude. 
One thought that the instrument was used to measure the speed of the boat in knots. One 
remembered only snatches of some mnemonic verses related to the rdpalagai.



242 Cultural Foundations of Mathematics

II
THEORY

The theory given below is my reconstruction of the construction of the rdpalagai. I believe 
my reconstruction is valid, but I have no documentary support for this reconstruction. I do 
not regard documentary justification as critically important, and I leave it to others to search 
for the Arabic literature on the kamdl. Though James Prinsep was in a position to observe 
its use, his earlier article on the kamdl does not mention these details which are needed to 
be able to construct the kamdl.

Before the arrival of the Europeans, both the magnetic and stellar compass were known 
in the Arabian sea and the Indian ocean. (The word magnetic comes from the Arabic “mag- 
nethis”.) Pilots like Ibn Majid were aware of the limitations of the magnetic compass. But 
the principal limitation of the compass is that it indicates direction but not one’s present 
location.

The pole star (called kau by the islander), however, is not only a directional star. The 
celestial sphere appears to rotate on a north-south axis through the celestial pole, very close 
to the pole-star. Therefore, unlike other stars, the altitude of the pole star essentially remains 
fixed throughout the night, and through the year at a given place.

But the altitude of the pole star varies with geographical latitude. Simplistically, at the 
north-pole it should seem to be vertically overhead, and at the equator it should be on the 
horizon. Indeed the latitude of a place is precisely the altitude of the pole star (strictly the 
celestial pole) at that place, although near the equator the pole star may be so close to the 
horizon that it ceases to be visible. (This happens at latitudes below the Maldives.)

For short-distance travel (a few hundred kilometres north-south) in mid-latitudes, each 
increase in the altitude of the pole star is proportional to the north-south distance travelled. 
Thus, the height of the pole star is a measure of one’s latitudinal position, or of the north- 
south distance travelled. The height of the pole star can be measured using the angle a  
subtended at the observer’s eye by the pole star and the horizon.

Finger Measurements

One can measure the angle a  by blocking it off using the fingers of one hand held at a 
distance of one span, say, from the nose. No doubt the length of the span and the thickness 
of the lingers vary from person to person, just as the markings on a foot-rule will vary from 
foot-rule to foot-rule by thousands of Angstroms. But someone employing a foot-rule is not 
interested in precision in Angstroms; he does not worry about variations at that level, and 
the same argument applies to someone using finger measurements.

Finger measurements were converted into (north-south) distance. In the actual units 
used by the islander, each finger increase of kau corresponds to 8 shdmams. The islanders 
use the term shdmam, presumably derived from the Arabic mm, which, in turn, is derived
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from the Sanskrit yama, corresponding to the Prakrit jama, and the dele g u jd m u/jhd m a, one 
of the oldest time units in India. The yama, more commonly known as prahara continued 
till quite recently as “so popular a unit in Indian time measurement that even the lay man 
expresses time in terms of praharas... ”.6 Day and night each were divided into 4 equal parts. 
Thus, afternoon is known as “do-prahara” or “dopahara”, i.e., after two prahara-s.

This division was similar to the Babylonian division of the nycthemeron into 6 watches, 
and the medieval European ritualistic division into Matins, Prima, Tertia, Sexta, Nona, Ves­
pers, and Compline. Since day and night are generally of unequal duration the zam-s were, 
to start with, of generally unequal duration, except during the equinoxes when they were 
of 3 hours each. The number of zam-s in a voyage might also vary with the wind and other 
conditions. Thus, Ibn Majid declared: “from Somalia to Aden it is twenty zams, sometimes 
less in clearly easterly monsoon weather.”7

Over a period of time, the unit of time came also to mean a unit of distance—the distance 
that a ship travelled during one zam of approximately 3 hours. With changes in ship-building 
technology, this created the inconvenience that the zam depended also on the kind of ship 
one was travelling in. The Arab navigators then started distinguishing between the fixed zam 
and the ordinary kind of zam. The fixed zam, as a unit of distance, has even been defined as 
corresponding to 1 8th part of the north-south distance leading to a one finger increase in 
the altitude of the pole star.

The islander’s use of the term “shamam”, however, is quite general, unambiguous, and 
precise: a shamam is “the distance from here to the horizon”. On an open sea under clear 
visibility, this distance depends only on the size of the earth, on one’s elevation above the 
sea,8 and on the elevation of the object being sighted. The islanders typically take this 
distance to be 12 miles.

The disadvantage of finger measurements was that fractions of fingers were difficult to 
judge. But with one huger being 96 miles, fractions of fingers were required for sailing into 
small islands. (None of the Lakshadweep islands is more than some 3 miles wide, with the 
capital Kavaratti being 0.75 miles across at its widest.) Secondly, with fingers being held at 
some fixed distance, say arm’s length, the range was limited to eight fingers. It is possible, 
of course, to measure larger elevations by reducing this distance, but the problem then is 
to how to measure this reduced distance accurately. Poo Koya Malmi of Androth island 
demonstrated a special sort of span: this involved the thumb and the index finger, with the 
thumb placed on the nose. But if one uses the span to judge the distance, one is reduced to 
using only the four fingers of one hand.

Rdpalagai

The rdpalagai overcomes these difficulties. Here angles are measured by holding a fixed 
board, at varying distances from the eye. The distance is measured by a string through the
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centre of the board, the other end of which is held between the observer’s teeth. (Hence, the 
word kau, for the pole star, also means teeth, and this explains the origin of Vasco da Gama’s 
confusion.) The string is graduated using knots.

The Relation

Finger measurements and rapalagai, thus, represent two different methods of measuring 
angles. In one case the distance is held constant, and the height is varied; in the other case 
the height is held constant and the distance is varied (Fig. 5.1).

Figure 5.1: Two ways of measuring angles. Finger measurements (left) and rapalagai (right). With 
finger measurements the distance from the eye is held constant, while the height is changed by 
changing the number of fingers. With the rapalagai the height of the board is constant, and the 
distance from the eye is changed.

Referring to the figure, we see that, for finger measurements

hi
— = tan a i . 
d

(5.1)

For the rapalagai
h
— = tan a i . (5.2)
di

Take each knot to signify a 1 finger increase of altitude, or a fixed fraction thereof . (Each 
one-finger increase is assumed to correspond to equal distances of about 96 miles.) Then

hi+1 — hi — const. — F  — one finger, or a multiple, (6.3)

so that
tan 1 — tan n* = —. (6.4)

d '
where d, is the constant distance (of one arm length or span) used for finger measurements 
in (5.1).
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so that

or, finally, using (5.4),

1 1 tan — tan oti
(5.6)

d'i i d„j h

1 1 F
(5.7)

di+i di d h

We recall that, in (5.7), F  = 1 finger (or a fixed multiple of it), d = 1 arm length or 1 span 
(or a fixed multiple of it), h — height of the wooden piece, and cfi = distance to the ?th 
knot.

Hence, the distance between the knots mast be in harmonic progression.
Moreover, the instrument may be constructed by measuring everything using fingers. 

That is, the distances di may be measured using fingers, if the span d and the height h of 
the board are measured using fingers.

The broader the board, the more sensitive the instrument, but the longer the string must 
be, and the bottom knot of the string decides the lowest latitude at which the rdpalagai can 
be used. Thus, the range for the size of the board is fixed by the latitude of the base island, 
and the length of the observer’s arm.

Comparison of Theory with Instrument

Let us now compare this preliminary theory with the actual instrument we obtained 
(Fig. 5.2). Table 5.1 shows the results of this comparison for the 12 knots in the string 
attached to the larger piece. The distances between the knots were measured in ^th of an 
inch and converted to decimal fractions. We used ^  = 0.011 (in)-1 .

To the precision of the figures for the distance between the knots, the formula (5.7) fits 
quite exactly. One could try to go a step further, and find the value of ^  which minimizes 
the sums of squares of residues. There is not much point to this because of the following. If 
this value of = 0.011 (in)- 1  is used with the measured value of h =  1.42 , we obtain the 
value jrj for the dimensionless ratio At this stage, it is convenient to use new units: if we 
take d = 8Fq, then ^  so that each knot represents |th of a unit increase in the altitude 
of kau, in units of Fq. Since there are 12 knots, the instrument can be used over a range of 
1  ̂ units of kau.

However, the instrument we obtained has two pieces. To complete the comparison of 
theory with instrument, we applied this theory also to the second piece. The results are 
presented in 'Fable 5.2, which used ^  = 0.04625 (in)-1 .

Referring to Fig. 5.2 we see that in this case h = 0.90157, so that ^ = 0.0417 ~ so 
that each knot represents |rd of a unit change in the altitude of kau, in units of Fq, as used 
earlier. Since there are 8 knots attached to the smaller piece, the instrument has a range of 
21 units of kau. The base of this instrument, incidentally, is set a little higher than the base 
of the other instrument.
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66.5 mm i

Figure 5.2: The kamal. The instrument we obtained had two pieces. The string attached to the 
larger piece had 12 knots, while the string attached to the smaller piece had 8 knots. The distances 
shown in the figure are schematic and not to scale. The exact distances between the knots are given 
in Fables 5.1 and 5.2

No d{ (in inches) R esid u e : i dL k
1 6.0 0.003286
2 6.5625 0.00345
3 7.25 —5.309244e—05
4 7.875 0.000876
5 8.6875 0.000882
6 9.6875 -0.001892
7 10.6250 -0.000652
8 11.9375 0.001021
9 13.9375 —8.762292e—05

10 16.4375 -0.003144
11 18.875 -0.003604
12 21.9375 Average = 6.885132e—06

Table 5.1: The knots with the larger piece
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No di (in inches) Residue: i  d L  dh
1 2.625 0.054001
2 3.5625 0.029324
3 4.875 0.007935
4 6.625 0.002129
5 9.75 -0.025319
6 12.25 -0.033881
7 14.4375 -0.03454
8 17.3750 Average = —4.394772e—05

Table 5.2: The knots with the smaller piece

To summarize, we have two pieces and two harmonic scales. The smaller piece covers a 
range of 2| units, and has an accuracy of | unit. The larger piece covers a range of l| units, 
and has an accuracy of | unit. In a subsequent section, we translate the above units into 
more familiar units of distance.

The Problem of Harmonic Interpolation

The theory developed above does not address some questions. For example, how should 
one interpolate values in-between the knots? The difficulty is that the knots are not in linear 
progression, but in harmonic progression. Hence, linear interpolation will not work: if the 
height of kan comes out half-way between two knots, that does not allow us to presume that 
our latitude is half-way between the latitudes corresponding to the two knots. There is clearly 
a practical problem here.

Perhaps there is a way to carry out this harmonic interpolation by using the two scales 
together. For example, can the two pieces be used in a way that applies some analogue of 
the “Vernier” principle to harmonic scales? The above theory treated the two instruments 
separately, ignoring any possible relation between them.

The Golden Ratio

The first thing to observe is this: the heights of the two pieces are in the ratio (36.5 
mm)/(22.9 mm) = 1.593, which is remarkably close to 1.6 = | a standard rational approx­
imation to the golden ratio (= 1.618 . . .) .  The lengths of the two strings are in the ratio 
(17.375 in)/(21.9375 in) = 0.792 which is remarkably close to j  (= 0 .785...). This suggests 
that the two pieces were intended to be used together. I don’t know the significance of 
but the two pieces might be used together as follows.
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Interchanging the Scales

We assume that the heights are intended to be exactly in the ratio |, and that the (dimen­
sionless) error of 0.007 is the error in constructing the wooden instrument, or an error of 
measurement. Then it is clear that the scale attached to the smaller piece can also be used 
(with only a slight inaccuracy) with the larger piece. The scale will, however, change, and 
each knot will now represent | x | = i  units. Likewise, if the scale attached to the larger 
piece is used with the smaller piece, then each knot will represent | x | = ^  «  i  units.

Thus, the instrument actually represents two pairs of scales: the large piece corresponds 
to a (|, )̂ pair, and the small piece to a (|, |) pair. It is clear enough that using the g- scale 
instead of the | scale helps to increase the range of the bigger piece, while diminishing its 
accuracy. Likewise, using the  ̂ scale in place of the | scale helps to increase the accuracy of 
the smaller piece while reducing its range.

Against this background, let us return to the interpolation problem for harmonic scales, 
where some method of interpolation is necessary, since visual judgment may obviously be an 
inadequate guide for interpolation. The problem is settled by observing that the two scales 
can be used together for harmonic interpolation.

The Two-Scale Principle

Recall the instrument known today as the Vernier calliper. This instrument uses two scales 
to interpolate, thereby increasing the accuracy of measurement tenfold. Can two harmonic 
scales be similarly used in the manner of two linear scales?

The instrument today called the Vernier calliper had its origins in an earlier instrument 
called the Nonius, after Pedro Nunes, and used to measure angles. Presumably, the in­
strument designed by Pedro Nunes was known to earlier Arabs, and was probably based on 
even earlier knowledge. Accordingly, we will simply refer to the underlying principle as the 
two-scale principle.

As the first step, we notice that the two-scale principle works perfectly well regardless of 
the use of the decimal division. Thus, suppose we have two (linear) scales, one which divides 
each unit into 3 equal parts (i.e. it has 3 notches for each unit), and the other which divides 
the same unit into 4 equal parts. Suppose now that we have a distance d which we cannot 
measure precisely with the first scale, since it comes out to be between the nth and (n + l)th 
notch:

71
d = 3 + • (5.8)

We can use the second scale to interpolate and measure the value of as follows. We position 
the zero point of the second scale at the tip of d (i.e., at | + ) and find a notch coincidence



Navigation: Kamdl or Rdpalagai 249

between the two scales positioned side by side. Let us say, the kth notch of the | scale 
coincides (most closely) with the rath notch of the | scale. Then, we obviously have

n m, k
(5.9)

3 + + 4 = 3 ’

from which we can calculate as
k — n m (5.10)

3 4
or directly compute d,

k m
(5.11)

3 4
The least count is when k — n + 1 ,  and m — 1 ,  corresponding to = j2■ Ihus,

using a | scale together with a | scale, amounts to having a ^  scale. Clearly, there is no 
particular virtue to going by 3’s and 4’s, and the same thing will work perfectly well with any 
two relatively prime numbers p, q.

Theory of the Two-Scale Principle for Harmonic Scales

From the present-day viewpoint, the clue to interpolating in harmonic scales is the following. 
The theory developed above depends upon regarding harmonic scales as projections of 
linear scales. Since projection preserves notch, coincidence, the same principle o f interpolation can 
be applied also to harmonic sccdes. (This assumes that the two different scales are attached to 
the same piece of the kamal, so that the same projection is used to derive the two harmonic 
scales from two linear scales.)

Let us now apply this to the kamdl. The smaller piece corresponds to a (|, |) pair of 
scales, as we have seen, so that using these two scales together can thus give an accuracy of

of a unit. The larger piece corresponds to a (|, |) pair, so that using these two scales 
together can give an accuracy of ^  of a unit. In the above calculation, for ease of exposition, 
we used the approximation ^  ~ If we do not use this approximation, we must suppose 
we are dealing with a (|, ^ ) pair, i.e., a (^ , j^) pair for which the accuracy could be at best 
^  of a unit.

In practice, the interpolation can be carried out as follows. Find the exact length of the 
string corresponding to the angular elevation of the pole star, and suppose this length lies 
between two knots. Since projection preserves notch coincidence, line up the second piece 
with the identified length of the first string, and then find which two of the knots of the two 
strings are closest to each other. From this, one can interpolate as outlined in the previous 
section, using either pair of scales.
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The Accuracy of the Kamal

I certainly imagined that nothing conic! be more primitive 
than my Maidive friend’s kamal.. . ,  when lo! here is some­
thing even less advanced in ingenuity!

James Prinsep9

To express this accuracy in modern terms, we proceed as follows. A glance at Table 5.1 and 
Fig. 5.2 shows that the bigger piece has a range from

tan' 36.5
21.9375 x 25.4

= 3.747° (5.12)

to
36 5

tan- 1 ------------- = 13.45°. (5.13)
6.0 x 25.4 v '

A 90° increase in the elevation of the pole star corresponds to the distance from the 
equator to the pole, i.e., j  of the earth’s circumference, calculated using the polar radius. 
Thus, a 1° increase in the angular elevation of the pole star corresponds to of the polar 
circumference of the earth. This differs very slightly from the equatorial circumference, and 
using either gives us a figure of approximately around 69 English miles. This gives a total 
range of around 670 miles. Since this range has been divided into 12 equal parts, each knot 
of the kamal corresponds to an average distance of around 55 miles. Thus, each knot of the 
kamal represented approximately half a finger increase in the elevation of the pole star, so 
that the constant Fq, used earlier, corresponds approximately to 4 fingers. The larger piece 
was, thus, suitable for travel from Mahaladwipa (Maldives) to Mangalore.

The larger piece of the kamal is also extremely precise at the local level. Thus, using the 
two scales together with the larger piece gives an accuracy which is five times better, so that 
the kamal could actually be used to measure distances as small as some 1 1 miles, or better 
than one shdmam which is quite extraordinary, in practical terms, this accuracy meant that 
the kamal could be used to navigate to a point within sighting distance of the target.

Such a level of accuracy was indeed needed to sail to small islands. Thus, 19th c. CE 
English sailing manuals mention the difficulty in navigating to small islands, and suggest 
that a good way to this would be to run into the latitude, and then adopt a course due east 
or west. If this sort of thing were to be done, an accuracy of better than one shdmam (the 
distance to the horizon) would be needed to ensure that one did not sail past the island 
without spotting it.

In terms of angular measure, if we regard the range of around 9.7° as divided into 12 
equal parts, each knot measures an angle of around 0.8° or 48 . If the two scales are used 
together, the precision is improved by a factor of 5, so that the precision is around 10 of the
arc.
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Similar considerations apply to the smaller piece which covers a range from

tan (5.14)

to
tan 1 32.7 = 4.237° (5.15)

17.375 x 25.4
divided into 8 knots, with each knot corresponding to 2.75° or around 189 (English) miles. 
The use of both scales would enable this instrument to do 5 times better and measure dis­

times better, so that last figure would be only around 63 miles.)
Note that the total range of the instrument is a little above 1500 miles north-south. The 

upper end of this scale corresponds to the latitude of Karachi. Thus, the instrument re ects 
the fact that at higher latitudes (after crossing the latitude of Mangalore, say), a very high 
level of accuracy was no longer critical since the coastline was near. This applied also to the 
eastern side, where sailors from Minicoy typically travelled as far as Singapore.

Thus, in totality, the kamal is a remarkable instrument with a huge overall range of 1500 
miles, together with a striking accuracy of 11 miles at the lower end of the range. The 
construction of the kamal also shows how instruments can be built from simple materials to 
measure angles with an accuracy of 10 .

Clearly, it was James Prinsep who lacked the ingenuity needed to understand the con­
struction of the instrument. Moreover, carried away by his sense of racist superiority he 
failed to exercise common sense and ask how the island-based navigators could have rou­
tinely managed to sail back to small islands with inaccurate techniques of navigation. It is 
also noticeable that since Prinsep’s article was first published in 1836,10 Western histories of 
the subject have simply repeated his account.

The Two-Scale Principle and the Size of the Earth

The use of the two-scale principle suggests how al Blrunl could well have constructed an 
accurate instrument for measuring angles, to measure the dip of the horizon, and hence 
estimate the size of the globe, as he recorded. This answers a question, raised by S. S. 
H. Rizvi, 11 as to the accuracy of al BIrurh’s hand-made instrument. Rizvi speculated that 
al BTmni’s hand-made instrument could well have had an accuracy of 1° for him to have 
arrived at as accurate an estimate as he did. The kamal shows how higher precision by nearly 
an order of magnitude is easily possible for a hand-made instrument. The reason for Rizvi’s 
extra-conservative estimate is obviously a false history of science which wrongly suggests to 
us that this two-scale technique was invented by Vernier, though it has been known to Europe 
from at least the times of Pedro Nunes (who also used it in an instrument to measure angles).

tances of around 40 miles. (If we use the figure the two scales together could do only 3
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Instrumental Accuracy and the Accuracy of Trigonometric Values

Such accurate instruments for angle measurements probably lirst came into widespread use 
with the rise of Arabic navigation, sometime between Brahmagupta and Vatesvara, and that 
would explain very clearly why Vatesvara found Brahmagupta’s sine table very gross, and 
needed to alter it to a more precise sine table with stored values at intervals of 56 15 , 
together with a second-order procedure for interpolation. In fact, since the accuracy of the 
instrument is about ten times better, this would also explain very clearly why even Vatesvara’s 
sine values would have been found to be “too gross” by later authors, who would have needed 
even more accurate sine values, together with higher order interpolation procedures.

By the end of the 18th c. Europeans had picked up a lead in navigation. Just as the 
Arabs had earlier made fun of the European method of navigating by charts, the European 
now started ridiculing the “little pieces of wood and string” used by the Arabs. We see that 
“little pieces of wood and string” that the Europeans made fun of can make a formidable 
navigational instrument that can be used to determine latitude and longitude, especially 
when combined with an advanced knowledge of trigonometry (calculus), and the ability to 
carry out mental calculations. What the British actually achieved by teaching navigation in 
the Lakshadweep islands was to destroy the indigenous knowledge, without replacing it with 
something particularly better. On the contrary, whether deliberately or otherwise, what the 
British really succeeded in doing was to destroy the self-sufficiency of the islanders, and to 
make their way of life dependent on imported instruments and books manufactured in far 
away lands.

Ill
LONGITUDE DETERMINATION

While the kamdl is a very accurate instrument for measuring north-south distances, it does 
not enable the measurement of east-west distance. The Lakshadweep islands (barring Mini- 
coy) are very small coral islands, and accurately navigating to small islands is a difficult mat­
ter, which requires the sort of precision that was not easily available to late 19th c. European 
navigators, as already noted.

Traditional Indian Methods of Longitude Determination

Therefore, it is worth recollecting the several traditional methods which enabled precise an­
gle measurements, coupled with precise trigonometric values, to be used also in connection 
with the measurement of longitude at sea.

First, we recall that the principle of time varying with longitude was well known to Arya­
bhata (Gold 13):
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When it is sunrise at Lanka, it is sunset at Siddhapura, midday at Yavakoti, and 
midnight at Romaka.

The four names refer to four equidistant imaginary cardinal points on the equator, with 
Lanka being the point at which the Indian prime meridian (Meridian of UjjayinI) met the 
equator.

Secondly, the stock technique for determining longitude on land was to use the time 
difference between the local time of an eclipse and its calculated time on the prime meridian 
(LaghuBhaskariya, 1.29)

The difference between the computed and observed times of an eclipse is the 
longitude in terms of time.

Thirdly, we recollect Bhaskara I’s method of determining longitude by the method of 
ephemeris, using a water clock (Mahd Bhdskanya, II.8):

On any day calculate the longitude of the Sun and the Moon for sunrise or sun­
set without applying the longitude correction, and therefrom find the time (since 
sunrise or sunset), in ghatis, of rising or setting of the Moon; and having done 
this, note the corresponding time in ghatis from the water clock. From the differ­
ence, knowledgeable astronomers can calculate the local longitude in time.

Fourthly, we recall Bhaskara I’s method of solving a plane “longitude” triangle (Mahd 
Bhdskanya 11.3-4):

Subtract the degrees of the latitude o f . . .  [a known point on the prime meridian] 
from the degrees of the [local] latitude, then multiply [the resulting difference 
of latitude] by 3299 minus 8 25 [the radius of the earth], and divide [the result] 
by the number of degrees in a circle [i.e., 360]. The resulting yojana-s constitute 
the koti [upright of the right-angled “longitude” triangle]. The oblique distance 
from the local place [to the point on the prime meridian chosen above], which 
is known... is the karna [hypotenuse]. The square root of the difference between 
the square of the karna [hypotenuse] and the koti [upright] is defined by some 
astronomers to be the distance [in yojana-s of the local place to the prime merid­
ian].

We also recollect from Chapter 4 that the above Indian method uses the radius of the 
earth, or equivalently a knowledge of the distance per degree latitude, a, so that it is perfectly 
possible to solve the longitude triangle from a knowledge of the difference of latitude l and 
the course angle C, to obtain the departure p:

p — a  x l x tan C. (5.16)



254 Cultural Foundations of Mathematics

Furthermore, we recall that this Indian technique, available from before the 5th c., was not 
available to European navigators in the 16th and 17th c. CE, for the reason that Europeans 
lacked a precise knowledge of the size of the earth until the end of the 17th c. CE.

Finally, we recall that, knowing the size of the earth, it was an easy matter to convert 
distance from the prime meridian to longitude, and it was only necessary to invert a rule 
explicitly stated by Bhaskara I (Laghu Bhdskariya, 1.32), relating this distance to longitude:

The yojanas (of the distance of the prime meridian) from the local place are 
obtained on multiplying the longitude in ghatis by the local circumference of the 
Earth and dividing (the product) by 60.

Some Clari cations

The method of determining longitude/departures by solving a plane triangle was known to 
Arab navigators as a tirfa calculation. However, the examples of actual tirfa calculations given 
by Tibbets are rather crude, suggesting that Arab navigators were unaware of elementary 
plane geometry in the 16th century CE, and did not even know that two sides of a triangle 
are greater than the third.

Such historical depictions tend to raise a doubt. As we shall see later on, the real question 
is whether the slightest credibility is to be attached to Western accounts of history. For the 
time being, however, let us address this doubt. Could the techniques in the Laghu Bhaskariya 
have diffused to the islanders over a period of several centuries? Could the islanders have 
known about Madhava’s more precise sine tables? Clearly it would be inappropriate to as­
sume that the average navigator was as knowledgeable as Bhaskara or al Birunl. It would be 
equally inappropriate to assume that the average navigator on the Indian ocean or Arabian 
sea was as unskilled in astronomy and mathematics as Columbus or Vasco da Gama. There 
are two reasons for this.

First, navigational techniques here placed far greater reliance on celestial navigation. 
Unlike Columbus, therefore, Indian, Arabic, or Chinese navigators had to have some knowl­
edge of astronomy. A modern-day analogy may help to explain the cultural difference: a 
semi-literate carpenter in India today is likely to be better at mental computations than a 
cash-register operator at a US supermarket, who has never done arithmetic without the aid 
of machine or paper. However, colonial historians found it galling to admit that the average 
navigator by the stars knew more than their own star navigators. How much knowledge of 
astronomy a navigator might have had, naturally depended on his competence, but given 
that his own life and the lives of many others depended on his knowledge, it would be a rare 
navigator who did not seek to expand his knowledge by acquiring at least the knowledge 
incorporated in the most popular texts in astronomy. Such a navigator is unlikely to have 
been much sought after.
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Secondly, because of the monsoons, a navigator here could earn a living from navigation 
for at most some six months in a year. What did he do the rest of the time? Clearly, some, 
at least, of the navigators would have done exactly what Kepler did: use their knowledge 
of astronomy to make a living through astrology; others may have turned their attention to 
tasks such as calendar-making, etc. For this purpose too they would have had to consult 
the basic texts in astronomy. So it would hardly be too much to attribute to the average 
navigator the knowledge available in concise practical manuals of astronomy, such as the 
Laghu Bhaskariya or the KaranaPaddhati, for the reason that

both the Maha-Bhaskariya and the Laghu-Bhaskariya were popular works, having 
been studied in south India up to the end of the fifteenth century.. . ,  the latter 
being an excellent text-book for beginners in astronomy.12

To summarize, there is a difference between the knowledge required to derive and correct 
the rules, and the knowledge required simply to use these rules. One must attribute to the 
pre-colonial navigators at least the latter type of knowledge of astronomy.

On the Lakshadweep islands, Kunhi Kunhi Malmi, of Kavaratti for instance, made a living 
partly through astrology. His preoccupations are re ected in the fact that more than 50% of 
his Rahmani (released at the 10th Indo Portuguese Conference on History, INSA, New Delhi, 
1998) is concerned with astrology. (Indeed Kunhi Kunhi made a good living and had two 
wives—as astonishing a thing in a matriarchal society as a woman with two husbands would 
be in a patriarchal society, and a definite indication of prosperity.) For the relatively simple 
needs of the Lakshadweep islanders, of course, spherical trigonometry was not required, 
and the solution in plane triangles, as in Fig. 5.3, was adequate.

Since some of the concerned texts, incorporating the requisite precise trigonometric val­
ues, are in Malayalam, in Kerala itself they enjoyed considerable circulation, as evidenced, 
for example, from the large number of copies of Jyestadeva’s Yuktibhdsd which are still in 
existence, and the KaranaPaddhati, whose encapsulated rules continue to be very popular. 
(The relevant verses are also in the KaranaPaddhati.^) So why should the relevant sine val­
ues not have been known at least to some knowledgeable navigators on the island who knew 
something of the astronomical tradition in Kerala?

It is true that the islanders, like the Mapila-s, spoke Arabic-Malayalam, and it is possible 
that they were hence regarded as illiterate by both Arabs and Malayalis! None of the malmi-s 
I spoke to was much educated in the Western tradition, but that did not prevent any of them 
from knowing about Norie’s tables. Why, then, should the earlier malmi-s not have known 
about Madhava’s tables? The tirfa calculation done using these tables would indeed have 
made the kamdl a complete instrument which could be used to decide both latitude and 
transverse position at sea.
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Thus, the name kamdl (= complete) was justified, since the instrument could be used 
across a wide range, was very accurate for navigation to small islands, and it was possible 
also to determine longitude at sea from a knowledge of the difference of latitudes.

Currently-Used Techniques of Longitude Determination

As opposed to this situation prevalent with traditional knowledge, currently the islanders 
use two techniques for longitude determination.

A watch (chronometer) is one technique used today by the islanders to decide longitude 
(though the figure commonly stated was 5 minutes per degree of longitude).

The principle behind using a watch to determine longitude is straightforward, and well 
known to all international travellers. Because of the diurnal rotation of the earth, as one 
travels east, one gains time—the sun seems to rise earlier. Consider an accurate watch set to 
local Bombay time, i.e., its hands read 12 o’clock when it is noon (the time of the shortest 
shadow) at Bombay. If this watch is carried to Calcutta, noon at Calcutta will seem a little 
early. In a complete circuit of 360° round the earth, the watch will appear to gain or lose 24 
hours = 24 x 60 minutes, so that the watch will gain or lose 4 minutes per degree longitude.

The other technique the islanders currently use is a sand clock (tappu kuppi, lit. sand bot­
tle) of 7 or 14 s and a log line (with the rope knotted at equal distances) to measure the speed 
of the boat. The speed of the boat can be used to calculate the distance travelled in a known 
period of time: this technique is known to be notoriously inaccurate. From a knowledge of 
the speed, and the duration for which the speed was maintained, one calculates the distance 
travelled. The course angle is known through a magnetic or stellar compass. Hence, the 
departure can be computed by resolving the problem into the solution of a plane triangle, 
as in Fig. 5.3 reproduced from Chapter 4. The solution itself was obtained using traverse 
tables from British sailing manuals.

IV
THE VALUE OF BRITISH EDUCATION

The islanders have evidently learnt this technique from the British efforts to “educate” them, 
as described earlier. This enables us to assess the value of British education in a microcosm. 
This is useful because, compared to mathematics education, which we will consider later on, 
the issues involved here are relatively simple.

First, the process of navigational education itself was initiated based on certain historical 
premises. It is worthwhile examining these historical premises: while distorted historical 
depictions of navigation history like that of Tibbets are amusing for the trained historian, 
the dissemination of false historical narratives at the popular level has had significantly 
mischievous political consequences.
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Meridional departure
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Figure 5.3: Solving the nautical triangle. The right-angled triangle shown above, also called the 
plane sailing triangle, can be solved from a knowledge of either (1) course angle and distance trav­
elled, or (2) course angle and the difference of latitude. The first method was used by Europeans 
in dead-reckoning navigation. The second method requires an accurate estimate of the size of the 
earth: such an estimate was available to Indians from at least the 5th c. and Arabs from at least the 
9th c. CE, but not to Europeans until the late 17th c. CE. Hence, European navigators could not 
use the second method. This is what led to the famous problem of determining longitude at sea—a 
problem specific to European techniques of navigation.

According to the grand historical narrative, the British were a great superpower, on ac­
count of their knowledge of navigation, while the islanders were “primitive” people, who 
lacked a knowledge of navigation. This sort of account of the “natives” is found most clearly 
in novels like Coral. Island by R. M. Ballantyne.

Swept away by such fake historical narratives within which they situated themselves, the 
British seem not to have stopped to think how the islanders had survived if they did not 
have reliable techniques of navigation. This survival had a history going back to at least pre- 
Islamic times, considering that there are statues of the Buddha on the islands, which were 
subsequently defaced. Though these statues have not been dated to my knowledge, they 
could quite possibly go back a long time in the past. In fact, navigation no doubt existed 
also in the era when Ashoka’s daughter, Sanghamitra, travelled to the island of Sri Lanka. At 
any rate the Lakshadweep islands were inhabited for over a thousand years before the British 
came to them. During all this period, how did the islanders solve the problem of navigating 
to small islands? (Recall that this was recognized as a difficult navigational problem by 19th 
c. CE British sailing manuals.)

Apparently, swept away by the military power of the British, the islanders too did not stop 
to think about it either, and the youth seem to have assumed that the navigation techniques 
taught to them by the British were intrinsically superior, just as youth today thoughtless tend 
to accept that Western ways are intrinsically superior. The point is that the islanders seem
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to have adopted the British techniques of navigation in a somewhat thoughtless way, and 
without having made a relative assessment of the two systems, just as youth today might 
adopt Western music in preference to Indian classical music without a clear understanding 
of the two systems. Although a technique of navigation is more directly relevant to survival 
than music, that the islanders’ choice was not informed by any such relative assessment is 
confirmed by the fact that none of the islanders was able to tell me about the functioning of 
the kamdl.

The process of British education changed things in two significant ways. First, the is­
landers were taught about the sextant {kamdn), but not about the kamdl, and as a direct 
consequence of this training they abandoned the kamdl in favour of the sextant. While stone 
sextants were used in Arab astronomical observatories from the 10th c. CE, the portable sex­
tants used in navigation are made of steel. Since steel was not something they could make 
themselves, the islanders became dependent on far-off British engineering for their very 
survival. Merely to purchase appropriate instruments they would have needed to sail as far 
off as Bombay, and those who were most closely linked to the British were the one’s best able 
to survive.

What advantages the sextant {kamdn) had over the kamdl was obviously not discussed 
in the British text either, and the kamdl was never mentioned, just because the historical 
narrative in which the British situated themselves, assured them that the progress brought 
about by the march of science had made their knowledge superior to that of the “primitive” 
tribes of the world.

However, the sad fact is that the sextants actually used by the islanders typically had an 
accuracy of about 1°, and hence were a lot LESS accurate than the kamdl. Thus, the British, 
smug about their own superior techniques of navigation, ultimately ended up educating the 
islanders in inferior techniques of navigation! Noticeably, there was no colonial plot here, 
except an attempt to try and make the British empire more popular!

It is also a sad fact that the determination of longitude by using a sand clock and heaving 
the log also made the situation worse for the islanders: since the islanders did not rely 
on charts in the manner of the British, did not really use dead reckoning, and had no 
particular use for loxodromes, since they did not intend to sail to Europe by means of charts. 
The islanders would have done better by persisting with the traditional techniques of using 
ephemeris time or solving the longitude triangle in the manner of the Laghu Bhdskanya, but 
they were taught instead the use of traverse tables as in British sailing manuals.

That the islanders became dependent also upon British sailing manuals is clear from the 
“Noorie” tables in the Rahmani of Kunhi Run hi Koya. There was no way anyone on the is­
land could have produced such tables. Thus, the islanders became consumers of knowledge 
that they could not themselves produce or even properly understand.

d'hus British education systematically created a situation of dependency and inferiority 
as regards both knowledge and education. While the islanders could not earlier match
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British violence and duplicity, this was not necessarily a matter of inferiority. From an ethical 
perspective this made them superior rather than inferior. However, after being educated by 
the British, the islanders actually became inferior, since their livelihood, which required 
navigational aids, became dependent upon the British, reducing them to a state of servility. 
Since the islanders never received enough education to make them producers of knowledge, 
they remained passive consumers of knowledge. Thus, education, instead of serving the 
purpose of liberation, became a means of bondage. Like a self-fulfilling prophecy, the fake 
historical narrative was thus turned into a distressing reality.

A Revised History of the European Longitude Problem

A brief examination of the actual sequence of historical events is also worthwhile, for our 
later purposes of understanding transmissions and diffusion from an epistemic perspective.

This dead-reckoning method was used extensively by early European navigators, who 
plotted the ship’s course on charts to carry out the computation graphically. However, the 
method of estimating the ship’s speed by “heaving the log” was well known to be extremely 
unreliable.

Early Portuguese navigators, however, had no alternative to dead reckoning, since they 
had not quite learnt the techniques of celestial navigation from the Arabs. In using the 
kamdl, the knots are counted by keeping the string between one’s teeth; hence the name kau 
( = teeth) for the pole star. Vasco da Gama’s men thought that the pilot (Malerno Cana) was 
telling the distance by his teeth!

Vasco da Gama carried back a copy of the instrument “to have it graduated in inches” , 14 

suggesting that he did not understand the difference between a linear scale and a harmonic 
scale. In fact, Europeans seem never to have quite understood the principle of harmonic 
interpolation used in the kamdl.

By the mid- 16th century, the Portuguese had learnt some techniques of celestial naviga­
tion. What they learnt was, however, so inadequate compared to the tremendous economic 
importance of correct navigation, that in 1567 Philip II of Spain offered a big reward to 
anyone who could produce an accurate method of navigating at sea. One difficulty con­
cerned latitude. From the time of Brahmagupta and the Sind-Hind tradition, it was known 
that latitude could be determined from solar altitude and declination (or the transits of 
circumpolar stars). The Europeans, however, had difficulties with this method, since they 
relied on an inaccurate ritual calendar that was partially corrected only in 1582. (Due to 
religious quarrels between Protestants and Catholics, even the corrected calendar was not 
uniformly adopted in all of Europe—Isaac Newton believed he was born on Christmas day, 
while many parts of Europe had already celebrated the New Year a few days before his 
birth.)
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Correction of the calendar obviously was not enough to solve the navigational problem. 
The European technique of dead-reckoning had made navigation more complicated than it 
needed to be. So, from the European viewpoint, there remained

the problem of precise trigonometric values, 

the problem of loxodromes, 

the problem of the size of the globe, and 

the problem of determining longitude.

Furthermore, the Europeans were culturally unaccustomed to mental calculation. Like the 
abacus, they wanted to be able to do the necessary calculations mechanically.

So the reward for an accurate technique of navigation was substantially increased in 1598. 
Galileo was one of the aspirants for the award for nearly 16 years, starting from 1616, though 
his method (using Jupiter’s moons) was rejected as impractical. Later on he competed for 
the prize offered by the Dutch government in 1636.

In France, Colbert, following his predecessors Mazarin and Richelieu, sent personal in­
vitations, offering vast sums of money, to Huygens, Leibniz, Roemer, Newton, Picard, . . .  for 
a solution of the longitude problem. From the reply, he selected 15 people to form the 
Académie Royale, with the specific objective “to improve maps, sailing charts, and advance 
the science of navigation”.

By the late 17th century, “The Académie Royale des Sciences had solved the problem of 
longitude for places on land.” The principle of the method of using eclipses had been stated 
succinctly by Bhâskara I, a thousand years earlier. The method was used in a slightly modi­
fied form some six centuries earlier by al Bïrünï. The principle of the method is, first, that 
longitude corresponds to the local time. The difficulty is to measure the local time simul­
taneously at two localities. How should one synchronize the measurements in two separated 
places in the absence of radio or light signals? A lunar eclipse enables this synchronization: 
the two observers can each measure the local times of onset, totality, and end of the eclipse. 
A lunar eclipse is more suitable than a solar eclipse because the absence of parallax ensures 
simultaneity. Al Bïrünï reported such a joint operation between him observing at Kâth (in 
Central Asia) and Abü al-Wafâ’ at Baghdad.10

The improvement by the Académie Royale came about through the availability of the 
telescope: they used instead the eclipses of the moons of Jupiter, which can be seen through 
a telescope.

The problem of determining longitude at sea remained. In 1707, because of bad naviga­
tion, four ships of the British Royal Navy sank off Scilly Isles, with some 2000 soldiers and 
Admiral Sir Clowdisley Shovel. There was an uproar, and the British Parliament established 
a committee before which Isaac Newton deposed.



Navigation: Kamdl or Rdpalagai 261

That, for determining the Longitude at Sea, there have been several Projects, 
true in theory, but difficult to execute. One is a Watch to keep time exactly, but, 
by reason of the motion of the Ship at Sea, the Variation of Heat and Cold, Wet 
and Dr};, and the Difference of Gravity in different latitudes, such a Watch has 
not yet been made.16

By an Act passed in 1714, the British Government constituted a Board of Longitude, and 
offered a reward of £20,000 to any one devising a method of determining longitude at sea. 
(Newton’s Fellowship offered him the considerable sum of £60 per annum.) Supported by 
the Board of Longitude, John Harrison (1693-1776), a carpenter from Yorkshire, developed 
such a watch—the Marine Chronometer—and competed for the award in 1757. The watch 
passed the test on a voyage to Jamaica in 1762, but Harrison was given only £2500, because 
the learned Board opined that the longitude of Jamaica was not well-enough known to 
decide whether the watch had cleared the test! (The mathematician Euler received a part of 
the award.)

That was hardly the end of the story. As late as 1864, practical measurement of longitude 
by European navigators was still so uncertain (“these instruments are liable to vary their 
rates”) that Norie opined that a good way to make for small islands was to run into the 
latitude, and then sail due east or west to the island! The tables of 1864 elaborate on the 
practical problem encountered with the actual use of a chronometer.

Summary and Conclusions

Although knowledge of navigation existed in India, and Europeans in the 16th c. were well 
aware of it and carried it back with them to Europe, two facts stand out.

(1) Europeans could not directly use the Indian knowledge of navigation as it stood, since 
this knowledge was not consistent with other things they knew (or thought they knew), such 
as the size of the earth. (This is closely analogous to the epistemic divide in mathematics 
that we will come across later: Europeans, even after acquiring knowledge of the calculus 
from India, could not immediately use that knowledge because their understanding of it, in­
volving infinities and infinitesimals, was not consistent with their ideas about mathematics.) 
Thus, Europeans failed to comprehend the Indian way of determining longitude at sea.

While a variety of European instruments were built in the 16th c. for latitude determi­
nation, copying instruments like the kamdl, I am not aware of any European instrument 
which used two scales for harmonic interpolation. In fact, the very principle of harmonic 
interpolation seems to have been unknown to European navigational instruments (as far as 
I know). Therefore, although Vasco da Gama carried back with him a copy of the kamdl, and 
although he had many persons in Cochin willing to advise him about it, somehow or the 
other he never managed to fully understand the construction of the kamdl.
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(2) At no stage did European historians ever acknowledge in the straightforward way of 
Arab historians that they had obtained knowledge from India. The overarching in uence of 
the church ensured that they preferred to deny any pagan sources of knowledge to continue 
with the fake historical narrative which had been provided to them, by freely modifying his­
torical facts as convenient. Like the numerous verbal covenants with local people that the 
Europeans broke, the temporal power of these historical lies is evident in the above sequence 
of events in which the Lakshadweep islanders swapped the better traditional technique of 
navigation that they had in favour of the inferior British technique taught by the Britishers. 
This swap made the islanders dependent upon the British, as consumers of British knowl­
edge and navigational instruments, essential for their very survival, which British knowledge 
or instruments the islanders could not themselves produce.

The British education provided to the islanders was based on the historical narrative 
within which the Britishers situated themselves. Thus, the constant reiteration of a fake 
historical narrative became a key source of what is today called “soft power” and has played 
a far more important role in colonization than has been historically told to us till now.
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C H A P T E R  6

Models of Information Transmission

General historiographic considerations and the nature and standards
o f  evidence to decide transmission

OVERVIEW

E XPLIC IT models of information transmission are needed, since the implicit models 
used so far by historians do not bear open scrutiny. Especially in the context of 
Toynbee’s theory of “barbarian incursions”, I propose a model in which not only 

wealth but information often ows towards military conquerors, as in the Roman conquest of 
Greece, or the Moghul conquest of Baghdad by Hulegu. What is being proposed is thus a 
causal link between Alexander’s military conquests in Egypt and Iran, his enormous booty of 
Egyptian and Persian books, and Aristotle’s scholarship, just as there is a causal link between 
Mahmood of Ghazni’s conquests and al BTrunI’s scholarship. This ow of information may 
long precede a military conquest, as in Herodotus’ account of Greek traditions being but 
an imitation of the traditions of black Egyptians, or the ow of information from India to 
Baghdad that preceded Ghazni. A similar long-term ow of information into Europe took 
place for some 250 years after Vasco da Gama—during which Europeans repeatedly failed 
in their plans to conquer India and China by military force or religious conversion. This 

ow of information into Europe was a key cause of the rapid advances made by Europe in 
the 16th and 17th c. CE. Information may sometimes scatter in other directions following a 
military conquest, as when Buddhist ed to Tibet, after the sack of Nalanda by Muhammad- 
i-Bakhtiyar, or (Byzantine) Greek manuscripts, incorporating Arabic and Indian knowledge, 
through translations from Arabic to Greek, came in bulk to Europe after the fall of Istanbul 
to Mohammed the Conqueror in the 15th c. CE.
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Apart from a model of information transmission, the other thing that is needed is an 
explicit standard of evidence for transmission. Before fixing the standard of evidence for 
transmission, let us first look at the past practice. Western historians have often claimed 
that most knowledge originated with the “Greeks” and was transmitted to other parts of the 
world. What standards of evidence were implicitly used to support these claims? To uncover 
these standards, it helps to put these past practices in their proper historical perspective.

The claim—that world knowledge was derived by transmission from the Greeks— 
historically originated as follows. In the late 11th c. CE, when Europe was still in its “Dark 
Age”, and the “Islamic Golden Age” was coming to an end, the declining Arabic civilization 
experienced “barbarian incursions” from Europe. The very beginning of these Crusades 
is marked, as in the above theory, by an increased ow of information towards Europe. A 
major event here was the capture of Toledo and its library. The subsequent translation of 
hundreds of Toledan texts from Arabic to Latin, in the 12th c. CE, provided the primary 
corpus of texts for the first European universities. However, this massive ow of information 
into Europe generated two difficulties. First, during the Crusades, there was a sense of 
shame in learning from the Islamic enemy. Second, during the Inquisition, there was a fear 
that the Toledo library was a Trojan horse which would spread heresy, and thus undermine 
the power of the church.

The sense of shame was tackled by “Hellenization”—this was a simple trick by which a 
pure Greek origin was attributed to any incoming knowledge regarded as useful to Euro­
peans. (The fear of heresy was tackled by “Christianization by reinterpretation”: for exam­
ple, the Elements, which first came to Europe via Toledo, was reinterpreted to strip it of its 
“Neoplatonic” philosophical concerns and make it consistent with Christian theology', as we 
have seen.)

Now the Arabic books at Toledo come from some 250 years after the formation of the 
House of Wisdom in Baghdad—where books were imported and translated from all over 
the world. The books imported at Baghdad are certainly known to have included many 
Indian books on mathematics and astronomy, for example. Some of the Indian books, like 
the Fancatantra are known to have reached Baghdad not directly from India but indirectly 
from Jundishapur, and were translated from Pahlavi to Arabic. Jundishapur, in the 6th c. 
under Khusrow I, provided an earlier model of the Baghdad House of Wisdom, and had 
already imported also Indian astronomy and the game of chess, for example. (Where the 
Paricatantra was used to teach justice, chess was used to teach strategy especially to kings.) 
'l hus, the 11th c. CE Arabic books available at Toledo re ected an accumulation of world 
knowledge, certainly including much Indian knowledge.

Thus, the trick of Hellenization—attributing a “Hellenic” origin to all knowledge avail­
able in Arabic books at Toledo (and in subsequent Byzantine Greek texts)—appropriated to 
the West all the knowledge of world up to the 11 th c. CE—especially knowledge of mathe­
matics and astronomy. So, it is hardly a matter of surprise that the knowledge that Western
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historians hypothetically attribute to the early Greeks is all so remarkably similar to the world 
knowledge of the 1 1th c. on which this attribution is based: “Ptolemy’s” Almagest begins (as 
natural for an 11th c. text) with what look like paraphrases of controversies from the history 
of Indian astronomy, “Aristotle’s” syllogisms are remarkably similar to the Nyaya theory of 
syllogisms, “Aristotle” uses theories like those of “action by contact” and the same words like 
“aether” (= sky = dkdisa) long used in India, and his physics is as similar to Arabic physics as 
“Archimedes” is to 1 1 th c. Arabic mathematics.

In support of the trick of Hellenization, it was argued that this similarity of “Greek knowl­
edge” with 1 1 th c. CE world knowledge was due not to incorrect attribution, but to trans­
mission from the “Greeks”. So what is the evidence for transmission?

On the face of it the standard of evidence involves similarity and precedence: if two 
texts are similar, then the later text is probably a copy of the earlier one. There is no 
major problem with this standard of evidence for transmission so long as there really are 
two texts. The problem arises when only one of the texts is real, and the existence of the 
earlier text is merely being conjectured from the later text. In this case, “similarity” becomes 
an empty tautology because all our knowledge of the purported earlier text is derived solely 
from speculations based on the later text. Priority also ceases to be meaningful: all that we 
really have is a Greek name of doubtful historicity, an untestable hypothesis that attributes 
authorship of a purely hypothetical early text to this name, and a speculative chronology 
attached to this name.

In the absence of serious evidence even to establish the validity of the attributions to 
“Greeks”, it is understandable that nothing much was available by way of evidence for this 
“transmission from the Greeks”. All that Western historians have had to offer is only a 
speculative chronology attached to Greek names, which chronology could well blend into 
history many mythical creatures of the imagination like “Euclid”. Those familiar with how 
Biblical chronology was used by various noted European scholars, such as Sir John Lightfoot, 
Vice-Chancellor of the University of Cambridge, to fix the date and time of creation, with 
great precision, will immediately grasp the principle of the thing: chronology established 
the reality of the event of creation. In history, the aim of this competitive chronology was to 
establish the Greek priority in all forms of human knowledge, and hence to establish that all 
other knowledge derived by transmission from the Greeks.

This speculative Greek chronology derives entirely from stray remarks in various late 
texts. There has been a remarkable complacency towards the source material, ignoring both 
the chauvinism that accompanied the religious fervour of the Crusades, and the prevailing 
social circumstances of the Inquisition (and the preceding centuries of church terror against 
dissenters) all of which would naturally have encouraged the interpolation or forging of 
convenient remarks in the sources even by neutral scribes to save their skin. (We have already 
examined in depth one such remark in the case of “Euclid”.) No attempt seems ever to have 
been made to compare this chronology with any non-textual evidence which might show
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such attributions to early Greeks as anachronistic. Nor was any attempt made to check the 
attributions against prevailing economic realities: in the days of papyrus technology, the 
survival of a text required investment. What led to the repeated long-term investments in 
the production and propagation of texts which seemed to have no particular relevance to 
the lives of the Greeks or the Romans? And why, despite this hypothetical investment, did 
Alexandrians remain unaware of Aristotle’s syllogism and “Ptolemy’s” Almagest}

Thus the standard of evidence for transmission from the Greeks was this: if a scholar could 
find some textual remark, real or contrived, to justify a competitively early chronology for a 
Greek name which could be attached to an Arabic or Byzantine Greek work of the 1 1 th c. or 
later, then it was considered established that there had been transmission from the Greeks 
to others. It is this sort of principle of evidence that provides the basis for the oft-repeated 
claims of transmission from the probably mythical “Claudius Ptolemy” to Indian astronomy.

Now there certainly are some known and incontrovertible instances of transmission in the 
opposite direction: for example, the Indian Pancatantra, translated from Sanskrit to Pahlavi 
in the 6th c., and then to Arabic in the 9th c., was indubitably translated from Arabic to 
Byzantine Greek latest by the mid-1 1th c. CE, and then to Latin, ca. 1251. There are other 
instances where such transmission by translation from Arabic to Greek to Latin seems very 
likely to have taken place. For example, Copernicus’ model of the moon is identical to the 
earlier model of Ibn-as-Shatir of Damascus. It is quite likely that this model was translated 
from Arabic to Byzantine Greek, and came to Rome after the 1452 fall of Istanbul, along with 
other Byzantine Greek texts, and that Copernicus’ key contribution was to translate it into 
Latin. Curiously, in this case, the noted historian Owen Gingerich asserts that it is possible 
that Copernicus had discovered his model independently. So, similarity and precedence 
(between two real texts) are not always regarded by Western scholars as conclusive proof 
of transmission. A priori, independent rediscover)7 is not impossible; it is just exceedingly 
improbable that, by some miracle, Copernicus independently rediscovered it just when he 
could have readily learnt of it by transmission.

In fact, Ashoka’s rock edicts about the success of his mission of wise men sent to Alexan­
dria at the time of Ptolemy II, and subsequent Roman and Alexandrian knowledge oflndia, 
show that Indian knowledge did go to Alexandria since Ptolemy II, and that it did have an 
impact, and that this impact persisted right up to the time of Porphyry. The similarity is 
noticeable. So it is conceivable that Indian knowledge of astronomy too could have travelled 
to early Alexandria, long before the time of “Claudius Ptolemy”. However, the possibility of 
Indian knowledge having been transmitted in this way to Alexandria has been vehemently 
denied—primarily with a view to deny Indian in uence on early Christianity.

So, in practice, Western history has used two standards of evidence for transmission: 
one ultra-lax standard of evidence for transmission from “Greeks”, and another ultra-strict 
standard for transmission to the West. For cases of alleged transmission from the Greeks, 
mere speculations—a speculative chronology combined with speculative attribution—are re­



Models of Information Transmission 271

garded as ample evidence of transmission. In the other direction, similarity with a real earlier 
work, by a real author, together with a clear channel of transmission, do not prove anything, 
for there is always the possibility of repeated miracles by which any number of people in the 
West may independently reinvent things just when they could be transmitted.

One might ask: why should there be two standards of evidence? For this, we need to un­
derstand the origins of racist history, in the systematic religious encouragement of violence.

The 15th c. CE Doctrine of Christian Discovery marked the culmination of a long­
standing policy of using violence and state power against non-Christians, as this policy 
progressed through Constantins, Justinian, Charlemagne, the Crusades, and Inquisition 
to escalate to a truly genocidal crescendo. The Doctrine of Christian Discovery, which 
instigated the subsequent triple genocide in three continents of South and North America 
and later Australia—the only known successful cases of genocide in a literal sense—was 
explicitly proclaimed in papal bulls (Romanus Pontifex, 1454, and Inter Caetera 1493), 
which declared it the religious duty of Christians to kill and enslave all non-Christians. The 
first-hand descriptions of the genocide in the Americas provided by Las Casas (who accom­
panied Columbus) clearly show that it was religiously motivated, and that those engaged in 
the genocide thought they were doing their Christian duty by eliminating non-Christians 
and carrying out God’s will here on earth as it would be in hell. However, unlike, say, 
Hitler, or Idi Amin whose violence is regarded as the epitome of immorality, in this case the 
instigators of genocide were also the self-appointed custodians of morality.

The moral justification for the violence created various problems. For example, some of 
the Africans enslaved in this process of colonial/Christian expansion, turned Christian. Now 
what was the justification for ill-treating them? How did this brutality further the doctrine of 
love? The theologians naturally understood the economic benefits of slavery: the enforced 
labour of the slaves was required to extract the wealth of the vacated continents; slaves were 
the key means of production. The categories of White and non-White were invented for 
this purpose, to morally justify the economic advantage deriving from genocide and slavery. 
Like a person’s dress, during the Inquisition, the colour of a person’s skin was an easy and 
sure visual way to identify those who were either non-Christians or were recent converts to 
Christianity. Like the Mozarabs of Toledo, or converted Jews during the Inquisition, recent 
converts to Christianity were not regarded as quite fully human. Many blacks have been 
Christians from the 16th c., but no pope has ever been black.

Hence, the fabrications of racist history aimed to explain the moral desirability of these 
crimes against humanity, by systematically denigrating all non-Whites, to portray them as 
somewhat less than human. This sort of religious racism coloured history even at Toledo:

O  /

Gerard of Cremona is credited with having translated over 70 books from Arabic, although 
he knew no Arabic! Similarly, for the last five centuries, the Indian who brought Vasco da 
Gama from Africa to India is always described as a “pilot” (one who guides the ship near 
the land) and never a navigator, although the empirical fact was that it was Vasco who was
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creeping along the African coast, because he did not know enough to navigate across the 
ocean, and it was the Indian who took him across the ocean.

Not many people seem to know that the claim that Vasco “discovered” India has a tech­
nical meaning, deriving from the Doctrine of Christian Discovery—which asserts that any 
piece of land belongs to the first Christian to “discover” it. It is in this same sense that 
Columbus “discovered” America. This religious-technical meaning of “discovery”, and the 
accompanying dehumanization of non-Christians, is institutionalized in legal questions of 
land ownership: according to the current US law, laid down by the US Supreme Court, it is 
for this reason of “discovery” that the original inhabitants of North America cannot claim 
any rights to their ancestral land. They lost that right on being “discovered” by Columbus, 
who also performed an appropriate Christian ritual—a little pooja—to take over the land in 
the name of his sovereign.

If non-Whites had no claim even to ownership of land, how could they claim owner­
ship of knowledge? Therefore, in the same vein as this Doctrine of Christian Discover)?, 
racist historians advanced the claim that no theologically incorrect part of the world had 
played any role in discovering anything worthwhile. Hence, they posited that anything 
worthwhile had either been invented in post-14th c. Europe, or had been earlier invented 
in (White) “Greece”, or had been obtained from there by transmission. (Today no one 
any longer says that the concerned Alexandrian “Greeks” from Africa were White; they 
just put in an image of a person with Caucasian features—as in the latest Indian school 
texts—so that people get the picture right.) Just as the state-church preached the phys­
ical elimination of non-Christians, so also, European historians scrambled to write his­
tory with a view to eliminate any significant historical role for non-Christians and non- 
Whites: the church agenda of physical genocide was matched by the racist historians’ agenda 
of cultural genocide. The agenda of physical appropriation of all land in the world was 
matched by the agenda of intellectual appropriation of the credit for all knowledge in the 
world.

The intrinsic absurdity of this historical proposition was no great difficulty for a church 
which had long been in the business of controlling large masses of people by making them 
believe all sorts of manifestly absurd propositions.

The enforced conformity prevailing in Europe made the task of racist historians easier. 
During the 16th c. CE, books started reaching Europe from all corners of the world, but 
the iron hand of the church made it impossible for European to acknowledge a “pagan” 
source of knowledge. It is easy to understand why people like Mercator, once arrested by 
the Inquisition, went to great lengths to hide their “pagan” sources—for revealing these 
sources would have invited a brutal and painful death by torture. On the other hand, people 
at the top of the religious hierarchy, like Clavius, could hardly be expected to truthfully 
acknowledge their non-Christian sources in public.
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Even in countries like Britain, where there was no Inquisition, the slightest theological 
deviance was severely punished, a striking example being the way someone as prominent as 
Isaac Newton dared not publicly articulate his passionate theological deviance for 50 years, 
until his death. (His successor was quickly expelled for that reason; and Newton’s work on 
the Bible remains suppressed to this day.) The only ones who could be acknowledged were 
the (early) “Greeks”, regarded since Eusebius as the theologically-correct predecessors of 
Christianity. (Since they preceded Christianity, there was no possibility of any con ict.)

'Ehis belief that all knowledge in the world was due to Whites was further encouraged 
by the 15th c. in ux of Byzantine Creek sources, which set the basic tone of the narrative, 
despite the later-day rejection of these sources by some historians. Therefore, racist histo­
rians could, in a perverse sense, claim to be accurately describing the beliefs (i.e., myths 
and enforced superstitions) then prevailing in Europe: that all useful knowledge had to be 
attributed to either Christians in Europe or to their White predecessors in the “Creeks”.

This peculiar form of history writing, or rather en masse fabrication, was supported by the 
writings and speeches of a huge standing army of priests maintained over the centuries by 
the church to promote its “soft” power.

One should not underestimate the force of this racist history. Even those who were not 
directly priests could hardly hope to escape the pervasive in uence of indoctrination via 
church-in uenced education. Bertrand Russell, for example, clearly freed himself from 
many aspects of religious indoctrination, but accepted uncritically the received historical 
narrative, and this directly in uenced his philosophy of mathematics. That philosophy, as 
we have seen, retrospectively reinforced the original racist history about White mathemat­
ics. Similarly, Newton, like Nietzsche, was bitterly opposed to the church, but could hardly 
escape its decisive in uence in his theoretical formulation of both physics and calculus.

Therefore, also, racist history, resulting from the genocidal church politics, ought not to 
be confounded with some implicit and subconscious “Eurocentrism” in colonial history. It 
is remarkable that exactly those historians who are blind to the decisive and long-term role 
of religious fanaticism in the development of mainstream Western history, since Eusebius, 
are the one’s who rush to characterize opposition to it as being due to religious fanaticism. 
Perhaps adherence to this stereotype has something to do with the sources of their liveli­
hood!

In view of these numerous farcical claims of transmission, motivated by the need to de­
fend genocide and slavery with racist history, and supported by a blatant double standard of 
evidence, and institutionalized indoctrination, it is necessary to reconsider what ought to be 
proper standards of evidence for transmission. To begin with, I point out that possible con­
tact, and precedence are not adecjuate grounds to establish transmission, as has been widely 
(but implicitly) assumed by historians so far. Thus, the naive meaning one tends to attach 
to the term “precedence” is quite different from the operational meaning it acquires in the
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context of a racist appropriation of credit for all knowledge in the name of “Greeks”, using 
dubious chronology.

Under the circumstances, a more credible way to establish precedence is through epis­
temological continuity. For example, until just before the time of Alexander, the Greeks 
regarded any kind of scientific thought as an offence punishable by death, as is clear from 
the trials of Socrates and Anaxagoras, and the subsequent ight of Aristotle. How could 
any scientific thought have been produced in such an atmosphere? Why would it have been 
produced—to what economic processes did it relate? The absence of serious answers to these 
questions tends to corroborate that Aristotle was at best merely a translator of books looted 
during Alexander’s conquests (and at worst merely a brand name used by later translators or 
scribes to increase the prices of their products). This point of view would also clearly explain 
why all the rest of “Hellenic” science could grow only on African soil!

Epistemological continuity relates also to non-textual sources. For example, the crude­
ness of the Greek and Roman calendar (compared to, say, the Indian calendar of the same 
period), and the related difficulty Greeks and Romans had in dealing with elementary arith­
metic, is just not compatible with the astronomical knowledge attributed by historians to 
Claudius Ptolemy, suggesting a lack of epistemological continuity. This discontinuity sug­
gests that the Arabic al Majest contains material unknown to Ptolemy that could well have 
been incomprehensible to all astronomers in the Roman empire. If we somehow deny the 
accretive nature of the scientific text in question, lack of epistemological continuity then 
suggests that Greeks and Romans had not even absorbed the knowledge that they were 
translating from Egyptian in Alexandria, just as 17th c. Europe had not quite absorbed the 
Indian knowledge translated by Jesuit priests in the 16th c. CE.

Epistemological continuity certainly relates also to social processes. Thus, consider the 
epicyclic model of planetary motion. Given the long-term Indian involvement with the 
calendar, related to agriculture, given the correlated development of mathematics, it is easy 
to understand how and why a sophisticated planetary model developed in India. But what 
practical requirements were there for such a model to develop in “Greece”? If there was a 
compelling social requirement, then a string of other persons prior to Ptolemy should have 
attempted to build planetar)' models. Where is the evidence for this? If there was indeed 
such a lost astronomical effort predating Ptolemy, why did not the corresponding arithmetic 
develop side by side? Thus epistemological continuity suggests that the “Ptolemaic” epicyclic 
model was obtained through transmissions from India, instead of the other way around as 
Western historians have maintained. (What India seems to have got in return was astrology, 
for Varahamihlra, or the text attributed to him, represents an epistemically discontinuous 
boundary for astrology in India.)

Similarly, the table of chords in the Almagest needs a mysterious technique of square-root 
extraction, though the text itself asserts the difficulty in multiplication and division, suggest­
ing an awareness of the Algorismus and a continuity with the early Arabic Zij of the 9th c.
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CE. Thus, Ptolemy’s table of chords should be situated against (a) transmissions arising from 
access to the long historical background of similar astronomical efforts in Egypt, combined 
with (b) transmissions from India (mainly to Arabs, from 8th c. onwards, but also possibly 
to Alexandria from Ptolemy II onwards), (c) the contribution of later-day Arabic authors, 
closer to the actual manuscript. This suggests that the Almagest is an accretive text, and that 
the actual “Greek” or “Hellenic” contribution to the present form of the Almagest is per­
haps limited to the name “Ptolemy” (which name perhaps only indicated a tradition dating 
back to Ptolemaic times)! It is similarly absurd to speak of “Euclid’s” division algorithm: for 
even supposing that this Euclid of Alexandria existed, he clearly lacked the concept of algo­
rithm for multiplication, and division, which is impossible with Greek or Roman numerical 
notation adapted to the abacus.

Setting aside the mythical Euclids and Ptolemies, real contact could and often did result 
in the immediate transmission of knowledge in some cases, as in the case of the Greeks who 
acquired control of the books in the Great Library of Alexandria, or Vasco da Gama who 
carried back the kamdl. However, in all cases, there was a difficulty in understanding that 
newly acquired knowledge, an epistemological barrier, because of the underlying philosoph­
ical and cultural differences in the approach to that knowledge. (As a trivial example, Vasco 
accustomed to a linear scale found it difficult to understand a harmonic scale, etc.) Some­
times the underlying philosophical differences could be so large that the epistemological 
barriers were not scaled. Thus, it might also happen that despite prolonged contact there is 
no transmission of knowledge, and I examine such cases of contact xvithout transmission (or 
with greatly delayed transmission) because of epistemological barriers. As a consequence of 
these epistemological barriers, knowledge currently regarded as superior was then seen as 
inferior and suspect.

Examples are the delayed acceptance of the Elements, by a stream of Indian tradition, 
because it was seen as having no practical value. Similarly, it took some five centuries for 
the algorismus to be accepted in Europe, because it was epistemologically discontinuous 
with the European tradition of the abacus. As we saw, even the kamdl was not fully under­
stood, and Indian techniques of determining longitude at sea could not be incorporated 
by European navigators, just because they were incompatible with the (incorrect) prevalent 
European beliefs about the size of the earth. As we shall see, another example is the case 
of the calculus itself, which was not properly understood in Europe for centuries. Thus, 
epistemological discontinuities are as critical indicators of the transmission of knowledge as 
epistemological continuities are indicators of its indigenous creation. The long background 
of the calculus and its clear understanding in India show that the calculus was indigenous 
in origin, while the sudden arrival of the calculus and the difficulty in understanding it in 
Europe are indicators of its transmission.

Accordingly, I propose instead a legal standard of evidence for transmissions based 
on (a) opportunity, (b) motivation, (c) circumstantial and (d) documentary evidence, and
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(e) epistemological evidence. The first three are standard features of current law, regarded 
as providing proof beyond reasonable doubt, adequate to convict a person of murder. 
The last point may be explained once again as follows by means of a mundane example: 
if two students give remarkably similar answers in an examination, where each had the 
opportunity to copy from the other, and if one of them cannot clearly explain his answers, 
he is the one likely to have copied from the other, i.e., there has been a transmission of 
information from one to the other. Furthermore, one can look at the background of past 
performance—the student who has a poorer performance in the past is more likely to have 
copied from the student who has a better record of past performance, than the other way 
around. The epistemological test can also be successfully applied to the ironically analogous 
transmission from India to Europe, in recent times, of this very thesis that the calculus was 
transmitted from India to Europe!

Apart from the far greater importance that needs to be attached to the epistemological 
evidence, I suggest also the downgrading of the value of documentary evidence which has 
been overrated because history was mostly done by historians within a scriptural and clerical 
tradition. Documentary evidence is not particularly reliable since it is very easy to manip­
ulate. Thus, (a) there is the long tradition of forging documents, only some of which, like 
the Award of Constantine (on which the Vatican is founded), could be clearly established as 
forgeries. Likewise, there is (b) ample evidence for the way key documents (like Newton’s 
writings summarizing his 50-year investigation into forgery in the scriptures themselves) 
have been deliberately suppressed for centuries, with a view to promote a deliberately false 
account of history. (For example, Gibbon tried to obtain those documents, but could not 
write Newton’s real history because of the lack of documentary evidence.) Today, anyone fa­
miliar with the functioning of clerkdom, in a bureaucracy for example, will be well aware of 
how documentary evidence is routinely manipulated: numerous false documents are created 
everyday, and important documents are deliberately misplaced or “lost” or destroyed with 
the greatest of ease. The vast army of church clerics have been very adept at such manipula­
tion. Thus, refusing to believe something due to lack of documentary evidence, sometimes 
becomes as farcical as refusing to convict a murderer or thief on the grounds that there is no 
signed confession of murder or theft. The interesting thing here is that the forgerers who 
manipulated the documentary evidence, also being clerics, implicitly relied on the same 
scriptural standard of evidence later used by the historian—namely that individual remarks 
and isolated paragraphs could be very weighty, as in the case of the passage about “Euclid” 
in the Monacensis text.

Thus, the value of both absence and presence of documentary evidence needs to be seri­
ously downgraded. Epistemological continuities and discontinuities are far more important 
indicators for extracting the truth from such long-standing and systematic attempts to falsify 
history.



Models of Information Transmission 277

I
INTRODUCTION

Informationtransmission and information sharing are virtually synonymous with cultural in­
teractions, so some conceptual framework is needed for information exchange—one needs 
a general model of information exchange. But despite the great interest in transmissions 
and diffusions, there is no explicitly stated theory of how information is exchanged between 
cultures in contact; and I do not find adequate the standard model of information transmis­
sion that is often implicitly assumed in most histories of mathematics and astronomy—this 
includes those non-Western histories of mathematics that have simply tried to reverse the di­
rection of information ows, wherever possible, without seriously challenging the premises 
of the underlying model of information exchange. So I will begin by pulling out into the 
open the premises of this underlying model. 1 will also indicate alternative principles of 
information sharing and information ow that will help to understand, in a different way, 
what “interaction” means.

II
MODELS OF INFORMATION TRANSMISSION 

The Direction of Information Transfer

The idea that information was transmitted, either unidirectionally, or more probably, from 
winners to losers in a military engagement sounds silly the moment it is explicitly articulated; 
it is as contrary to observation as Keynes’s “trickle-down” model of development, which 
enables surplus to be sucked upwards. To have systematic warfare and military conquest (as 
distinct from feuds between neighbours) the economic conditions must be there for it: say, 
a long period of stable population growth followed by a sudden contraction in the available 
surplus, forcing people to change the lifestyle to which they had become accustomed.1 There 
may be individual adventurers, but people usually do not run risks collectively except when 
there are compelling economic reasons to do so.

Hence, before capitalism, the aggressor would, often enough, have been the one with a 
lower state of development of productive forces, hence of science and culture.2 At the start 
of the colonial project, it is manifest that Europe was extremely poor and technologically 
backward compared to India and China, say, or the Incas and the Mayas. Europe lacked 
the economic wherewithal to produce knowledge: whatever little knowledge was available in 
Europe was knowledge that had trickled down from the Arabs via their colonies in Europe.

Alexander s Booty of Books

Likewise, at the time of Alexander, the small Greek cities were constantly engaged in petty 
warfare, and lacked the economic base to support the production of knowledge. Iran (Per­
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sia), however, was an ancient civilization, and the Zoroastrian Book of Nativities records how 
Alexander had stolen ancient sciences from Persians for the Greeks:

For when Alexander conquered the kingdom of Darius the king, he had all [the 
books] translated into the Greek language. Then he burnt all the original copies 
which were kept in the treasure-houses of Darius, and killed everyone whom he 
thought might be keeping any of them. Except that some books were saved 
through the protection of those who safeguarded them.3

Egypt was an even older civilization, with a history going back thousands of years before 
anything can be traced of Greek tradition. Egypt too had a huge fund of books, and the 
temples were also known as writing houses. Western historians have speculated that these 
books contained nothing more than administrative records. While temples must have kept 
some sort of administrative records, it is hard to believe that books kept in temples had no 
other function. We have seen that Herodotus records how Egyptian knowledge was being- 
transmitted to Greeks long before Alexander. The temples were the repositories of Egyptian 
knowledge. The few Greek philosophers worthy of note prior to Alexander, like Pythagoras, 
had studied in Egypt, and Greek philosophy is so very similar to the Egyptian mysteries 
that the resemblance can hardly be put down to coincidence. This similarity with Egyptian 
mysteries is also strikingly evident in Anaxagoras’ use of the doctrine of Nous. Alexander 
naturally would have wanted to continue this process of transmission.

Therefore, we must ask the key question that has not been asked by any Western historian 
so far: where did Alexander’s loot of books go? Surely, Alexander was not so foolish as 
to have merely locked all these books in his treasury. Presumably, he passed on some of 
these books to the learned men in his kingdom. Aristotle, who happened to be Alexander’s 
mentor, must therefore have got some of these books. This natural line of reasoning is 
corroborated by Strabo’s statement4 that “Aristotle... is the first man [Greek], so far as I 
know, to have collected books.” By “man” Strabo presumably meant “Greek”, for Egyptian 
temples certainly had libraries, while it is understandable that before Alexander there were 
not enough books in Greece to stock a library. Probably the major part of Alexander’s booty 
of Persian books was initially stashed at Alexandria, perhaps because heavy loads were often 
more easily carried by sea. But there it stayed due to Alexander’s sudden death.

The Contribution of Black Egypt: The Great Library of Alexandria

Almost all so-called Greek science comes from Alexandria, located in Egypt, where the 
Ptolemies had collected a library which by various accounts ran to some half a million books.

Where did the initial stock of books come from? This question, too, seems not to have 
been properly addressed earlier. Naturally, such a large collection of books could hardly 
have been produced in Greece, or by Greeks, and then transported to Alexandria—in any
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case it is a bit hard to imagine that Alexander’s army was armed mostly with books, especially 
since there was no library in Greece before Aristotle! Even if we suppose, by a considerable 
stretch of the imagination, that as many as 10,000 books were brought to Alexandria by 
visitors from outside, including traders from places such as Persia, India, etc., the initial 
stock of these books would still have been very large, and of non-Greek origin.

The Greeks could hardly have written these books after occupying Alexandria. For, within 
50 years of the death of Ptolemy I, Gallimachus, the second librarian of Alexandria had al­
ready reportedly built a huge catalogue (pinake) of the holdings of the library. Since Ptolemy 
I spent most of his time fighting to establish his empire, and since his 4000 odd army of 
mostly illiterate people could hardly have been expected to have produced the books in 
question, most of the books had to have been sourced from outside Greece.

Thus there are two mysteries: (a) the fate of Alexander’s loot of books, and (b) the source 
of the initial stock of books in the Great Library of Alexandria. Both mysteries have a simple 
common resolution. The Gallimachus catalogue itself corroborates that there was a mass of 
books earlier lying uncatalogued as would be expected if the books had arrived as part of 
Alexander’s loot.

Unlike the tiny Greek city states, the Egyptian economy, for example, was strong enough 
to support this sort of production of papyri, and Egypt had ourished long enough for the 
production of such a large mass of papyri.

That is, the major part of the initial stock of books in the Alexandrian library hence had 
to consist of Egyptian and Persian works, incorporating knowledge developed and accumu­
lated over thousands of years. Some of these books were subsequently translated into the 
Greek language. Famous Greek names such as Eratosthenes were librarians of this library, 
and therefore had complete and unhindered access to its works. One can, therefore, well 
understand how they acquired a reputation for knowledgeability. According to various ac­
counts, by a decree of Ptolemy II, the library of Alexandria also included all books brought 
into Alexandria by travellers, which books were forcibly confiscated, and copies returned to 
owners, while the originals remained in the library.

Science as a Criminal Offence in Athens

The absence of any Greek science prior to the time of Alexander is confirmed by Greek 
sources describing the trial of Socrates, as in Plato’s Apology.0 During this trial Socrates was 
accused of engaging in speculations about bodies like the moon, and he responded that his 
accusers had mixed him up with Anaxagoras (who had earlier been imprisoned, but had 

ed), and that he kept aloof from such speculations, and regarded the sun and moon as 
gods.

. . .  the simple truth is, O Athenians, that I have nothing to do with physical spec­
ulations.
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[Socrates:] “Do you [Meletus] mean that I do not believe in the godhead of the 
sun or moon, like other men?”

[Meletus:] “I assure you, judges, that he does not: for he says that the sun is 
stone, and the moon earth.”

[Socrates:] “Friend Meletus, you think that you are accusing Anaxagoras, and 
you have but a bad opinion of the judges, if you fancy them illiterate to such a 
degree... ”6

Military Conquests and Information Transmission

But even these very same Greeks who then regarded the study of the natural sciences as 
a serious offence punishable with death, regarded Alexander’s Macedonians as barbarians. 
Considering that Socrates was a contemporary of Plato, and Plato was a contemporary of 
Aristotle, we find the situation radically changed within just a few years, with Aristotle claim­
ing to be an author of several books on scientific subjects ranging from physics to biolog)'. 
This claim to have produced numerous authoritative works from scratch is scarcely credi­
ble. But even if we accept a greatly watered down version of the claim, the only explanation 
for it is an in ux of knowledge from outside: not only did Aristotle’s scholarship follow 
Alexander’s military conquests, but it was causally dependent upon the in ux of knowledge 
brought in by the military conquest. Aristotle himself would not have had a great deal of 
time even to translate these books, for after Alexander died, the Athenians impelled by their 
anti-scientilic ways chased Aristotle out of Athens like Anaxagoras/

In these cases, certainly, information transmission related to military conquests very 
clearly took place in the reverse direction; the military victor learnt from the vanquished, 
though not presumably in the direct way that Rama learnt from Ravana, or Yudhisthira 
from Bhishma. Allowing for the possibility of some cases where military victory might have 
depended upon technological superiority, there is no doubt that the superior techniques 
would have been kept a closely guarded secret, drastically inhibiting information ows from 
the victor to the vanquished.

Studying the enemy would also have made sound military and diplomatic sense to those 
striving for conquest. Concrete examples are the people deputed by Alexander to gather 
knowledge for Aristotle, al-BIrun! deputed by Mahmud of Ghazni to gather knowledge about 
India, and Adelard of Bath sent as a spy disguised as a Muslim student during the Crusades. 
While the ruled could maintain a distance, as in Egypt (or, for that matter, in any modern 
organization), to rule successfully the rulers had to learn about the foreign populace over 
whom they ruled. In short, those seeking to systematically extract surplus from foreign 
sources must first systematically extract information. This was true also of the European 
colonists, in India and China, and it continues to be true today as a general proposition.
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Therefore, also, aggression has often led to the transmission of information mainly towards 
the aggressor.

In fact, this process of information transmission would normally have begun long before 
any actual military aggression. Thus, the Greeks were trading with Egypt for centuries before 
Alexander. Arabs were trading with India long before Ghazni, and the Europeans traded 
with India for two hundred and lifty years before the onset of colonialism.

Of course, following a military aggression knowledge may also scatter in other directions. 
For example, as al BIrunI recounts, many pundits ran away with their books, to escape from 
Mahmud of Ghazni, to places “where our hand cannot reach them”. Similarly, as recounted 
by the Tabakkat-i-Nasin, some Buddhist monks escaped from Nalanda to Tibet to escape 
from the destruction of the University of Nalanda by Muhammad-i-Bakhtiyar-i-Khalji in 
1198—which is why texts like those of Dirinaga, cited earlier, are available only in Tibetan. 
Similarly, numerous Byzantine Greek texts came into Europe after the fall of Istanbul to 
Muhammad the Conqueror.

The only thing wrong with this simple and natural account of history is that it is against 
standard Western accounts of transmission. So let us next understand the origins of those 
“standard” accounts.

Ill
TRANSMISSION IN THE RACIST HISTORY OF SCIENCE

'I he above theory of knowledge often owing towards barbaric military conquerors applies 
very well also to the Crusades. Just as Egyptian knowledge started trickling into Greece 
from centuries before Alexander’s military conquests, so also from the 9th c. onwards, Arab 
knowledge started trickling into Europe. John, Abbot of Gorze, travelled to Cordoba, at the 
time of Khalifa Abd-ar-Rahman III. Through him Arab knowledge came into the French 
Lorraine, and from there it spread to England, because King Knut preferred churchmen 
from the French Lorraine. Gerbert of Aurillac, took a deep interest in Arabic knowledge 
both before and after he became pope.

Just as Alexander’s military conquests brought in a wealth of books, so also after the 
fall of Toledo, its famous library of Arabic books came under the control of the church. 
Just as the Greeks had earlier regarded scientific knowledge as profane, so also the church 
had a long history of burning books since the book-burning orders issued by the Roman 
emperors Jovian, Valens and Theodosius8 (and the church was to continue relying on this 
method of book burning for centuries beyond Toledo). Just as Ptolemy I did not immediately 
know what to do with Alexander’s booty of books, so also the church did little for the next 
forty years with the booty of books at Toledo. Eventually, like Ptolemy II who appointed 
Callimachus to tend to the Great Library, the church realized the value of the knowledge in 
the books, and instituted a translation factory, ca. 1125 CE, under Archbishop Raimundo,
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and Archdeacon Gundisalvi. Just as Ptolemy II financed the translations into Greek using 
the wealth of Egypt, so also the Toledo translations were financed by the gold obtained as the 
church’s 1 4th share of the loot from the Crusades, and provided by Peter, Abbot of Cluny.

We know that hundreds of books were translated at Toledo, since a single translator, 
Gerard of Cremona, translated over seventy (some say 87) books from Latin to Arabic at 
Toledo. Naturally, the Toledo library included also later-day “copies” and reworkings of 
the earlier “translations” at Jundishapur and Baghdad, and these were now translated from 
Arabic into Latin. However, unlike the “translations” at Baghdad or at Jundishapur, many 
of the Toledo translations were extremely literal—since Gerard, for example, knew neither 
mathematics nor astronomy nor even Arabic but translated the Elements and the Almagest 
from Arabic to Latin! These books were the key source of learning for European universities 
for the next few centuries.

However, unlike Ptolemy, who was more than willing to turn into an Egyptian king, the 
church was not really ready to change its spots. Hence, the books at Toledo created two sorts 
of problems. Given that the church hype of the preceding centuries had just been upped 
during the Crusades, there was a strong sense of shame in having to learn from the Islamic 
enemy. This was articulated as follows by Daniel of Morley, one of the translators at Toledo.

Let no one be shocked if, with reference to the creation of the world, I should
invoke the testimony of pagan philosophers rather than the church fathers__
Let us then borrow from them and, with God’s help and command, rob the pagan 
philosophers of their wisdom and eloquence. Let us take from the unfaithful so 
as to enrich ourselves faithfully with the spoils.9

As Daniel points out, his contemporaries were likely to be shocked that he should be 
learning from Islamic philosophers. Having first abused them with the derogatory term 
“pagan”, he is unable even to use the correct word “learning” for this process by which 
Christians acquired knowledge from Arab sources, but speaks instead of “borrowing” from 
them, making one wonder what exactly it was that he intended to return! Finally, he justifies 
his actions by appealing to his god’s command that Christians should rob all non-Christians, 
and goes on to claim that his god will assist in this robbery—as we shall see below, the church 
strongly encouraged this sort of thinking in papal bulls which remain valid to this day.

At this time of the Crusades, when the church was simultaneously running one of the 
biggest hate campaigns in history, against Islam, it felt a need to manage this sense of shame 
in learning from Islamic sources. This was hardly a difficult matter for the church: so, instead 
of representing this process as one of learning or “borrowing” or “robbing”, the church 
misrepresented it as one of “recover)'” by misrepresenting the credits for the knowledge. 
History' was “Hellenized”. The story went around that most (if not all) the useful, and secular 
knowledge obtained at Toledo was actually the handiwork of the early Greeks. On this story, 
this knowledge had merely been kept in safe custody by the Arabs. Thus, the Christians at
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Toledo were only recovering their rightful Greek inheritance, albeit from Arabic books. All 
that the Muslims had done was to preserve this Greek inheritance for the Europeans.

There was nothing very new in such a project of fabricating a false history through abject 
lies—Eusebius commenced this tradition long ago. (And to this day, people believe the 
concocted stories of Christian martyrs in the Roman empire, when, in fact, as Gibbon10 
showed long ago, these stories were concoctions.)

Now Arabs did attribute various texts to Aristotle. For example, a key text translated at 
the Baghdad House of Wisdom was the Uthulijiyya Aristutelis, otherwise known as the Theology 
of Aristotle, “translated” by the philosopher al Kindi with the help of a Syrian Christian in­
termediary Abd’ul Masih ibn Na’imah al-Himsi. Another key religious work of Aristotle 
translated into Arabic was the Kalam fi l mahd al-khair (“The Theology of the Pure Good”), 
and came to be known as the “theology of Aristotle”. However, these attributions by Arabs 
are today believed to be incorrect. The former text (today called the Theologia) is believed to 
be a paraphrase of the Enneads of Plotinus, together with the commentary of Porphyry. The 
latter text is today believed to be a paraphrase of thirty-two propositions of Proclus’ Elements 
o f Theology}'

Thus, there is a fundamental difference between the meaning of “Aristotle” in Arabic 
and in Latin. While it is natural enough to believe that the faldsifd that developed at the 
Baghdad Bayt al Ilikma, under the in uence of Jundishapur, was deeply in uenced by 
“Neoplatonists”, Aristotle’s reputation among Arab scholars derived from just those aspects 
of theology attributed to him. In fact, the term “Aristotle” was used in Arabic more or less as a 
generic term for the “Shaykh al-Yunani” or “the Greek sage”—the way Pythagoreans used the 
name “Pythagoras”. Its correspondence with the historical Aristotle is deeply problematic.

'fhe difficulty, however, is that if some attributions to Aristotle are accepted as incorrect, 
others too may be. So, it is not as if European scholars were unaware of the possibility of 
wrong attributions—it is just that they have appealed to it selectively. So what is the criterion 
used to decide which attributions are correct and which not? The criterion that actually 
seems to have been used is the following.

Since these later Greek “Neoplatonists” were viciously persecuted by the Christians for 
over a century, and ultimately driven out of the Roman empire, it is clear that allowing such 
attributions would spoil the theologically correct image of Aristotle that has been built up in 
the West. In brief, the attributions have been corrected not to ensure historical accuracy, but 
to ensure the theological correctness of “Aristotle”.

Another striking example of how theological correctness was critical to attribution is pro­
vided by the case of “Euclid”. As Heath points out,12

All our Greek texts of the Elements up to a century ago depended upon manu­
scripts containing Theon’s recension of the work; these manuscripts purport, in
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their titles, to be either “from the edition of Theon”. . .or “from the lectures of 
Theon”.

Further, Theon claimed to have himself proved certain results in the Elements. This is 
also quite in line with Proclus’ exposition of the Elements as a “Neoplatonic” mystery text, 
which refutes point by point the revised Christian doctrine of the 4th c. CE. This is also 
corroborated by the archaeological evidence. Thus, there are but three Alexandrian Greek 
papyri which relate to anything that could be called scientific, and these three relate to 
geometry, but do not correspond to the received text of the Elements. This suggests that no 
standardized text of the Elements existed until the 4th c. CE—contrary to what one would 
expect had there really been a person like Euclid who had prepared a definitive geometry 
text at an early date. However, attributing the authorship of the Elements to Theon or to 
his daughter Hypatia would have been theologically incorrect, considering that Hypatia, for 
example, was raped and brutally murdered in a church by a mob organized by a Christian 
saint.

The attribution of the text to an unknown early Greek called “Euclid” was also very conve­
nient for the process of Christianizing the text by reinterpreting it in a theologically correct 
way—unlike say Proclus, there were no known facts at all about Euclid, and thus no facts that 
could inconveniently get in the way. We saw how this happened: Proclus idea of the Ele­
ments as a mystery text was replaced by the idea of the Elements as a source of power through 
irrefragable argument. Ultimately this was secularized through the formalization of mathe­
matics. This philosophy retrospectively acted back on the primary sources: all these available 
“Theonine” manuscripts were disregarded as inconsistent with the reinterpretation.

So even the sources were changed to align the sources to the re-interpretation, and the 
new definitive source of the Elements in the 20th c. CE was regarded as a single manuscript of 
uncertain ancestry just because it did not contain this statement about Theon, and supported 
the re-interpreted version, and was hence regarded as authentic! The average person today 
is unlikely to ever come in contact with a “Theonine” text. 'Phis shows the extent of the bias 
in favour of the theologically correct and how readily it can override and even replace all 
evidence to the contrary.

Ibn Abdun put the matter succinctly:

they translate books of science and attribute authorship to their coreligionists.13

These were not the only known cases of false attribution. The Fihrist prepared by al 
Nadeem shows that by the late 10th c. a number of texts circulating in the Baghdad book 
bazaar were falsely attributed to various early authors to increase their market value. This 
seems to have been a fairly common technique, since ancient texts were regarded as more 
valuable.

Exactly how common these techniques were in those days, is brought out humorously by 
Adelaixl of Bath.14
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The present generation has this ingrained weakness, that it thinks that nothing 
discovered by the moderns is worthy to be received—the result of this is that if I 
wanted to publish anything of my own invention I should attribute it to someone 
else, and say, “Someone else said this, not I.” Therefore (that I may not wholly 
be robbed of a hearing) it was a certain great man that discovered all my ideas, 
not I.

The truth underlying the humour is that deliberately false attributions could also have 
been made for reasons that involved other than religious, or pecuniary considerations.

Under these circumstances, where deliberately false attributions were common, it is not 
clear by what logic the veracity of an attribution is to be determined: apart from theological 
correctness, there seems no other reason why one should accept the veracity of the Peyrard 
manuscript on which the Heiberg “Euclid” is based.

More generally, this criterion of “theological correctness” led to the preferential attribut­
ion of various texts to early Greeks. The reason for this was that, unlike the later Alexandrian 
Greeks—like Porphyry, Hypatia, Proclus, etc.—who were marked opponents of the Christian 
church, there was no possibility of a con ict between the church and the early “Greeks” who 
preceded Christianity. Hence, as noted long ago by Eusebius, the early “Greeks” were theo­
logically correct—one of the very few non-Christian people who could be so called, for the 
church waged war on all others.

Finally, the traditional Arab notion of attribution was quite different. For example, con­
sider the case of the Rahmani of Kunhi Kunhi Maestry (mentioned in the previous chapter). 
This is attributed to the legendär)'’ Arab navigator Ihn Majid. Now certainly Kunhi Kunhi 
Maestry is well aware that many (or most) of the entries in the Rahmani are his own, or those 
of his father, and that he borrowed a British sailing manual from the Kavaratti library and 
copied out portions of it to include in his Rahmani. This is most natural—any book of prac­
tical value is bound to be accretive and constantly updated, else it loses its practical value. 
The knowledge in the book is, for him, a matter of life and death, the attribution is not, and 
is merely customary. So, the attribution to Ibn Majid does not mean for him that each and 
every sentence (or even the majority of sentences) in the book were written by Ibn Majid. It 
simply means that he heard from his father, who heard from his father, that this tradition of 
navigation had come down from the time of Ibn Majid. So the attribution to Ibn Majid is 
merely a part of folklore about the origins of this knowledge; it is an act of humility.

If we do interpret this attribution to mean that all or most of the sentences in the text were 
written by Ibn Majid, and that this was transmitted by blindly copying out that earlier work, 
we run into absurd anachronisms—that Ibn Majid had anticipated British sailing manuals. 
We would then be obliged to make the further absurd assertion that Ibn Majid’s knowledge 
was somehow transmitted to British sailing manuals. But this is exactly what happened in the 
case of Greek texts, since Western scholars, for example, suppose that the historical Aristotle
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wrote most of the sentences in the Organon or Physics, and that for the next 1400 years, 
scribes kept copying out those sentences, and lacked the creative capacity to contribute to or 
update those texts. In fact, such a hypothesis is known to be false even for religious texts like 
the Bible. Indian texts of the Bible were so different from the European texts that in 1599, 
Archbishop Menezes of Goa called a meeting at Udayamperoor (Synod of Diamper) where 
he burnt copies of the earliest Aramaic Bible in India because they did not agree with his 
version of the Bible, and were regarded as being beyond repair.

Kunhi Kunhi’s example generalizes quite easily. For scientific texts and texts that are 
practically useful, for the Arabs, the knowledge was important, attributions were not. This 
sort of thing can also be commonly observed to be the case with contemporary scientists and 
engineers: their interest often is in the way a problem is solved, not in its historical source. 
Hence, knowledge from one source could be casually attributed to another source. (Whit­
taker, for example, in his book on Calculus o f Observations, corrects numerous historically 
incorrect attributions in numerical analysis.) Indian numerals are known to this day as “Ara­
bic numerals”, as part of European folklore. Another common example is provided by the 
Ilazar Afsaney, a Pahlavi text from Jundishapur translated into Arabic at the Baghdad Bayt al 
Hikma: this Persian book is today known as the Arabian Nights, since this was the European 
folklore about it, and the interest is in the stories, and not the attributions. In particular, 
Arabs would not have hesitated to add the latest Indian knowledge to an astronomical text 
coming from Ptolemaic times—the historical accuracy of attributions in scientific texts was 
not a key concern. Western historians however stuck to the premise that each text was au­
thored by a single individual, and that it had come down to the present time by a method of 
copying by scribes—whose key concern was to ensure accuracy of reproduction and not the 
propagation of useful knowledge—an assumption we have seen they well knew to be false.

Therefore, the thesis that early Greeks anticipated most of the knowledge of the 10th c., 
which was obtained by transmission from the Greeks, is an a-priori absurd thesis, contrary to 
elementary common sense.

This thesis of transmission by blind copying is certainly known to be factually false in 
the case of the “translations” carried out at the Baghdad House of Wisdom. Anyone with 
the slightest understanding of the Baghdad Bayt al Hikma knows that Khalifa al Ma’miin’s 
interest in starting it was to promote the Mu’tazilah or the aql-i-kalam. The one thing that 
these people most utterly despised was blind copying or naql: they saw aql, as the antonym 
of naql and accused the Islamic traditionalists of naql}0 This is borne out by the fact that 
while Indian texts were “translated” at the Baghdad House of Wisdom, no single scientific or 
mathematical Indian text was literally translated or even paraphrased. Because the scholars 
at Baghdad processed knowledge, instead of translating individual books, the results were 
not invertible: from al Khwarizmi’s work there is no way one can reconstruct any specific 
mathematical Indian text such as that of Brahmagupta or Mahavi ra or Lalla. There is
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no reason to suppose that the situation was any different with Greek or Pahlavi texts. The 
“translations” at Baghdad cannot be compared with the translations at Toledo.

This aspect of the Mu’tazilah was certainly known to early medieval scholars like Adelard 
of Bath. Thus, Western historians of science have attributed creativity in a racist way they 
knew to be false. They supposed that the Greek authors were capable of making creative 
contributions while Arab authors were not.

The general theory of selection effects with mundane time tells us that it is perfectly 
possible to suppose to the contrary that Greeks had zero creativity in sciences, and that they 
merely translated books from Egypt, Babylon, and Persia, at Alexandria and preserved them 
for eventual re-translation back into Pahlavi and then Arabic, thus returning to Iranians 
and Arabs the heritage they had earlier looted, without, however, adding anything new to 
it—any more than Toledan translations added anything to the Arabic texts. Not being a 
racist, I would be ready to grant that quite probably the Greeks added something to what 
they learnt from others. But, in the absence of hard evidence of any specific original Greek 
contribution in science or mathematics, from sources close to their times, it is not possible 
to say what exactly their specific contribution was!

Secondly, the remarkable similarity between the conjectured knowledge of the early 
Greeks and the knowledge in 11th c. Arabic books at Toledo was tautological—since the 
conjectures about early Greek knowledge were entirely based on 11th c. CE Arabic books. 
However, there is more to the matter than meets the eye. The Arabic books at Toledo obvi­
ously incorporated and updated the knowledge that had accumulated earlier at Jundishapur 
and Baghdad. But that is well known to have included knowledge from various parts of the 
world—it certainly included Indian knowledge.

It is well known that Khusrau I (Noshirvan), following the earlier example of Alexandria, 
possibly under the in uence of the Alexandrian diaspora ejected from the Roman empire by 
Justinian, sent the famous physician Burzoe to India to fetch Sanskrit books to be translated 
into Pahlavi. Indian texts like Pancatantra stories were first translated into Pahlavi as Kelileh 
va Demneh. Indian astronomy texts, too were imported and translated as the zij-i-Shahryar. 
Burzoe also brought back the game of chess.16 Both the Pancatantra and chess were regarded 
as practically useful for education, especially of kings, the one to teach them justice, and 
the other to teach them strategy. It is also well known that books from Jundishapur were 
translated at Baghdad, where, apart from Indian texts on mathematics and astronomy, the 
Pancatantra was also translated from Pahlavi to Arabic.

Therefore, it is hardly a matter of surprise that there is much similarity between In­
dian knowledge, and knowledge that has been attributed to the early Greeks based on late 
Arabic texts: for example, the astronomical model attributed to “Ptolemy” is remarkably 
similar to Indian astronomical models, “Aristotle’s” theory of action by contact, using aether 
( = sky=dkdsa) is as similar to the Nyaya theory as his syllogisms are to Nyaya syllogisms, etc. 
The natural thing would be to take this as evidence that authorship of this material has been
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wrongly attributed to the early Greeks, about whose alleged texts nothing is independently 
known from sources close to their time—since those books were all systematically burnt as 
heretical on orders of various Roman Christian kings. However, these similarities between 
the conjectured knowledge of the early Greeks and the actual knowledge in various other 
parts of the world was explained as arising not due to wrong attribution to the early Greeks 
but due to transmission of knowledge from the Greeks to other parts of the world. Spec­
ulation was piled on speculation, hypothesis on hypothesis to produce a miraculous and 
theologically correct end result, as is the norm in theology. Thus, by means of conjectured 
attribution to the early Greeks and claims of transmission, the entire knowledge of the world 
up to the 10th c. was appropriated to the West.

So far as I know7, no one ever clearly articulated the mechanism of transmission by which 
the conjectured knowledge of the early Greeks was transmitted to the texts from which its 
existence was subsequently inferred. These were vaguely thought to have been due to the 
military conquests of Alexander—which is less plausible then the belief that the Crusaders 
spread European knowledge among the Arabs!

What, then, is the evidence for transmission? How do we decide between the following 
two possible ways to explain the similarity between Indian knowledge and alleged early 
Greek texts? (a) Indian knowledge transmitted to Arab texts was wrongly attributed to 
Greeks, (b) Knowledge in the conjectured early Greek texts was transmitted to India.

No Western scholars has apparently ever bothered to raise or answer this question. All 
that Western scholars did was to set up a competitive chronology for their heroes—real or 
imagined—who authored these conjectured Greek texts. Now chronology was a matter in 
which Western scholars had long experience. Thus, Augustine asserted long ago that the 
long time span of the cosmos (as in the Visnu Parana, or similar beliefs among Alexandrian 
“Neoplatonists” or early Christians like Origen) was false, since “reckoning by the sacred 
writings, we find that not 6000 years have yet passed”.17 Bishop Ussher, in the 17th c. CE 
crowned the centuries of theological effort in chronology’ by putting the date of creation 
at —4004 CE, on Sunday, 23 October. With exquisite scholarship, the time of creation was 
further sharpened to 9 a.m. on that date by Sir John Lightfoot, Vice-Chancellor of the 
University of Cambridge.18

Therefore, all that Western scholars have had to offer by way of evidence for transmission 
is an elaborate chronology attached to a variety of Greek names—corresponding to persons 
both real and imagined. In the tradition of theological scholarship, this entire chronology is 
based on stray remarks here and there. We have seen as an example, how a chronology' was 
attached to “Euclid”, first by supposing “Euclid” to be the same as Euclid of Megara, and 
then using an inauthentic remark in the Monacensis text of Proclus. It has taken centuries 
to come round to considering questions about the authenticity of the identification or the 
remark. On the strength of this semi-mythical chronology, “Claudius Ptolemy” came prior 
to Aryabhata and the Surya Siddhanta, so that the transmission must have taken place from
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Ptolemy to India—although despite the alleged transmission, Aryabhata seems unaware of 
the anticipation of his theory of the movement of the earth by Ptolemy, and also of the 
anticipation of future objections to his theory' by Varahamihira and others, so succinctly 
summarized by the clairvoyant Claudius!

Setting aside, for the moment, the question of the veracity of the evidence offered, let 
us examine the principle of evidence used here. The principle is that if two texts articulate 
similar propositions then transmission must have taken place from the earlier author to the 
later.

The formula that “precedence + similarity = transmission” is quite acceptable (provided 
the precedence is real, and not merely conjectured from a later text). However, it is worth 
noting that this formula has not been applied consistently by Western scholars. Thus, con­
sider the case of Copernicus. It is well known that his theory has a remarkable similarity to 
the earlier work of Ibn as Shatir of Damask. However, in this case the noted scholar Owen 
Gingerich has maintained that Copernicus might have discovered his work independently:

Ibn al-Shatir’s forgotten model was rediscovered in the late 1950’s by E. S. Ken­
nedy. .. In a preliminary work, the Commentariolus, he [Copernicus] employed an 
arrangement equivalent to Ibn al-Shatir’s. Later, in De revolutionibus, he reverted 
to the use of eccentric orbits, adopting a model that was the sun-centered equiv­
alent of the one developed at Maragha.

Could Copernicus have been in uenced by the Maragha astronomers or by Ibn 
al-Shatir? . . .  some of the al-lusi material is known to have reached Rome in 
the 15th century (many Greek manuscripts were carried west after the fall of
Constantinople in 1453), but there is no evidence that Copernicus ever saw it__ I
personally believe he could have invented the method independently.19

Now it is not impossible for Copernicus to have independently reinvented the model, it is 
just that it is exceedingly improbable that this independent rediscover)? happened in Europe 
at just the time when the model could have been transmitted. We are, in fact, being asked to 
believe in a miracle, and we shall see a series of such miracles later on—miracles are all that 
are left to support the Western history of science.

Note also how the standard of evidence for transmission has changed. There is prece­
dence, there is similarity (in fact, the two models are identical). Neither precedence nor 
similarity is doubted, but transmission is. Why? Because now there is a demand for new 
sorts of evidence of transmission. We must produce a manuscript in a language Coperni­
cus could understand, we must produce proof that Copernicus saw it; only then can it be 
believed that transmission has been established.

In the many centuries, since Toledo, that Western historians have been talking of trans­
mission from the Greeks, who ever produced a Sanskrit manuscript of Ptolemy? Who ever
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proved that Aryabhata had seen such a Sanskrit manuscript? Yet every Western reference 
work on the subject asserts that Indian astronomy is transmitted from the Greeks. So is it 
the case that these reference works are all out of date, and that the standard of evidence 
for transmission has now changed? Does Owen Gingerich now deny transmission from the 
Greeks on the grounds that there is no evidence? Not at all; in the very same article he 
sticks to the entire fairv tale about transmission from the Greeks. So, it is not so much that 
the standards of evidence have changed, but that there are (even as of today) two simultane­
ous standards of evidence for transmission. One for transmission to the West, and another 
for purported transmission from the West. Not only is the judge biased, the very rules of 
evidence are biased!

As another example, consider the case of Ashoka’s rock edicts, where he proclaimed the 
victory of Dhamma in the missions he had sent to various kings, including Ptolemy II of 
Alexandria.20 In this case, the veracity of this rather solid piece of archaeological evidence 
coming from some 33 sites scattered across India, Pakistan, and Afghanistan is denied as 
follows by Rhys Davids: “It is quite likely that the Greek kings are only thrown in by way of 
makeweight as it were and that no emissaries had been actually sent there at all.” (In fact, 
one of the Ashokan rock edicts found in Kandahar in Afghanistan is in Greek.) If this sort of 
archaeological evidence can be thus denied, and if the same standard is applied to Western 
history, forget about the “Greeks”, it is unlikely that there is anything at all in Western history, 
even a single event, for which there is any evidence that can be regarded as reliable. But, of 
course, that was not Rhys Davids’ intention: instead of changing all of Western history he 
wanted to preserve it by ordaining different rules of evidence for different people.

Despite Rhys-Davids’ vehement denials, the fact is that there is this marked similarity 
between Indian thought about cosmology and that of “Neoplatonists”, and early Christians 
like Origen, who believed in something very similar to karma-samskdra. Phis is suggestive 
of transmission. Certainly there is ample evidence that various “Neoplatonists” and early 
Christians in Alexandria well knew about Indian thought (Augustine even objected to Por­
phyry learning about the “mores and disciplines of Inde”) and there was large scale com­
merce with India, and Indians even attended the lectures of Dio Chrysostom. So, there is 
similarity, there is precedence, there is ample opportunity for transmission over centuries. 
However, this transmission has been denied, mainly to deny Indian in uence on early Chris­
tianity. The denial has been done similarly by sharpening the standards of evidence to an 
unrealistic level.21

So, similarity and precedence do not always establish transmission. Whether or not they 
establish transmission depends upon the direction of transfer. Thus, in practice, there are 
two standards of evidence for transmission: an ultra-lax standard for transmission from 
Greeks, and an ultra-strict standard for transmission to the West.

Now why should there be this asymmetry? Why should there be two standards of evi­
dence? We need to understand the deep seated religious motivations behind this.
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The Doctrine of Christian Discovery

In support of the West’s physical claim to the whole world, the Western history of science 
sought to establish an intellectual claim to all knowledge in the world, especially all scientific 
knowledge. To situate this claim in its proper perspective, we need to probe a little deeper 
to understand a bit of the unstated logic behind colonialism. According to the religious 
beliefs of the colonialists, such an intellectual claim of discovery, in turn, established the 
colonialist’s moral claim to the whole world. It was these “moral” claims that distinguished 
colonialism from a simple project of robbing the world by physical force.

Let us try to understand the basis of these moral claims. The United States, for example, 
today occupies a continent from where the original inhabitants have been genetically deleted 
for all practical purposes. The fact is that a real genocide has manifestly taken place. How­
ever, unlike Hitler’s genocidal attempt on the Jews, which is depicted as a brutal genocide, 
the American genocide is celebrated as a heroic feat. There is an entire genre of literature— 
“Western” films and comic books—devoted to celebrating this genocide. The in uence of 
this genre is evident: most American children have at some time or the other played the 
game of “cowboys and injuns”. Therefore, the same American who regards Hitler’s at­
tempted genocide of the Jews as a shameful matter, is filled with pride at the thought of 
the genocide of the American Indian.

The genocide received support from the US supreme court, which has provided an in­
teresting legal justification for the occupation of the American continent. The justification 
rests on the celebrated 1823 case of Johnson v. McIntosh (8 Wheat., 543).22 On behalf of 
a court which unanimously sided with Johnson, Chief Justice John Marshall observed that 
Christian European nations had assumed “ultimate dominion” over the lands of America 
during the “Age of Discovery”. After having been “discovered” by Christians the Indians 
had lost “their rights to complete sovereignty, as independent nations”, and only retained a 
right of “occupancy” in their lands.23

In other words, Indian nations were subject to the ultimate authority of the first 
nation of Christendom to claim possession of a given region of Indian lands.24

Marshall argued (pp. 587-89) that although this first Christian nation was Britain, the 
US had succeeded to the right of “discovery”, and had acquired the power of “dominion” 
from Britain when it became independent of Britain in 1776.

Did Britain, a Protestant nation, subscribe to the doctrine of discover)' promulgated by 
a Catholic pope? Addressing this implicit doubt, Marshall argued that British law had in it 
“complete recognition” of the doctrine of discovery: “As early as 1496”, Marshall continued, 
“her [England’s] monarch granted a commission to the Cabots, to discover countries then 
unknown to Christian people, and to take possession of them in the name of the king of 
England” (Johnson, pp. 576-77). Marshall summarized the charter given to the Cabots who
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were authorized to take possession of lands, “notwithstanding the occupancy of the natives, 
who were heathens, and, at the same time, admitting the prior title of any Christian people 
who may have made a previous discovery” (Johnson, p. 577).

Thus, the legal justification for the occupation of the United States, and for the inhumane 
treatment of its original inhabitants depends upon a religious principle, the “doctrine of
discovery”.

✓

What is this “doctrine of Christian discovery”, which gives so much power to “discovery” 
by Christians. The doctrine derives from papal edicts.20 Thus, bull Romanus Pontifex, 1453, 
issued by Pope Nicholas V stated:26

“[W]e bestow suitable favors and special graces on those Catholic kings and 
princes... intrepid champions of the Christian faith... to invade, search out, cap­
ture, vanquish, and subdue all Saracens and pagans whatsoever, and other ene­
mies of Christ wheresoever placed, and . . .  to reduce their persons to perpetual 
slavery, and to apply and appropriate... possessions, and goods, and to convert 
them to... their use and profit.”

This was later followed by the bull Inter Caetera of Pope Alexander of 3 May 1493, giving 
the rights to conquest and subjugation of one part of the globe to Spain, and the other part 
to Portugal.27 These bulls were supported by numerous citations from the Bible (e.g. Psalm 
2:8-9 N.l.V.,28 and 149:6-9 N.I.V.29). This doctrine was used by Portugal, Spain, and later 
Britain as authoritative religious and moral sanction to grab all the land in the world, and 
kill or enslave the original inhabitants, as a matter of religious right. The doctrine naturally 
en joined the corollary of genocide and slavery as the religious duty of a good Christian, and 
this was what subsequently happened. Here is first-hand account by Las Casas.30

And the Christians, with their horses and swords and pikes began to carry out 
massacres and strange cruelties against them. They attacked the towns and 
spared neither the children nor the aged nor pregnant women nor women in 
childbed, not only stabbing them and dismembering them but cutting them to 
pieces as if dealing with sheep in the slaughter house. They laid bets as to who, 
with one stroke of the sword, could split a man in two or could cut off his head 
or spill out his entrails with a single stroke of the pike. They took infants from 
their mothers’ breasts, snatching them by the legs and pitching them headfirst 
against the crags or snatched them by the arms and threw them into the rivers, 
roaring with laughter and saying as the babies fell into the water, “Boil there, 
you offspring of the devil!”. . .They made some low wide gallows on which the 
hanged victim’s feet almost touched the ground, stringing up their victims in 
lots of thirteen, in memory of Our Redeemer and His twelve Apostles, then set 
burning wood at their feet and thus burned them alive. To others they attached
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straw or wrapped their whole bodies in straw and set them afire. With still others, 
all those they wanted to capture alive, they cut off their hands and hung them 
round the victim’s neck, saying, “Go now, carry the message,” meaning, 'lake the 
news to the Indians who have ed to the mountains. 'They usually dealt with 
the chieftains and nobles in the following way: they made a grid of rods which 
they placed on forked sticks, then lashed the victims to the grid and lighted a 
smoldering fire underneath, so that little by little, as those captives screamed in 
despair and torment, their souls would leave them.

The reference to terms like “offspring of the Devil”, etc. shows that these were hate crimes 
instigated by religious belief that those perpetrating these crimes against innocent babies 
would be welcomed in heaven, while it was the victims of these crimes that would go to hell! 
Over a thousand years earlier, Augustine had so transformed Christianity that these crimes 
were legitimized. Those committing these horrible crimes thought they were performing 
holy deeds: for were they not only initiating in a small way the endless ordeal of physical 
torture that their God would continue to in ict for an eternity in hell, against those innocent 
newborns, for the crime of being non-Christian? Such notions of morality were a natural 
consequence of the doctrine of hate against all non-Christians that the priests of Christianity 
had been systematically propagating since the days of Constantine. The killings were on 
such a mass scale that they soon depopulated the entire continent, eliminating most of the 
original inhabitants. There was, obviously, no provocation, for the American Indians had 
welcomed the Spanish as messengers of the gods. Las Casas explains:

and never have the Indians in all the Indies committed any act against the Span­
ish Christians, until those Christians have first and many times committed count­
less cruel aggressions against them or against neighboring nations. For in the 
beginning the Indians regarded the Spaniards as angels from Heaven. Only af­
ter the Spaniards had used violence against them, killing, robbing, torturing, did 
the Indians ever rise up against them... .

Genocide, Slavery, and the Colour of the Skin

Further, as Las Casas’ account shows, it was only later on that these murdered American 
Indians came to be described as “Red” Indians. Genocidal religious attitudes came to be 
related to the colour of the skin as follows. As seen above, slavery7 was religiously sanctioned 
by the same edicts of the pope which instigated genocide. Like genocide, slavery was also 
seen as an economic “necessity” in the interests of the state, since people were required to 
produce and extract agricultural wealth from the vast lands that had been “discovered” by 
Europeans. However, many of the slaves imported from Africa converted to Christianity. 
This created a moral problem: now what was the moral justification for ill-treating these
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people? Even Europeans who were otherwise quite comfortable with genocide and slavery, 
as being religiously sanctioned, now experienced a sense of unease. This moral unease, since 
it inhibited brutality, was seen as dangerous to the imperial objectives.

The categories “White” and “non-White”—red, black, brown, yellow—helped to resolve 
this moral unease! By the mid-16th c. CE, Inquisitioners had started developing a system of 
looking for the sort of evidence of pagan attitudes that could be easily spotted visually—like 
the dress. The colour of the skin provided such a simple visual yardstick, which could not 
be easily changed like dress, and which could help to identify those who were either non- 
Christian or were recent converts to Christianity. Skin colour became the index of religious 
beliefs. In defence of genocide and slavery it was now argued that not only was it morally 
correct for Christians to kill, ill-treat, and enslave non-Christians, but that it was morally 
permissible for Whites to kill, ill-treat, and enslave non-Whites—and it is well known that 
these attitudes persisted late into the 20th c. CE, and even retained legal sanction in South 
Africa until a few years ago.

But what was the justification for the belief that Whites could ill-treat non-Whites? To 
support the morality of Christian violence against non-Christians, it was easy enough to 
find numerous citations in the Bible, as illustrated above.31 But new justification had to be 
invented for these new categories based on skin colour, not mentioned in the Bible.

This created the need to fabricate racist history—to systematically denigrate all non- 
Western cultures, to justify the White crimes against all non-Whites, on the grounds that 
non-Whites were somewhat less than human. Cultural genocide was used to morally justify 
the physical genocide that Europeans were engaged in.

Transmissions and the Racist Narrative of Greek Origins of All Knowledge

To this end of cultural genocide, the core narrative on the agenda of racist historians was 
simply this: all knowledge in the world was discovered by Whites—either by Christians, or 
before that by the Greeks. Since the aim was to establish White intellectual ownership of 
all knowledge, it was an unstated assumption that the Greeks in question had to be White. 
Since, as we have noted, “Greek” science actually comes from Alexandria, located in Africa, 
the validity of this assumption was not always clear. This is the amusing reason why, as noted 
earlier in Chapter 1, Thomas Heath was so concerned with negating the Arabic claim that 
“Archimedes was a short black man”.

A not-so-amusing feature of this sort of racism is the way images of these “early Greeks” 
adorn the latest Indian school texts produced by the NCERT.32 While I can point out to my 
child that photography did not exist in those days, so the pictures are obviously fake, even 
this input is not available to most children exposed to these texts. So these images have a 
dual purpose. First, they lend reality to unreal figures—a picture of “Euclid” is visual proof 
of his existence. Second, they indicate what cannot be explicitly stated today—that all these
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names are to be associated with Caucasian features, so that no one will take Archimedes to 
be a woolly-haired man. Since children tend to trust the first story they hear, all these Indian 
children are going to grow up indoctrinated with these racist beliefs.

Claims of transmission became the key instrument in the racist historian’s agenda of 
cultural genocide: any evidence of knowledge in the non-White world perforce had to 
be explained as derived from the transmission of knowledge from Whites—hence all pre- 
Renaissance knowledge had to have come “from the Creeks”. Conversely, the earliest find­
ing of any knowledge in the White world was to be treated as “original” and not obtained 
by transmission, just as Columbus and Vasco da Gama were to be decreed the “original” 
discoverers of lands long occupied by others.

Accordingly, I would place the commencement of this project of fabricating racist history, 
much earlier than Bernal. By 1785 CE the project had entered a very virulent and blatant 
phase, with Europeans beginning to seize control in India and China, but the process com­
menced at Toledo and was strongly reinforced by the developments in the Americas in 16th 
c. CE itself.

Pagan Sources and the Inquisition

A couple of points regarding the development of this programme of racist history need some 
clarification.

Eirst of all, just as Arabic traditions made it appropriate to acknowledge a famous 
early source, so also European traditions, especially those prevailing during the 16th and 
17th c. CE, made it inappropriate to acknowledge any earlier source, especially an earlier 
non-Christian source.

A couple of illustrations will make the point clear. At the time of Copernicus, as already 
noted, the church was very much operating in the crusading mode of intense religious war. 
Copernicus, himself a priest, had connections high-up in the ecclesiastical hierarchy, who 
would certainly have been embarrassed had he acknowledged the non-Christian source of 
his astronomy, and their embarrassment would naturally have re ected on his own fortunes. 
Copernicus’ fear of the church is clear from the fact that he waited until he was on his 
deathbed before he published his work. It is also manifest from the “grovelling” preface to 
his allegedly revolutionary book, in which he desperately seeks to have the authority of the 
church on his side. Under these circumstances he would naturally enough have preferred to 
hide any Islamic sources he used. The social circumstances of the Inquisition that compelled 
him to hide his heretical sources can be ignored only by those historians who deliberately 
wish to obfuscate the truth.

Similarly, Mercator was actually imprisoned by the Inquisition.33 Revealing his pagan 
sources would have definitely been fatal to him. Naturally enough his sources have not 
been found. But the similarity of his maps to projections used in Chinese star maps of
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the 10th c. is well known. So summary and brutal were the ways of the Inquisition, and 
such was the atmosphere of terror created by it, that people were intensely afraid of being 
associated with anything that might even faintly be theologically incorrect, for any rival 
could have denounced them, leading to painful and fatal consequences. Thus, in the days 
of the Inquisition there was little likelihood that even an otherwise honest European would 
have acknowledged knowledge from any non-Christian sources. Similar remarks, with some 
slight modifications, would apply a fortiori to those high up in the church hierarchy like 
Clavius, Tycho Brahe, etc.

This tendency to hide pagan sources was compounded by historians—who tended to 
run-down non-Christian and non-White sources. This tendency persists down to the present 
time—for example, even today, the name of Regiomontanus is more emphatically associated 
with the stock history of trigonometry than that of Aryabhata! We will see another example 
of this later on.

Knowledge as a Trade Secret

Secondly, apart from fear of the church, secrecy was also motivated by the monetary and 
social value of the knowledge. Knowledgeable navigators, for example, commanded a high 
price, and tended to keep their knowledge a secret in the manner of trade secrets of today. 
In fact, Portuguese navigators used to get the decks cleared before making observations, 
so that no one else should, by observing them closely, learn to navigate. Academics like 
Fermat acquired their reputation not by publishing in the manner of today’s academics, but 
by not publishing and challenging others to solve problems they knew how to solve. Even 
Newton threatened to withhold publication of his Principia, to establish his priority. Thus, 
there was then also a general tendency in Europe to avoid altogether revealing any sources 
of knowledge, to the extent possible, because the society placed a high value on priority. 
This is in noticeable contrast to, say, early Indian tradition, where there was not a single 
known case of any priority dispute.

Byzantine Sources and the Narrative Bias

Finally, the Byzantine Greek manuscripts that poured into Europe, after the fall of Istanbul, 
in the latter half of the 15th c. CE made it a natural agenda to attribute all knowledge up 
to the 15th c. CE to an early Greek source! Given the earlier stories about Greeks it was 
natural to regard these as the “original Greek sources”. Many people still consider these late 
Byzantine manuscripts as “original Greek sources”. It is true that some later-day historians 
have questioned these sources, and rejected them as unreliable indicators of early Greek 
knowledge. But of what use is it today to question the historical authenticity of Jesus in 
the learned manner of Albert Schweitzer?34 Once a certain critical mass of people have 
been indoctrinated and the historical narrative has been established, it acquires a life of its
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own, regardless of the evidence to the contrary, and certainly regardless of the criticism of 
the historical sources of the narrative. The tenacity with which people tend to cling to a 
narrative, especially one which they have acquired in childhood, is amazing—such is the 
power of narrative over facts. The most absurd propositions can and have been perpetuated 
in this manner.

In particular, the Byzantine Greek sources helped to reinforce the initial bias in favour of 
the narrative of early Greek origins of knowledge.

Example: Transmission of the Epicyclic Model to Ptolemy

An example might help to fix the above ideas. Consider the case of the epicyclic model 
of planetary motion. The initial Arab and Byzantine sources had set the bias in Europe: 
the Greek fount of astronomical knowledge was “Claudius Ptolemy”, the supposed author 
of the Arabic al Magest. Today, all books, without any exception known to me, attribute 
the epicyclic model of planetary motion to Claudius Ptolemy. Now, apart from the Arabs, 
a similar, though somewhat more sophisticated, model is also found in Indian tradition. 
Accordingly, Western historians such as Pingree claim that the Indian planetary models were 
obtained by transmission from Ptolemy.

What exactly is the evidence for this claim of transmission? What is the evidence that 
the original model was developed by Ptolemy and that it was transmitted to India? Well, the 
Surya Siddhanta is dated to about the 3rd c. CE, while Claudius Ptolemy is dated to the 2nd c. 
CE, which is earlier. So the logic is that there is similarity and there is precedence, therefore 
there must have been transmission. There are some other arguments that are sometimes 
given. One is that the Pulisa Siddhanta mentioned by Varahamihlra in his Pancasiddhantika 
refers to Pulisa which Thibaut thought might be a distortion of “Paul”. Such “evidence” is 
not even worth contesting, and I mention it only to put on display the sort of arguments on 
which the convictions of authoritative Western historians are based.

The alternative hypothesis proposed above was that while parts of the Almagest may be 
from Ptolemaic times, it is an accretive text (as any scientific text ought to be) the entire con­
tents of which are today incorrectly attributed to a “Ptolemy” (whose historical existence is 
yet to be established). Indian knowledge of astronomy, which travelled to both Jundishapur 
and Baghdad, was used to accretively update an early Egyptian corpus, dating from Ptole­
maic times, and this accretive text ultimately became the Arabic Almagest. Not only were 
significant portions of the Almagest text obtained through transmission from India, but the 
epicyclic model today attributed to “Ptolemy” was probably also obtained in this manner, 
and was but a simplification of the Indian epicyclic model.

A third hypothesis is possible: for apart from transmission via Jundishapur and Baghdad, 
there is a possibility that the epicyclic model could have been directly transmitted directly 
from India to Alexandria. After all, if a 11th c. CE Arabic text from Baghdad or Toledo or
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a later Greek text from Istanbul can be taken as evidence of the exact state of astronomical 
knowledge prevalent in another place, Alexandria, in another language, 8 centuries earlier, 
why can’t the Surya Siddhanta be taken as representative of the astronomical knowledge pre­
vailing in the same place, India, in the same language, a mere three centuries earlier? Thus, 
both the Aryabhatiya and the Surya Siddhanta simply take this epicyclic model for granted, 
suggesting that it was very widely known to tradition at that point of time, which would 
hardly have been the case if it had only recently been developed or imported from abroad. 
On the other hand, we do know that Indian trade with Egypt stretched back to times be­
fore Alexander, and many texts attest to a substantial presence of Indians in Alexandria. 
Certainly, an Indian navigator would have had good reason to have carried astronomical 
manuals with him for reference and study. So there is every likelihood that Indian knowl­
edge of astronomy found its way into the libraries of Alexandria, from where Ptolemy, if 
there really was an actual person like him, may have translated or copied them out. While 
transmission from India could have taken place in both ways the plain evidence of the current 
text of the Almagest supports the first of the above two suggested routes, and this is the sole 
alternative we will consider in the sequel.

Thus, the two hypotheses before us are (a) that a certain Ptolemy of the 2nd c. wrote a 
definitive text on astronomy which was transmitted to India by the 3rd c. CE, and (b) that 
Indian knowledge of astronomy was transmitted to the Arabs in the late 8th and early 9th 
c., that this knowledge found its way into the accretive Arabic text of the Almagest, and was 
incorrectly attributed to a “Claudius Ptolemy” of the 2nd c.

Now how do we decide between the two hypotheses? First we need to decide whether 
the Almagest text is a single author work or an accretive work. Ptolemy has been “firmly” 
dated, as one might guess, on the strength of some passages in the text—and the assumption 
that the current form of the text is the work of exactly one author. The passages relate to 
observations of equinoxes and solstices reportedly made in the reign of the Roman king 
Antoninus.30 People like Tycho Brahe, who actually made observations, realized long ago 
that these purported observations were all fabricated. Historians like Delambre reached the 
same conclusion. More recently, this was pointed out in a whole book by Newton:36 the 
systematic error in the “observations” could not have been due to instrumental error, and 
conclusively fits the hypothesis that the stated times were back-calculated from the incorrect 
theory that the length of the year is 1 day in 300 less than 365|. Similarly, the stellar 
“observations” all have a systematic error of about 1° in longitude, showing that the positions 
have been back-calculated using an incorrect theory of the precession of the equinoxes. In 
general, as pointed out by Newton, there is not a single reliable observation in the entire 
Almagest.

However, all this seems to me not so much evidence of a crime by Claudius Ptolemy 
(there is no evidence that he even existed), as evidence to show that the text is accretive: 
one author recorded the star charts, and some other author recorded the passage on the
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strength of which “Ptolemy” is dated. There is other internal evidence to show that the text 
is accretive. For example, the “Cyrus” to whom the text is addressed, probably locates one 
source of accretion in Iran. Similarly, it is not difficult to locate the time until which accretion 
was going on: Polaris leads the star catalogue in the Almagest, although there was no pole 
star in the epoch assigned to Ptolemy—at best it could have been Kochab.

Of course, if the Almagest is a multi-authored accretive text, then it is pointless to try to 
assign a precise date to it, as Western historians have been naively or mischievously doing 
for so long. Since the key evidence for the claim of transmission is the claim of precedence 
which derives from the date, the claim already falls apart. However, let us examine other 
aspects as well.

The second point to consider is whether the attribution of the knowledge in the text to 
the 2nd c. is anachronistic. When the Arabs hrst learnt Indian algorithms for arithmetic in 
the 9th c., they experienced difficulties in multiplication and division. Similar difficulties 
are explicitly referred to in the “Ptolemaic” text37

In general, we shall use the sexagesimal system because of the difficulty of frac­
tions, and we shall follow out the multiplications and divisions, aiming always at 
such approximations as shall leave no error worth considering as far as the accu­
racy of the senses is concerned. [Emphasis added.]

To get over these identical difficulties experienced by 9th c. Arabs, they prepared handy 
multiplication tables. While numerous such Arabic multiplication tables are available, most 
of them are only to a precision of the second sexagesimal minute, though some tables include 
thirds.

In India, as we have seen, Aryabhata in the 5th c. derived his trigonometric values only 
to the precision of the first minute (which would require arithmetical calculations only to the 
second minute). It was only in the 9th c. CE that we find attempts to calculate these values 
correctly to the second and third minutes, which calculations, if done with tables, would 
normally have required multiplication tables to the fourth minute.

However, the Almagest states values of the chord to the third minute!38 Compared to the 
two-sexagesimal place Arab tables of the 9th c. CE, this required tables to the fifth sexages­
imal place!39 Certain values, like the mean movement of the moon’s anomaly in longitude 
are given to the eighth minute!40

In the passage used to date Ptolemy, the author of the passage is struggling to fix the 
length of the year accurately to the second decimal place, through the admittedly crude 
device of looking at just a few pairs of (concocted) “observations” some 300 years apart—and 
even then he gets it wrong! 'l'his is the maximum level of accuracy that is consistent with our 
knowledge of the Roman calendar, which, despite earlier attempts at calendar reform, did 
not progress to second-decimal-place accuracy until the Gregorian calendar reform of 1582. 
(Even in 1582 Europeans were unable to fix the length of the year that accurately; hence
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Protestant countries initially rejected the reform.) So, in the absence of accurate knowledge 
of even a simple parameter like the length of the year, where did the accuracy to the eighth 
minute come from? Why were chords needed accurately to the third minute?

These questions have simple answers if we locate the Almagest in the environment of post 
9th-10th c. Arabs. The questions have no straightforward answers if we regard the Almagest as 
a 2nd c. Roman text. (The emphasis on “straightforward” is important, for, of course, it is 
a well-known principle in the philosophy of science, that any hypothesis can be made con­
sistent with any facts by piling on more hypotheses.) Thus, the Almagest seems an accretive 
work, and attributing it entirely to the 2nd c. CE seems anachronistic.

It is instructive to compare the Almagest account of the earth, with the various arguments 
from Indian texts cited in Chapter 4. There is a remarkable similarity. Why doesn’t the 
earth fall down? Vatesvara asks the counter-question, “say what is up and down for an object 
standing in space?” and “Ptolemy” repeats41 somewhat more unclearly, “For there is no 
above’ and below’ in the universe with respect to the earth, just as none could he conceived 
of in a sphere.” Vatesvara says, “Just as a ame of lire goes aloft in the sky and a heavy mass 
falls towards the earth, so is the case in every locality on the earth”, and the Almagest repeats, 
with greater prolixity and less clarity, “And of the compound bodies in the universe to the 
extent of their proper and natural motion, the light and subtle one’s are scattered in antes 
to the outside and to the circumference, and they seem to rush in the upward direction... but 
the heavy and the coarse bodies move to the centre and they seem to fall downwards.”

One of the more interesting of these common features is the following argument where 
the rotation of the earth is denied in the Almagest: “Now some people... think... supposing, 
for instance, the heavens immobile and the earth as turning on the same axis from west to 
east very nearly one revolution a day... The Almagest text goes on to paraphrase the argu­
ments of Varahamihlra about the aether wind (Chapter 4, p. 215, and note 27), although it 
changes the eagle to a falcon. Now in the Indian tradition we know the story, and it is un­
derstandable why Indian texts, after Aryabhata consider it important to deny this possibility. 
It would also have been a very natural thing for a post 9th c. CE Arabic astronomer to have 
put things in this way, leaving the “some people” unspecified, for the relevant names would 
have communicated nothing. On the other hand, had there been transmission of any such 
text in the reverse direction to 3rd c. India, then Aryabhata would have been compelled by 
tradition to address this argument (against the rotation of the earth) as a purva paksa. There­
fore, this also supports the view that the Almagest is an accretive text incorporating Indian 
knowledge via post-9th c. CE Arabic astronomy.

Epistemological Continuity and Transmission

The racist double standard of evidence is often masked by an appeal to authority. Therefore, 
to resolve the issue of transmission, it is important to go beyond mere textual evidence (from
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late texts), and look at a variety of other criteria. One such criterion is that of epistemological 
continuity: a transmission is indicated by an epistemological discontinuity.

As an elementary illustration of this principle, consider a practical situation where two 
students turn in identical answer sheets (or projects). It helps to examine the background 
of the two students: if one student has long been performing well, it is likely that it is the 
other student who copied. That is, we do not look merely at the end result, but also look at 
the process by which that end result was obtained. Acquiring or generating knowledge is a 
process that takes time.

As another application of this principle, when there is a doubt about the dating of a text 
(or the authenticity of a claim of discovery) it helps to examine the continuity of a text (or 
discover}') with the knowledge exhibited by past and future texts from the same milieu. To 
avoid a situation where one speculation is supported only by other speculations, it helps to 
locate the text in the context of the non-textual evidence of what was definitely known at 
that time in that milieu. It also helps to ask about the social processes that supported the 
generation of the text, and the knowledge in it.

Thus, in India, the scientific interest in astronomy and timekeeping stretches back to at 
least the Vedanga Jyotisa of ca. —1350 CE, for practical reasons, related to agriculture and 
economic production, as we have already seen. This provided a very long baseline of obser­
vations against which there was a need to invent, test and improve planetary models in an 
epistemologically continuous way. Since Indian astronomy was linked to the practical social 
requirement of agriculture, post-Surya Siddhanta, we find a series of astronomical texts right 
up to the 17th c., and, in fact, down to current times—for the traditional Indian calendar is 
still in use.

In Greece, on the other hand, there is no particular tradition of astronomy preceding 
“Ptolemy”. We have already seen that any sort of scientific approach to astronomy was 
regarded as a crime up to the time of Plato and Aristotle. Likewise, Greeks at the time 
of Alexander knew nothing of navigation and had not made any serious sea voyages, as is 
clear from Arrian’s account of Nearchus’ voyage, and the way his soldiers got terrified on 
seeing the spout of a whale. So, till the time of Alexander, Greek knowledge of astronomy 
was virtually nil, and there were no social processes like agriculture or navigation with which 
it was entrained.

This ignorance of astronomy is re ected in Macedonian calendar which intercalated one 
new month for every two years. This was so crude a technique that the calendar gained 
about 3 \ days per year, so that there was no correlation even between the new moon on the 
Greek lunar calendar and the actual new moon! Naturally, wits mocked the Greek calendar 
using the term “Greek calends” to describe this state of chaos. (Nevertheless, it is the Greek 
Meton from this period to whom the “Metonic” cycle is attributed!) Thus, there was no social 
requirement for knowledge of astronomy among the Greeks.
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Presumably, it was the input of African knowledge in Alexandria that brought about a 
change of Greek attitudes towards astronomy. The Almagest passage used to date Ptolemy 
(Book 3.1 on the length of the year) rejects the observations of earlier Greeks like the pupils 
of “Meton and Euctemon... as more or less taken in the rough, as Hipparchus also seems to 
have thought” (p. 81). It refers to Hipparchus carrying out observations, on a “bronze ring 
situated in what is called the Square Hall of Alexandria” (p. 78), presumably an Egyptian 
construction. Again, the Almagest itself (unlike present-day historians) does not find any 
other Greek astronomer worthy of mention in the next three centuries after Hipparchus. 
Thus, unlike the Indian tradition of astronomy which is a continuous tradition spanning 
three thousand years, “Ptolemy” is a singularity with no serious predecessors or successors: 
the only predecessor he acknowledges is a single individual who came some three centuries 
earlier. In placing the Almagest in the 2nd c. we are required to believe that Greek astronomy 
suddenly appeared with the definitive text of the Almagest.

Unlike the case in India where the planetary models were continually being refined, and 
their parameters adjusted, down to the 16th c. CE, there is no clear historical account of 
the process by which the parameters in the Almagest were obtained by “Ptolemy”. In India, 
the move from precision of the first minute to the second minute took several centuries. 
So, did Ptolemy have any predecessors who did some less accurate calculations? Did he 
have a predecessor who perhaps calculated chords 1° apart? Unfortunately no: Ptolemy 
is a singularity who (by virtue of the chronology assigned to him) miraculously emerges 
with a full-blown model without any earlier mistakes or prototypes! Ptolemy’s immediate 
predecessor in the Roman empire, Pliny, a man regarded as vastly learned, in his Natural 
History, put forward a planetar)' model with three suns and three moons! Pliny emphasized 
that the number of suns simultaneously observed has never exceeded three!

Now7, how7 would Ptolemy have obtained the parameters of his model? Going by the key 
paragraph used to date him, his observational baseline is at most 285 years, on the basis of 
which he concludes that the tropical year is less than 365^ by 1 day in 300 years. 'Phis is better 
than w7hat one might expect with just two observations some 300 years apart, but this is nev­
ertheless crude compared to Aryabhata’s estimate (of the sidereal year)—supposedly based 
on Ptolemy! If Ptolemy w7as satisfied with such crude observations and estimates, it is hard to 
see what were the theoretical or observational discrepancies to explain which Ptolemy would 
have needed precision to the thirds, for his table of chords, and a phenomenal precision to 
the eights for some of his other astronomical values.

Not only did Greek astronomy appear suddenly with a definitive text not preceded by 
anything, but, in a similar miraculous way, it disappeared w'ith equal suddenness from the 
Roman empire! Not only were there no astronomers of note after the singular Ptolemy, 
the very knowledge of astronomy disappeared from the Roman empire. This is clear from 
the Hilarius evidence. The date of Easter was a major issue for the early Christian church, 
and several calendar reforms were attempted to this end. The Council of Nicaea which had
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this sole point on its agenda agreed to consult the Alexandrian astronomers about this. Alas! 
Despite the level of excitement that this council aroused, all the priests and all the king’s men 
were unable to locate the magnificent work of this Roman citizen, “Claudius Ptolemy”, which 
would have immediately settled the problem! At that time the Museum and the Serapeum 
in Alexandria had not been destroyed, and Christians were not yet burning books, so we 
must suppose that “Ptolemy’s” Almagest voluntarily disappeared from the Roman empire by 
the early 4th c. This disappearance was permanent: Hilarius, as pope, again attempted 
calendar reforms, but he and his men too were unable to track down an accurate source 
of astronomy in the Roman empire. Consequently, the length of the year in the Roman 
calendar remained inaccurate in the second decimal place, for the next thousand years.42

In fact, the Almagest, in its present form, was certainly not available even in Jundishapur, 
where the Alexandrian diaspora congregated; and we know that Indian astronomy texts were 
imported and translated there. By the mid 6th c. the best that could be expected from Indian 
astronomy was obviously not too far beyond the precision achieved by Aryabhata. Thus, the 
conjectured text of Ptolemy (in its present form) was not available even to the Alexandrian 
diaspora who were interested in astronomy, and would have known of any extant Creek texts 
in astronomy. So, if this knowledge was not with the state, and not with the refugees, one 
wonder where it was hiding.

If we do suppose that the Almagest text was playing hide-and-seek for so long, that creates 
another problem. One wonders how the text on papyrus managed to survive in hiding. One 
wonders how the text nevertheless manage to appear at a later time in Arabic.

A similar epistemological discontinuity applies to Ptolemy’s use of the sexagesimal sys­
tem and algorithms, which has neither any past nor future in the Roman empire. It is quite 
impossible to understand the sudden jump in arithmetical techniques from the integer arith­
metic of the abacus to accuracy to the eights (about 15 places after the decimal point)! A 
new hypothesis is usually introduced to the effect that the sexagesimal system was imported 
from Babylon by Greek astronomers. There is not an iota of non-textual evidence that the 
Romans in the 2nd c. ever used the sexagesimal system or even understood how to deal 
with fractions or multiply numbers using algorithms—the place value system used in these 
algorithms is foreign to Roman numerals, and was not understood by the first Europeans to 
encounter it, like Pope Sylvester. We will see this in more detail later on. In any case, the 
key issue is not the sexagesimal system: it is one thing to use the sexagesimal system, and 
altogether another thing to have an accuracy to the eights. Finally, Western historians have 
overlooked that one more conjecture is needed to account for the fact, that despite the con­
jectured import of the sexagesimal system by the conjectured “Ptolemy”, this use remained 
unknown to everyone else in the Roman empire. All the evidence we have comes from the 
late Arabic texts (or later Byzantine Greek texts), and these texts used the sexagesimal sys­
tem because they learnt it from the Indian way of doing astronomy, along with the positional 
system of notation.
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The list of questions is not exhausted. Who supported this Ptolemy in this effort to de­
velop theoretical planetary models, and why? For what practical purpose did he need to 
develop them? (Clearly, the Greeks were satisfied with a crude calendar just because the 
calendar and astronomy were of little practical value to them.) What about the correlated 
apparatus of mathematics that he needed (square roots etc.), which was missing in the Ro­
man empire?

Doubtless more speculations could be introduced to answer these questions too. How­
ever ,this method of piling speculation upon hard-to-believe speculation in the manner of 
theology—to lead to the premeditated conclusion—also means that the credibility of West­
ern history of “Greek” science is little different from the credibility of theology: one can 
believe in it only if one has the requisite faith!

To summarize, the Almagest text in current circulation is epistemologically continuous 
with post-10th c. (and even 15th c.) Arab texts and is completely discontinuous with 2nd c. 
Roman knowledge of astronomy or arithmetic, and the related non-textual evidence, and 
social processes. Thus, attributing the current text of the Almagest to an author in the 2nd 
c. is unacceptable since it also requires us to to believe in a variety of things contrary to 
elementary common sense. Accordingly, we reject this hypothesis about an otherwise un­
known “Claudius Ptolemy” who authored the Almagest, and regard the Almagest as an accre­
tive text, perhaps coming down from Ptolemaic times, but repeatedly updated, at Jundisha- 
pur, Baghdad, and subsequently. The hypothesis (a) stands refuted (to the extent that it is 
refutable).

Phis illustrates how the criterion of epistemological continuity provides a check on the 
extravagant claims of racist history', supported by the authority of scholars guided by the 
iron hand of religion.

Continuation of Racist History to the Present

There is a belief that things have changed, that the racist model of history died of em­
barrassment when its naivette and designs started being exposed. But perhaps it was only 
hibernating while it renewed its thick skin, for it has returned to participate in the civiliza- 
tional clashes proposed by Huntington43 in his attempt to initiate cultural globalization, 
a' la Toynbee.44 An example from a recent history of astronomy is provided by North,45 
who, despite Bernal,46 is still very keen to trace the source of all information ows back to 
a Greek fount—mathematics from Euclid and Archimedes, and astronomy from Ptolemy— 
and to dismiss everything else as mindless meandering or, at best, a matter of secondary 
importance.

And, as pointed out earlier, the racist model of history presents an immediate problem 
for it has returned to haunt the current Indian school texts.
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Selection Effects

Whether or not it is dead, the racist model has left behind not only bogus theories of infor­
mation transmission but also a legacy of selection effects. What is a selection effect? As an 
example, the most superficial observation shows how little is the space available for the non- 
West in “mainstream” academic conferences or journals devoted to history and philosophy 
of science, even though these conferences and journal refer to themselves as “international”. 
How does this come about? One part of the story is that racist prejudices often lurk behind 
authority—the authority of the organizer of a conference or editor of a journal, for example, 
who are almost never from the non-West. But there is more to the matter than that.

A selection effect is a way of directing (or misdirecting) attention. If we focus attention 
on the stars in the sky at a small angular separation, they may seem related even though 
they are separated by vast tracts of space. If we pick stars at random from the sky, then 
any apparent relation between the stars in the sample is likely to be purely a figment of the 
imagination, an artefact, a consequence of the way our attention was focused. The problem 
is that the case for a relationship can always be argued, for ultimately we have no means of 
establishing whether the stars really are related or separated.4/

By focussing attention selectively, a selection effect can also be used to manipulate credits. 
The typical Western history of trigonometry is likely to commence with Ptolemy and then 
take a great leap forward to Regiomontanus, with at best a passing mention of Aryabhata.48 
Thus, historians49 proclaimed triumphantly:

Henceforth, Greek trigonometry was truly established. It was based on... tables 
rigorously computed. Its main object of study was always the sphere to which 
Menelaus’ theorem applied particularly well. This theorem . . .  paved the way
for the later appearance of the s in e----  The main step had been taken, and
the successors—Hindus, Arabs, Europeans—had simply to follow along the trail 
which the Greeks had blazed for them.

Even granting the myths about Ptolemy, the case for chronological precedence is shaky: 
for if a 15th c. source can be used to infer the state of knowledge in the 2nd c., in an­
other place, there is no reason why the Surya Siddhanta and the Aryabhatiya should not be 
used to infer the state of knowledge prevalent a couple of centuries earlier—after all they 
assume knowledge of trigonometric functions, so that the knowledge of these functions can be 
safely assumed to have been widespread much before these texts. Therefore, while the Surya 
Siddhanta may postdate the conjectured date of Ptolemy, Indian knowledge of trigonometry 
very probably predates that conjectured date.

However, the real point of a selection effect is that chronological precedence is not critical 
to such an argument. It could always be argued that the “main” step was taken later. Even
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in the European context, the credit for the calculus was given to Newton and Leibniz in 
preference to Cavalieri, Fermat etc. exactly in this way.

On the face of it, the situation may be reminiscent of the fable of the four blind men 
and the elephant. However, just as racism should not be confounded with Eurocentrism, 
so also a selection effect should not be confounded with an inadvertently biased sample or 
judgement. It is better illustrated by the real story' of the four learned men and the Indian 
elephant.

The Indian Elephant

The facts are as follows. A piece of Mayan architecture from Central America distinctly 
resembles an Indian (note Indian!) elephant. ’0 Now, the American elephant became extinct 
some ten thousand years ago, whereas the roots of the Mayan civilization were not more 
than three thousand years deep. So one is naturally tempted to ask: “What induced the 
Maya to sculpt Indian elephants?” The similarity of the Egyptian and Mayan pyramids is 
well known, and is suggestive of organized navigation between Egypt and South America. 
Should one combine this with the known fact01 that commerce between India and Egypt 
involved shipping the Indian elephant from India to Egypt?

But to the Western scholarly mind that is not the relevant question. Admitting such 
questions, like admitting questions about the similarity between indigenous African and 
North-American languages, would amount to admitting the possibility that the Europeans 
were not the hrst to sail across the Atlantic, and that would remove the last vestiges of any 
justification for the genocide in the Americas. Therefore, a more important issue must 
be settled first. What looks like an elephant to the untrained eye may or may not be an 
elephant—as is the case in more modern art. Here is a summary of the scholarly controversy 
that erupted in the well-known journal Nature,52

Professor Tozzer bases his views on the fact that the Maya also sculpted the macaw—a 
long-tailed, brightly coloured parrot that is native to South and Central America. Accord­
ingly, he holds that a comparison of the “elephant” with the unmistakable sculpture of the 
macaw “shows that the two represent the same animal”. What seems to be the elephant’s 
trunk is no more or less than a stylized depiction of a macaw’s beak.

Professor Elliot Smith suggests, “The accurate representation of the Indian elephant’s 
profile, its trunk, tusk, and lower lip, the form of its ear, as well as the turbaned rider and his 
implement, no less than the distinctively Hindu artistic feeling in the modelling are entirely 
fatal to the macaw hypothesis.”

Dr Eduard Seler’s view is that the objects under discussion are tortoises. Disagreeing 
also with those who have favoured the tapir, Dr Spinden is quite dehnite: “That the hands 
with projecting snouts, used as architectural decorations, are connected with the concept 
of the snake rather than the elephant is easily proven by a study of homologous parts in a
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series of designs.” The four learned men did not exhaust the possible interpretations of the 
piece of sculpture; presumably Erik von Daniken would interpret the object in question as a 
representation of an astronaut wearing a sulphur-dioxide mask!

Selection Effects and Transmissions

The selection effect operates for the learned men in much the same way as it does for the 
four blind men: by claiming disproportionate credit for a single feature. The difference is 
this: while the blind men were themselves misguided, the learned men often aim to misguide 
others!

rfhe problem of localizing credit through precedence involves a picture of mundane time. 
As I have argued elsewhere,0:5 in any social situation, there always is more than one actor, 
and there always is a chain of causes. What a selection effect does is to pick out one element 
in this chain and value it above all others. Although this is a political decision, the drastic 
consequences it can have on fact is clear from the “learned man” selection effect which 
reduces an elephant to a macaw!

IV
EPISTEMOLOGY AND NON-TRANSMISSION 

Other Epistemological Issues

Another sort of selection effect operates by applying a standard epistemological filter to 
cloud alternative epistemologies. For example, the epistemological filter may be that of 
current-day socially dominant mathematics, which is used to exclude any other type of 
mathematics as non-mathematics. Hence, it is difficult to answer questions of information 
exchange about mathematics without reworking the entire epistemological foundations of 
traditional mathematics.

Non-Transmission of the Elements

Nevertheless, we have seen that in Western histories of science, a key reason for the interest 
in establishing transmissions has been the theological interest in glorification of the West 
to justify exploitation, and establish “pagan inferiority”. If clerical apologetics for surplus 
extraction is not the goal, then it is clear that cases where information was not shared, despite 
extensive contact, are equally interesting. But this situation seems never before to have been 
studied in detail. There are many such cases where there was contact, but information was 
not transmitted.

One example is that of Jai Singh. He studied all the available systems, from the European 
to those of Ulugh Beg, but did not incorporate the knowledge of, for example, the telescope 
in his design of the Jantar Mantar in Jaipur. Jai Singh certainly knew about the telescope.
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He had bought one at a cost of Rs 100, and had used it to observe “bright stars in broad 
daylight—say around the noon hour”. He had observed “the planet Saturn.. .Jupiter”, and 
knew that “the Sun rotates... on its axis... ”. He had recorded these observations in his Zij 

Jadid Muhammad ShahiC4 However, he did not incorporate the telescope in his design of the 
Jantar Mantar, “since the telescope is not readily available to an average person”.55

Jai Singh clearly seems to have regarded knowledge, in general, and the telescope, in 
particular, as only a means to an end that was partly pedagogical in this instance. Hence he 
rejected what would today be regarded as “superior” knowledge.

Jai Singh’s case also demonstrates another sort of non-transmission for more mundane 
reasons. He financed the voyages of some Jesuit priests to Europe to fetch the latest knowl­
edge of astronomy from Europe. Though the priests did visit Europe, they brought back 
out-of-date information—either because they were ignorant about the latest information, or 
simply too lazy to obtain it, or because they had no compunctions in deliberately deceiving 
a person whose patronage they willingly accepted.

There are other cases of non-transmission that are so long lasting that they cannot con­
ceivably be put down to any individual aberration or idiosyncrasy. I will take up two such 
cases. The first concerns Euclidean geometry and the second concerns the calculus.

While there is considerable doubt whether “Euclidean” geometry is at all an original 
Greek tradition, there is no doubt that Euclidean geometry is not solely a Greek tradition. It 
was very much in vogue in the eastern parts of the Roman Empire, and among the Arabs and 
the Mughuls. Abul Fazl learnt Euclidean geometry, in India, presumably from Arabic and 
Persian sources, and mentions it in detail in the Ain-i-Akbari.36 India had contacts with the 
Greeks and Alexandria certainly since before the time of Alexander. There were extensive 
trading contacts with the Roman Empire. Nevertheless, the in uence of Euclidean geometry 
is not traceable in the writings of non-Muslims in India until Kamalakara, Jehangir’s court 
astronomer, long after the arrival of Jesuit priests in Akbar’s court. Though mathematics, we 
are told, is one and universal, there were two streams of geometry simultaneously prevalent 
in India. Eventually, parts of the Elements were got translated into Sanskrit only in 1718 
CE, by Jai Singh (Samrat Jagannath), from Persian, two centuries after the arrival of the 
Europeans, but before the beginning of colonialism in India.

A similarly negligent attitude towards Euclid prevailed among the Chinese whose geom­
etry was tied to practical concerns, and did not pay much attention to the idea of theo­
retical demonstration or “proof” so popular with medieval European rational theologians 
and historians of science. The earlier rational theologians of Islam retained in this ideal of 
demonstration a Neoplatonic twist of equity, as we have seen, and, as expected on the above- 
mentioned theory of transmissions, this Neoplatonic version travelled towards the aggressor 
from Mongolia, after the fall of Baghdad. One finds in Needham0/ that it was only after the 
13th c. that:
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Yang Hui... proceeded to give a proof about parallelograms which is similar to 
the one in Euclid. If such proofs had been extended the Chinese might have de­
veloped an independent deductive geometry, and clearly some minds like Yang 
Hui were prepared to appreciate the Euclidean system. This is of great interest 
because there may have been at this time a translation into Chinese of Euclid’s 
Elements, due to Chinese-Arabic contacts.

Why did these two older cultures not share the Western historian’s enthusiasm for the 
Elements and the deductive method? This is a key question because of the central role of the 
Elements not only in the Western scheme of the history of mathematics, but also as a model 
for modern mathematics. The non-transmission of information about the Elements between 
the Arabs and the non-Muslim Indians thus emerges as a key fact which goes against the 
entire scheme of transmission in the Western history of mathematics, and also the current 
belief in the “universality” of mathematics used in the foundations of modern mathematics.

'Ehe reason why the Elements were not transmitted is quite simple. They were seen to 
be of no practical value, hence of no value at all!—at least to those who did not share the 
underlying religious beliefs. That is, there was an epistemological barrier to transmission.

Epistemological Barriers: Algorismus

Such epistemological barriers can also be seen in Europe, in the long time that it took 
Europeans to accept the algorismus. In this case, though the algorismus was seen to be of 
practical value, it did not fit into the existing theological scheme, i.e., the algorismus did not 
fit into the European idea of mathematics as certain knowledge; therefore it was regarded 
with suspicion for centuries. This is taken up in more detail in subsequent chapters.

Epistemological Barriers: Calculus

Similar suspicions attached to the calculus in Europe, for despite its obvious practical value 
it was seen as methodologically unacceptable, and we will argue later on that this epistemo­
logical barrier explains the delay in European acceptance of the calculus.

Physical Barriers to Transmission

Of course, all barriers need not be epistemological. There can well be other sorts of barri­
ers. This brings us to final example of non-transmission which concerns the calculus. The 
immediate concern here is not with the question of its transmission to Europe, but with its 
non-transmission to other parts of India.

Perhaps there was a language barrier. But this is not an adequate explanation, since the 
TantrasangrahaVydkhyd was anyway in Sanskrit, and the Yuktibhdsd had already been trans­
lated into Sanskrit. In my view, this non-transmission indicates a physical disruption of
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the prevalent environment of information sharing, before it was finally dismantled. On 
the one hand, we know that right up to the time of Narayana Pandita, in the 14th c. CE 
there was extensive sharing of information between Cochin and Benares, for the formula for 
vdrasahkalitd was immediately used by Madhava to derive a result that had been sought in 
Kerala for centuries earlier, without success. From Ibn Battuta’s account, we also know that 
the route from Delhi to China went across the sea from Calicut, for that is the route he took 
to carry Tughlak’s presents for the Chinese emperor.

It is not very hard to understand the reasons for the eventual disruption of the channels 
of communication between North and South India. Right from the time of Mahmud of 
Ghazni, al Biruni described the situation in North India as follows:

Mahmood utterly ruined the prosperity of the country. ..by which the Hindus
became like atoms of dust scattered in all directions__ Hindu sciences have
retired far away from those parts of the country conquered by us, and have 

ed to places which our hand cannot yet reach, to Kashmir, Benares and other 
places/’8

Over the next few centuries, conditions in North India remained very unsettled, and, 
from Timur to Tughlak, Delhi was twice emptied of its entire human population. As is clear 
from the description provided by Ibn Battuta, who set out from Tughlak’s Delhi (Tughlak- 
abad) to China via the sea route from Calicut, the writ of the emperor of Delhi did not 
quite extend as far as Agra! On the other hand, conditions in the south were relatively 
settled during this period, because of the bulwark provided by the Vijaynagar empire, un­
til the mid 16th c. CE. However, the wealth of the Vijaynagar empire attracted not only 
Vasco da Gama and the Portuguese, but also the nearby potentates like ies, and they 
were constantly warring with it, so that by the time the Mughul rule in Delhi had stabi­
lized after Humayun’s return, and Akbar consolidating his position in Agra, Ilampi was in 
ruins.

To summarize, three kinds of the non-transmission of knowledge are thus visible across 
cultures. In the first kind, information owing in is critically evaluated and some or all of it 
is rejected or viewed with suspicion because of epistemological differences; an example here 
is the Elements in India or the algorismus in Europe. In the second kind of non-transmission, 
the traditional information-sharing network is disrupted, and eventually information pref­
erentially ows out; the example here is the calculus and computations of the value of 7t. In 
the third kind of non-sharing, despite conscious efforts at information gathering, presum­
ably to maintain secrecy, the information actually brought back is of such poor quality that 
it is rejected; the example here is Jai Singh and the information on European astronomy 
which he got from the Jesuits.
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V
MISCELLANEOUS ASPECTS

Cooperative Versus Competitive Models of Information Sharing

Lastly, we must also examine the way in which information was shared within a culture, for 
this also decided the sort of information that could or could not easily be transmitted to 
others.

The model of information sharing current in our civil society today is a “competitive” 
one. The belief is that individuals (or small groups) create information.59 The information 
so created is privately owned by the concerned individual, who as its creator acquires a right 
to “royalty” or “copyright” or “patent”, i.e., a right to extract surplus from others with whom 
the information is shared. In principle, the society recognizes the creativity of the individual, 
and encourages it by enabling creative output to be swapped for a more dominant position 
in society. In case of con icting claims, ownership is decided by priority, and in case of 
con icting claims of priority, priority (hence ownership) is decided by authority, including 
judicial and historical authority. In modern industrial societies, ownership of information is 
highly valued, and so also is technological innovation (which can lead to dramatic increases 
in the efficiency of production).

This was not the situation in more traditional societies where, to give an analogy in terms 
of land-ownership patterns, there were large common spaces. Traditionally, creative activity 
was seen as the manifestation of an immanent God, quite distinct from Augustine’s transcen­
dent disciplinarian. Laws and traditions restricting the sharing of information related to the 
sharing of religious rather than secular information; these restrictions typically applied to 
whole groups (say castes, foreigners, etc.). There were some conventions of apprenticeship, 
such as the tradition of the gum-sisya or the ustâd-shagird. These regulated information ows 
in the manner of the religious techniques of initiation, rather than the commercial sale of 
property. Thus, while specialized information of immediate economic importance contin­
ued to be kept a secret within families and guilds, there were no laws governing its sharing 
and no priority disputes. Identifying oneself as the author of an innovation was not, there­
fore, terribly important as it was to Newton and Leibniz, who quarrelled so nastily60 over 
priority for the calculus, which neither of them had. Value was attached to “authority” and 
the age of a tradition; tradition could be rejected in favour of a better system (as for example 
Varàhamihïra did, while updating the Vedânga Jyotisa, but innovativeness was not valued for 
its own sake.

Thus, in this “cooperative” model of information sharing, information might be held 
in secret for its economic value, and information might not be given out if the recipient 
of the information was not regarded as worthy enough to receive it. But information was 
not held in secret merely for the sake of establishing one’s innovativeness to posterity—it
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was unimaginable that someone would threaten, as Newton threatened Hooke, to withhold 
publication to demonstrate priority. Indeed, if someone did make a small innovation which 
he regarded as valuable, it could well go in as an anonymous contribution to a book being 
copied out or commented upon. This was particularly true of Arabic traditions, where the 
numerous translations were never mechanical. Sailors manuals attributed to ancient sources 
could thus contain up-to-date information.61

A concrete model of this sort of information sharing can still be seen in remoter places 
such as the Lakshadweep islands. The result is quite striking. Though there is undoubtedly 
a common pool of information, there is also differentiation. Without any active attempt to 
keep anything secret, I found that islands which are only 30 km apart can have discernibly 
different traditions, and may be unfamiliar with some of each others’ navigational instru-

a  9merits.
To summarize, in this model of information sharing, it is neither possible nor important 

to try and trace each key development to an imagined unique source from which it diffused. 
To use an analog)', in locating the origin of agriculture in the Fertile Crescent or somewhere 
else, we are modelling information ows by a river which has a source. This may be true 
of some sorts of information ows; there are rivers, but there is also the sea—of shared 
information—for which it is futile to seek a source. In this case, it may be more interesting 
to look at currents and waves—individual peaks of localized information that only emphasize 
that it is the peaks that need an explanation rather than the at background of a very large 
shared base of common knowledge due to extensive contacts.

In India this cooperative model of information sharing was disrupted with the arrival of 
the Europeans, who systematically attempted to localize information by establishing asym­
metric information ows towards themselves, in the manner of dams across rivers.

The Channels of Information Transmission

In contrast to models of information sharing, which have been neglected by scholars, chan­
nels of information transmission have been fairly well studied. Military or commercial ex­
changes created channels along which information could easily ow. India was connected to 
China, West Asia, and Africa through both land and sea routes.

The land routes have been extensively documented.63 Trade routes have existed from 
before recorded history, among the most famous being, of course, the Silk Route. Aggressors 
with large empires who sought to extract larger volumes of surplus from far-off lands were 
forced to maintain the land routes. Examples are Alexander who had to link Greece to 
Afghanistan, Kanishka who linked Central Asia, West Asia, and North India, and the Mughul 
Empire in Baghdad which linked Central Asia and West Asia.

There are, however, three points that I would like to emphasize. The first concerns the 
bandwidth or the potential volume of information transmission. One would expect this to
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be proportional to the volume of trade, or the forcible surplus extraction, and this is usually 
underestimated. I would, therefore, like to draw attention to Pliny’s complaint about the 
reverse extraction of the surplus that in no year did “India absorb less than five hundred 
and iifty million sesterces of our empire’s wealth, sending back merchandise to be sold with 
us at a hundred times its prime cost.”64

The second point that I would like to emphasize is that, analogous with the Internet 
(or a general packet-switched network), the route of information transmission need be nei­
ther unique nor the most direct one. As a concrete example, consider the merit prastara in 
Pirigala’s Chandahsutra. It could have first travelled to China, through Buddhist travellers or 
traders, and from thence to Europe through Jesuit intermediaries, where it eventually came 
to be known as Pascal’s triangle, giving the coefficients of the binomial expansion, nowadays 
attributed to Newton.

Thirdly, for the purposes of this book, the sea routes are relatively more interesting, for 
navigation involved the practical application of both astronomy and mathematics; it also 
provided a context in which information had to be shared, and tradition certainly would not 
have stood in the way of any technique which manifestly fetched results. (The sea routes 
were used to carry heavy cargo, like the Indian ebony that was exported to Rome.)

VI
STANDARD OF EVIDENCE OF INFORMATION TRANSMISSION

In speaking of information transmission, Western historians have had a fairly transparent 
racist agenda of establishing that the origin of everything important was somehow connected 
with Whites, and that the rest of the world contributed practically nothing. Accordingly, 
knowledge anywhere else in the world is claimed to have been derived by transmission, and 
in the past there have been far too many such claims of transmission. The evidence produced 
for these alleged cases of transmission is often farcical, as in Thibaut’s claim that Ptolemaic 
astronomy was transmitted to India because Varahamihlra’s use of “Pulisa” suggests that it 
could have been derived from “Paul” (rather than Pulisa or Pulastya, one of the seven sages 
forming the constellation known as the Great Bear).

If this be the standard of evidence, there is nothing remaining to prove about the 
transmission of the calculus, for the works of Paramesvara, Madhava, NUakantha, and 
Jyesthadeva, clearly precede those of Fermat, Pascal, Gregory, Wallis, Newton, and Leibniz, 
and India was clearly known (and actively linked) to Europe by the 16th c. CE.

However, we have also seen that the standard of evidence is not uniform, but varies with 
the claim being made. The standard of evidence required for an acceptable claim of trans­
mission of knowledge from East to West is different from the standard of evidence required 
for a similar claim of transmission of knowledge from West to East! Thus, there always is 
the possibility that similar things could have been discovered independently, and that West­
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ern historians are still arguing about this, even in so obvious a ease as that of Copernicus. 
Finally, we have seen that this racist double standard of evidence is not an incidental error, 
but is backed by centuries of racist tradition, religious exhortations by popes, and by legal 
interpretations authoritatively handed down by, say, the US supreme court.

Hence, to establish transmission we propose to adopt a legal standard of evidence good 
enough to hang a person for murder. Brie y, we propose that the case for any transmission 
must be established on the grounds of (1) motivation, (2) opportunity, (3) circumstantial evi­
dence, and (4) documentary evidence. The importance of epistemology has been repeatedly 
stressed above: any such claim of transmission must also take into account (5) epistemologi­
cal issues.

In the West documentary evidence is highly valued. However, this seems to be a purely 
cultural matter, specific to the West where a written scriptural tradition is regarded as im­
portant. However, documents can and have been easily forged—such as the forged “award 
of Constantine” used to grab the land on which the Vatican today stands. Such forgeries 
can operate in various ways, and false authorship may also relate to the case of someone 
who claims to have independently discovered something. On the other hand, documents, 
even vast quantities of them, can be suppressed for centuries, as the case of Newton shows, 
resulting in historians arriving at and maintaining wrong conclusions for centuries. Such 
conclusions, obviously, are linked to decisive political advantages. Accordingly, the value of 
documental')7 evidence needs to be downgraded, as a local cultural matter, and epistemolog­
ical issues provide surer evidence of origins.

The importance of epistemological issues cannot be overstressed. The epistemological 
test is a simple one, and one which is routinely applied in everyday practice. Consider 
two students who turn in two identical (or nearly identical) answers or projects. Though 
it always remains a theoretical possibility, there is a level of similarity beyond which it is 
not practical to believe that these two answers had independent origins, for if there are too 
many “coincidences”, the probability of an independent origin becomes too small to bother 
about. Under these circumstances, how does one decide who has copied from whom (or 
whether both have copied from a third common source)? The simple practical test, which I 
have often used is to call both students for an oral test. This sort of copying is made very 
easy only because excessive stress is laid on the value of documentary evidence, which is 
easy to manipulate. A similar manipulation is not so easily possible with an oral test. The 
fundamental weakness of documentary evidence is that in a documentary presentation, in 
contrast to an oral presentation, ignorance can be hidden far more easily.

What the oral test can test is understanding. Did the student fully understand what he 
wrote? The implicit belief, a robust one, is that creation presupposes some comprehen­
sion: one cannot create something that one does not clearly understand. Thus, on this test, 
sustained lack of understanding of the calculus in Europe, like the sustained lack of under-
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standing of the algorismus, is a solid indication that it was transmitted. Europe could hardly 
have created a calculus it did not comprehend for centuries.

The last point is that of epistemological continuity. In the above example, if the students 
are not available for an oral test, one can check against the background of the students to see 
if the thinking and capabilities represented in the projects/papers are compatible with the 
thinking and capabilities suggested by their past background. Has the student consistently 
performed well earlier? or, has the student been caught cheating earlier? etc.

These everyday practical rules show why documentary evidence is far less important than 
epistemological evidence, though the application of epistemological evidence may not be a 
mechanical matter.
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C H A P T E R  7

How and Why the Calculus Was Imported into Europe

The European navigational problem and its solution available in Indian
booh easily accessible to Jesuits

OVERVIEW

MEDIEVAL Europe was extremely poor—spices commanded a high price because 
the little stored animal esh available to Europeans during long winters used 
to stink too nauseously to be eaten without spices. It is true that the church 

did nurse the military ambition of overcoming the reverses suffered during the Crusades by 
teaming up with “Prester John”. However, during 1500-1700, Europe was far too weak and 
technologically backward to even attempt to conquer India except by religious conversion of 
the king, a la Constantine, attempted with Akbar in 1580. Thus European states turned to 
state-sponsored trade: the great European dream was to acquire wealth through direct trade 
with India in spices, bypassing the Arabs (and the Florentine merchants).

l'his required secure trade routes across the sea; hence, a good technique of navigation, 
but (exactly as in Toynbee’s model of “barbarian incursions”) Europe, being technologically 
backward in every department, was then ignorant also of navigation. The European naviga­
tional technique of “dead reckoning” required charts, which did not then exist since charts 
were not much used by Indo-Arabic navigators. Hence Vasco da Gama could not navigate 
across the Indian ocean and required the help of an Indian navigator Malemo Kanha—who 
used the technique of celestial navigation without maps already explained earlier. Thus, 
technologically backward Europeans had overwhelming motivation to learn about naviga­
tion and associated matters from India. During 1530-1761 various European governments 
recognized the European ignorance of navigation, and repeatedly offered huge prizes to 
anyone who could obtain or develop a reliable technique of navigation.
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Latitude and Calendar

The first navigational problem was that of fixing latitude at sea. At the time of Vasco da 
Gama, Europeans, in fact, could not even determine latitude from observation of solar alti­
tude at noon. One reason for this was that the European calendar (Julian calendar), till then 
used only for ritual religious purposes, had drifted way off the mark. The Julian calendar 
was erroneous because the Romans, lacking a good command over elementary arithmetic, 
found it difficult even to articulate the correct length of the (tropical) year, and had simplified 
matters to represent it by a nice rounded fraction: 365 j  days. This amounted to an error 
of 1 day in a century, which had accumulated to about 10 days by the 16th c. However, cal­
endar reform affected the observance of key religious rituals like Easter—fixing the date of 
which was the sole point on the agenda of the Nicene council. Hence, changing the calendar 
was a tricky matter, especially in Europe in the days of the Protestant reformation and the 
Inquisition. Furthermore, the trickiest part was that Europeans did not know for sure what 
the exact length of the year ought to be: for Europe then lacked the observational base and 
the scientific knowledge of astronomy needed to determine that. The calendar reform was 
based on documents rather than replicable observations; hence Protestants remained uncon­
vinced about the need for calendar reform, and this had to wait another 170 years, until 
1752, for Protestant countries to accept it. Accordingly, this knowledge of the length of the 
year could only have come from outside, as the bull (fatwa) of Gregory states (though there 
may have been other sources that went unmentioned). The reform of the calendar only 
solved one part of the latitude problem, and precise trigonometric values were still needed 
to determine latitude from observations of solar altitude at noon, as described, for example, 
by the Laghu Bhdskanya from a thousand years earlier.

The Jesuits in Cochin

The first batch of Catholic missionaries had arrived in Cochin in 1500. Phis happened 
because the Portuguese, lacking money for trade, abortively tried to muscle in on the long- 
established Arab and Florentine trade in Calicut, and were then forced to ee Calicut. They 
were guided to Cochin, then hostile to Calicut, by the Gujarati assistant assigned to the 
Portuguese by the Samudiri of Calicut. Here, the Catholic missionaries quickly established 
themselves with the help of the Raja of Cochin, and fanned out into the interior of Kerala, 
with the help of the substantial indigenous population of Syrian Christians, in the vicinity 
of Cochin. 'Phis was exactly in conformity with their pre-planned “Prester John” model 
of conducting religious war (Crusades) by establishing linkages with Christians living in or 
behind the “enemy” camp.

To further these linkages, the missionaries established their first college in Cochin, and 
this was taken over by the Jesuits in 1550, and is recorded to have been ourishing with 
a couple of hundred students, mostly Syrian Christians, by 1590. Outwardly, the Jesuits
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posed as holy men who were engaged in missionary activity: by the 1570’s the Jesuits had 
established printing presses in local languages such as Tamil and Malayalam (with which, 
of course, they were very thoroughly conversant, even starting the first dictionaries in these 
languages). Their aim was to use the new technology7 to aggressively propagate their version 
of the Bible, translated from Latin, which differed substantially from the locally available 
Bible versions in or from Aramaic.

In reality, however, the missionary and the Jesuit differed radically from the then- 
prevailing Indian idea of a holy man—as one who had abandoned all worldly pursuits. 
Thus, the real aim of the Jesuits was to capture state power, and, though no one suspected 
them, they doubled as military spies, routinely sending back military intelligence in their 
despatches. It is well known that various earlier models of attaining and retaining state 
power by using religion were tried out in India: these included (1) the “Constantine model” 
(an attempt was made to conquer India by converting “the Grand Moghul”, Akbar, in 
1580), (2) the “Alexandrian model” (all temples were destroyed in Goa, 1523-1540), and
(3) the Inquisition model of weeding out the disaffected (imposed in Goa in 1560). It is 
not so well known that (4) the “Toledo translation model” was also replicated in the Cochin 
college, where state power was supportive, and the Syrian Christians played the role of the 
Mozarab intermediaries of Toledo. Thus, the Jesuits were also actively collecting all possible 
locally available information in books, translating them, and despatching them to Europe, 
in factor)' mode, following the Toledo model.

However, while they had no difficulty in understanding the local languages, and in trans­
lating many of these books, they initially had a difficulty with the mathematics used in the 
Indian calendar, because the only mathematics that Jesuits studied was the mathematics of 
argument and proof found in the (European version of the) Elements, which was quite use­
less for this purpose of calculation. For this specifically stated reason—that Jesuits “were forced 
to fall silent” when matters related to astronomy and the calendar were raised in foreign 
lands—Christoph Clavius reformed the Jesuit syllabus at the Collegio Romano, including in 
it practical (as distinct from Platonic or Neoplatonic) mathematics. Among the hrst students 
of this modified syllabus was Matteo Ricci, who thereafter visited Coimbra to learn about 
navigation, and then travelled to India, and in particular Cochin. Matteo Ricci remained 
devoted lifelong to his teacher, Christoph Clavius, who also headed the Gregorian calen­
dar reform committee. Shortly before the calendar reform, Ricci wrote saying that he was 
looking for an “intelligent Brahmin or an honest Moor” to explain the Indian methods of 
timekeeping.

Needless to say, the Indian infinite series were (and are) widely available in calendrical 
texts distributed around Cochin, and the authors of some of these texts, such as Sankara 
Variyar, and his brother Narayana (part author of Kriydkramakan), shared with the Por­
tuguese a common patron in the Raja of Cochin. It was to these persons that the Jesuits 
would have turned for a knowledge of the Indian calendar, which knowledge they also
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needed simply to be able to operate in India, because the sophisticated Indian calendar 
worked on principles different from their own simple count of civil days, so that numerous 
Indian festivals were all on “moveable” dates on the Julian/Gregorian calendar. While it was 
not necessary to go out of Cochin to obtain the texts on Indian astronomy and the calculus, 
basically written in the context of the Indian tradition of jyotisa, or timekeeping, used for 
calendar-making, the Jesuits were by no means confined to Cochin: as already noted, the 
Catholic/Jesuit missionaries had also established deep inroads into the interiors of Kerala 
with the help of the indigenous Syrian Christians, with whom they were on the most cor­
dial terms until about 1600 (when the Portuguese tricked the Syrian Christians, and burnt 
almost all copies of the Indian Bibles in Aramaic, because they disagreed so much with the 
Latin version). That Jesuits had been studying the Indian astronomy and calendrical texts 
for some time is clear from the polemic against the Vedahga Jyotisa, by the Jesuit de Nobili in 
ca. 1610.

Trigonometric Values, Loxodromes, and Mercator s Chart

Apart from the calendar, the second problem faced by European navigators was the lack 
of precise trigonometric values. These were needed for determining latitude from obser­
vations of solar altitude at noon, following e.g. the formula in the Laghu Bhaskanya. They 
were needed also for calculating loxodromes. European navigators were accustomed to us­
ing charts and “dead reckoning”. The high value of Mercator’s chart arose from the fact 
that it showed loxodromes as straight lines, thus enabling a course to be set using dead 
reckoning. However, a precise table of secants, and something equivalent to the fundamen­
tal theorem of calculus was needed to calculate this chart. But the mysterious source of 
Mercator’s precise trigonometric values, and his technique, remains unknown to this day. 
Mercator, who worked with Gemma Erisius at the Catholic University of Louvain, obviously 
had privileged access to information brought in by sailors and priests returning from India 
and China, via Antwerp. So it is hardly surprising that the “Mercator” projection is identical 
with a projection used in maps of the celestial globe from China from at least five centuries 
earlier—and the same principle could obviously be applied to the terrestrial globe. How­
ever, since Mercator was arrested by the Inquisition, and was lucky to escape with his life, 
it is also not surprising that he kept his “pagan” sources of information a closely guarded 
secret. The tables of trigonometric values published by Clavius, in 1608, used the Indian de­
finition of sines and cosines, and the then common Indian value for the radius of the circle. 
Hence, these tables far exceeded in accuracy the “tables of secants” provided by earlier nav­
igational theorists like Stevin for calculation of loxodromes, which were (at the accuracy of) 
Aryabhata’s values, known to the Arabs. It is hard to see how such accuracy (unprecedented 
for Europe) could even have been attempted without calculus techniques. Clavius, who au­
thored the calendar reform proclaimed by pope Gregory, certainly had access to every bit of
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information brought in by the Jesuits, but could hardly be expected to be truthful enough 
to acknowledge his “pagan” sources. Since Clavius’ tables were published several years be­
fore the first hint of the calculus “officially” appeared in Europe in the works of Kepler, and 
since Clavius provides no explanation of his method, it remains a mystery how these high- 
precision trigonometric values were calculated. The only reasonable explanation is that like 
his contemporaries, Tycho Brahe, who merely articulates Nilakantha’s astronomical model, 
or Scaliger, whose “Julian” day number system copies the Indian ahargana system, Clavius 
obtained his trigonometric values from India.

Longitude and the Size of the Earth

The third problem faced by European navigators was the difficulty in determining longitude. 
Here, they had difficulty in adopting the Indian techniques, because these techniques for 
determination of longitude required (a) precise knowledge of the size of the earth, and (b) an 
ability to do mental calculations. Because Columbus had fudged the size of the earth, mak­
ing it |th its actual size, and his fudged value acquired currency in Europe, Europeans lost 
the precise knowledge of the size of the earth, available to Arabs, and to Indians from at least 
a thousand years earlier. The wrong European estimate of the size of the earth led to navi­
gational disasters, so that carrying of globes aboard ships was banned by Portugal in 1504. 
Picard’s re-determination of the earth’s size in 1671 was a long time in coming, and was 
not immediately accepted by European navigators, who remained at sea about the precise 
size of the earth during 1500-1700. Hence, Europeans could not use the Indian technique 
of longitude determination. Further, before Clavius, neither the algorismus nor practical 
mathematics were part of the curriculum in Europe, except among Florentine merchants 
who kept it a sort of trade secret, so there was the absence of training in mental calculation 
even among navigators. The situation was worse among common sailors who were rarely 
educated, given that living conditions on European ships were so harsh and filthy, and so 
very hazardous (with an over 30% rate of mortality per trip). However, these were the very 
people who would have had to navigate the ship if something happened to the navigator. 
Accordingly, there was a cultural expectation of a mechanical way to do the calculation for 
longitude. Hence also Europeans were unable to use the Indian techniques of longitude 
determination, and went in a different way, ultimately developing the marine chronometer 
in the latter half of the 18th c. CE. However, the idea of a prime meridian (of Greenwich) 
for measuring longitude differences obviously copied the Indian idea of the prime meridian 
of Ujjayini.

From astronomy to technology and zoolog}', knowledge from India and China was pour­
ing into Europe (although Europeans refused to acknowledge this as a matter of religious 
belief). However (as in the case of knowledge of longitude determination), not all the knowl­
edge so obtained could be immediately used by the Europeans, since they failed to compre­
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hend it or make it compatible with their then-existing epistemic frame. The trail of circum­
stantial evidence leads from Mercator to Clavius, Scaliger, and Tycho Brahe, to Kepler and 
onwards, suggesting that the trigonometric values of higher precision were understood first, 
followed by the Indian planetary models—for both of which precedents (via Arabs) were al­
ready available in Europe. Because of this difficulty of comprehension, it was about about 
a century after the formation of the Cochin college that the Indian infinite series explicitly 
appears in Europe in the works of Cavalieri, Fermat, Pascal, Gregory, etc., beginning 1630. 
(Cavalieri was a student of Galileo, whose access to the Jesuit sources in the Collegio Romano 
is well documented, and whose difficulties with the infinite are articulated in his correspon­
dence with Cavalieri.) Fermat and Pascal use the earlier Indian method of summing these 
infinite series, and relate them to the calculation of area in the manner of Bhaskara II, while 
the Gregory series too related to the European calculations of the value of 7r. Fermat’s chal­
lenge problem to European mathematicians is a solved exercise in Bhaskara II, and the large 
numbers involved make it clear that Fermat had access to Indian sources. None of these Eu­
ropean mathematicians was able to explain the infinite series to their contemporaries, any 
more than Newton and Leibniz; this explanation had to await the formalisation of the real 
numbers within set theory, which was itself formalised only in the 1930’s.

We compare the evidence of transmission with the standard previously stated: motivation, 
opportunity, circumstantial, documentary, and epistemological evidence. (To provide a self- 
contained and coherent account in one place, this chapter repeats some of the material that 
has already been covered in earlier chapters.)

I
INTRODUCTION

The calculus has played a key role in the development of the sciences, starting from the 
“Newtonian Revolution”. According to the “standard” story, the calculus was invented inde­
pendently by Leibniz and Newton. This story of indigenous development, ab initio, is now 
beginning to totter like the story of the “Copernican Revolution”.1

The English-speaking world has known for over one and a half centuries2 that “Taylor” 
series expansions for sine, cosine, and arctangent functions were found in Indian mathe- 
matics/astronomy/timekeeping (jyotisa) texts, and specifically in the works of Madhava, Nila- 
kantha (Tantrasangraha, 1501 CE), Sankara Variyar (TantrasangrahaVyakliya), Jyesthadeva 
(Yuktibhasa, ca. 1530 CE), Kriydkrarnakan, etc. A numerically efficient algorithm for com­
puting with the series led to a 9 decimal-place precision table for the sine, cosine, and 
arctangent functions. These tables of sines and cosines, which make more precise Aryabhata 
I’s earlier table of 24 sines and cosines, are stated compactly in two verses using sexages­
imal, katapayadi notation. These verses are also found in various widely distributed texts 
like the Karanapaddhatr> used to this day. By means of an accurate correction term, rapidly
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convergent versions of these infinite series were developed, and these were used to calculate 
accurately the value of 7t to 11 decimal places. These things are, by now, well known,4 and 
we have already seen the details in Chapter 3.

No one else, however, has so far studied the connection of these Indian developments to 
European mathematics: what relation, if any, exists between the Indian infinite series, and 
the calculus development credited to Newton and Leibniz?

It is important to examine this relation on two planes: the epistemological and the his­
torical. This accords with the idea that the history of mathematics without its philosophy is 
blind, just as much as the philosophy of mathematics without its history is lame. This is an 
idea particularly important for historians of mathematics in India, for they have taken the 
present-day formalist philosophy of mathematics as a given; they have slavishly accepted it 
as universal, across cultures and time, and have neglected the historical and geographical 
variations in the epistemology' of mathematics. This leads to difficulties even in understand­
ing basic notions of Indian mathematics, such as numbers and the concept of sunya, as I have 
earlier0 emphasized. Certainly it leads to difficulties in understanding Madhava’s infinite- 
series expansions, and in classifying this as calculus. These epistemological difficulties have 
already been comprehensively examined earlier6 in Chapters 1, 2, and 3. As we shall see 
later on, it is only by addressing these epistemological issues that one can gain insight into 
the difficulties that accompanied the arrival of the calculus in Europe. Accordingly, the 
present chapter will focus on the historical dimension.

Historically, to relate Madhava’s sine, cosine, and arctan series expansion to the Euro­
pean use of the calculus, it is convenient to consider two stages: (1) the import of these 
infinite-series techniques into Europe, and (2) the dissemination of those techniques within 
Europe. This chapter will focus on the first stage. (The second stage, though interesting 
in its own right, is outside the scope of this book, and we will consider it only in so far 
as it has a bearing on the first stage.) Brie y, the import of the infinite-series techniques 
into Europe relates to the requirements of the European navigational problem, the foremost 
scientific and technological problem of the time in Europe. The navigational problem re­
lated to mathematics and astronomy via celestial navigation, and spherical trigonometry. In 
particular, precise trigonometric values were needed and used to calculate the three “ells”: 
latitude, longitude, and loxodromes.

II
EUROPEAN NAVIGATION IN THE 16EH C. CE

Dead Reckoning and Charts

To start with, let us observe that navigational techniques in Europe, at the end of the 15th 
c. CE, were quite primitive compared to the then-prevalent state of the art. European navi­
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gational techniques at the end of the 15th c. CE were, in fact, confined to dead reckoning, a 
system peculiar to Europe, and adapted to the Mediterranean sea.

Dead reckoning (short for “deduced” reckoning') is a system of navigation in which the 
position of a ship is estimated geometrically by using (a) a chart, (b) an estimate of the 
ship’s speed, and (c) the course direction. A circle is drawn with centre at the last known 
position, and with radius given by the distance travelled. The distance travelled is estimated 
from the ship’s speed and the time travelled. The ship’s course is plotted on this chart, 
and the graphically calculated point of intersection is used as a new estimate of the ship’s 
position. This cumbersome geometric method requires reliable charts, drawing instruments, 
a magnetic compass, a clock, a log, and a log book, to maintain a continuous record of 
speed and direction. Despite this impressive array of navigator’s paraphernalia, the dead­
reckoning method was excessively inaccurate for various reasons.

Though navigators naturally stressed the absence of reliable charts of “unexplored” 
regions, the unreliability of charts was not the sole reason for the unreliability of dead­
reckoning. Each instrument introduced its own error: e.g. the magnetic compass could 
be unreliable because of imperfect suspension (especially in a ship which is rocking and 
rolling), because of magnetic variations and anomalies, and because of the deviations of the 
magnetic north from the true north. Contemporary Arabian sailing manuals recognized the 
unreliability of the magnetic compass.8

Heaving the Log, and the Log Book

Probably, the greatest error in the European technique of dead-reckoning was introduced by 
the crude technique of measuring the distance travelled. Initially this was reckoned in terms 
of the number of days of sail, analogous to the Arabic zam,9

Later on, distance travelled was calculated from the ship’s speed. The speed itself was 
measured by tossing a log overboard, and measuring (a) in how much time it oated past the 
ship, or (b) how much rope went out in a given time, and then continuously recording this 
in what was naturally called a log book. The second method was standardized to “knots” by 
measuring the length of the rope using knots at regular intervals. Later the distance between 
knots was standardized at 471 feet (14.3 m). Time was measured using a sand-glass of 28 
seconds which was inverted as soon as it emptied. This standardization took place only in the 
mid-17th c. (Richard Norwood recommended this in 1637), so that a speed of one “knot” 
came to 1 nautical mile (= 6076 feet, or 1853 m) per hour. This grossly inadequate method 
of measuring speed remained in use for some three-and-a-half centuries, even in to the mid- 
19th century (by which time all problems related to latitude and longitude determination 
were conceptually settled, according to historical accounts, and the patent log was slowly 
coming into use). As recorded by a European sailing manual of the mid-nineteenth century, 
numerous precautions were necessary because of the inaccuracies due to the log:10
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. . .  if the gale has not been the same during the whole hour, or time between 
heaving the log, or if there has been more sail set or handed, there must be 
an allowance made for it, according to the discretion of the officer. Sometimes, 
when the ship is before the wind and a great sea is setting after her, it will bring 
home the log; in such cases it is customary to allow one mile in ten, and less in 
proportion if the sea be not so great; a proper allowance ought also to be made 
if there be a head sea. In heaving the log, great care should be taken to veer out 
the line as fast as the log takes it; for if the log be left to turn the reel itself, it will 
come home, and give an erroneous distance.

In addition to variations in wind velocity, the sampling might be biased, the mean might 
have a large variance, and so on.

The Navigational Skills of Columbus and Vasco

In contrast, celestial navigation was the method of choice prevailing in the Indian ocean, 
and long used by Indian, Arabian, African, and Chinese seafarers. Though this method 
used no charts, and very little by way of instrumentation, it was a lot more reliable than 
dead-reckoning techniques, even up to the middle of the nineteenth century, by which time 
the unreliable European navigational instruments of the 16th c. CE had improved to the 
point that Europeans had started poking fun at the parsimony of instruments in the Indo- 
Arabic technique of navigation.

Both Columbus and Vasco da Gama used dead reckoning and were ignorant of celestial 
navigation.

Now let us look at Columbus’s ability at celestial sights__ His first recorded at­
tempt at using a quadrant to establish his latitude was on 2 November when he 
was off the northern shore of Cuba. This sadly erroneous sighting put him on 
the latitude of Cape Cod. Even so, Columbus failed to recognize this gross error 
and instead concluded that he was... on the mainland of Cathay__ [This] illus­
trates Columbus’s serious incompetence in celestial navigation. Columbus tried 
the quadrant again on 20 November and came up with the same deplorable re­
sult of 42 degrees north latitude, but this time he realized that something was 
wrong and blamed it on the quadrant which he said was broken and needed re­
pair. How can a quadrant be broken when it has only one moving part and that 
part is a string with a weight on the end?11

Vasco da Gama was not much better off. He observed the Indian pilot using the kamdl, a 
simple but sophisticated instrument which consists of a couple of pieces of wood and some 
string, and is used to measure local latitude, by measuring the altitude of the pole star. The 
instrument is held level with the eye, and the knots on the string are counted by keeping the
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string between one’s teeth; hence the name kau for the pole star, for kau also means teeth. 
Vasco da Gama thought that the pilot (Malemo Cana) was telling the distance by his teeth!12

Governmental Intervention

This ignorance of a proper technique of navigation was a very painful matter for Europe, 
since navigation was both strategically and economically the key to the prosperity of Europe 
of that time. Europe of that age was exceedingly poor—the most prosperous parts of it were 
Spain and Portugal, just emerging from Arab colonization. In the language of Toynbee, the 
Europeans were the “external barbarian” intruders in the civilized world of Indians, Arabs, 
Chinese, Africans, etc. The European dream of riches lay in trade via the sea route they 
had recently learnt about. The absence of a good technique of navigation made this trade 
very risky, and each sunken ship meant great loss of wealth. Accordingly, a good method of 
navigation was of great commercial importance to Europe in the 16th c. CE.

However, a peculiar and novel aspect of European trade and commerce was that it in­
volved various governments in Europe. Though this may seem very natural to us today, this 
was then in stark contrast to the prevailing Indian, Arabic, Chinese, and African practice, 
where trade was traditionally carried out between individuals—and the state only assisted the 
process. Since the European states themselves were engaged in trade, this trade inevitably 
involved war or armed con ict of some sort. Naval force was used to attack competitors. 
European trade, thus, required troops to be moved across long distances over sea, and a 
sunken ship also meant more loss of life and wealth than in an actual con ict. Thus, a good 
method of navigation was also of very great strategic importance for Europe in the 16th c. 
CE. (The subsequent history of tiny Britain attests to the importance of naval skills in that 
era.)

Accordingly, various European governments had no hesitation in acknowledging their 
ignorance of navigation, while announcing huge rewards, from the 16th to the 18th c. CE, to 
anyone who developed an appropriate technique of navigation. These rewards spread over 
two and a half centuries from the appointment of Pedro Nunes as Royal Cosmographer in 
1529, to the Spanish government’s prize of 1567 through its revised prize of 1598, the Dutch 
prize of 1636, Mazarin’s prize to Morin of 1645, the French offer (through Colbert) of 1666, 
and the British prize legislated in 1711, which was eventually claimed in 1762 by Harrison, 
and paid in 1773. Many key scientists of the time (Huygens, Galileo, etc.) were involved 
in these efforts: the navigational problem was the specific objective of the French Royal 
Academy, and a key concern for starting the British Royal Society. European governments 
were also in fierce competition with one another, and the above sequence of prizes accurately 
re ects the successive dominance of the Portuguese, the Spanish, the Dutch, the French, and 
then the British.
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Thus, for over two and a half centuries, from the beginning of 16th to at least the middle 
of the 18th c. CE, the European method of dead reckoning remained unreliable, and the 
navigational problem remained one of the foremost scientific and technological problems in 
Europe. European governments, combatively engaged in trade, were acutely aware of this 
problem, and did everything possible to support the search for a solution.

Ill
LATITUDE AND CALENDAR VS LONGITUDE AND CHRONOMETER

Though celestial navigation (hence mathematics and astronomy) was the actual focus of the 
European attack on the navigational problem, the present-day depictions of these events 
culminate in a triumphant account of the development of yet another navigational instru­
ment: the marine chronometer, in the mid-18th century, and its use in determination of 
longitude.13 Though Harrison’s 1760 chronometer may have been accurate, these histor­
ical accounts of the chronometer are inaccurate on two counts. First, the chronometers in 
general use remained somewhat unreliable, even until a century later. As a sailing manual of 
the mid- 19th c. records the chronometer still had to be treated as a delicate and pampered 
pet:

In winding up a chronometer that is going, great caution should be observed, not 
to give it a circular motion, which would alter its rate some seconds, or perhaps 
even stop its going; but when a chronometer... has once stopped, though for 
ever so short a period,... no reliance can be placed on its performance, until its
rate be proved by subsequent observations__ A chronometer should be wound
up regularly at the same time of the day, and great care taken not to give the key, 
first half a turn, then a whole turn, afterwards three quarters, and so on; for this 
irregular mode of winding up will sometimes very materially alter its rate, and 
should be as carefully avoided as circular motion.14

Secondly, these triumphant accounts of the chronometer and its use in longitude- 
determination have overlooked the following. Navigation required the determination of 
both latitude and longitude. But, in the 16th c. CE, European navigators did not know 
how to fix either. Though the longitude problem has recently been highlighted, this was 
preceded by a latitude problem, and the problem of loxodromes, both of which were key 
issues in 16th century Europe.

As already noted above, Vasco da Gama and Columbus knew only dead reckoning, 
and were ignorant of celestial navigation, even in the matter of determining latitude. (To 
measure latitude, Vasco da Gama carried an astrolabe that could be used only on land.) 
Naturally, the European navigators of the time could see that the superior navigational
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techniques of the Arabs and the Indians did not rely on charts, and so could not have 
used dead reckoning. Like Vasco da Gama, they tried hard to copy these techniques, 
to bring their own navigational technology' up to date, even though they did not then 
understand the simple principles of these instruments. Vasco da Gama, for instance, carried 
back a copy of the kamdl to have it graduated in inches, oblivious to the fact that the 
instrument used a harmonic scale and hence could not be graduated according to a linear 
scale!

Latitude Measurement

How is latitude to be measured? One method was to use instruments like the kamdl, and the 
cross-staff or sextant to measure pole-star altitude. By about the mid-16th c. Europeans had 
learnt this method from Indo-Arabic navigators. However, to travel (by sea) from Europe 
to India one must cross the equator, and the pole star ceased to be visible well before that. 
Moreover, there is no similar star in the southern hemisphere. Furthermore, this method 
was applicable only at night.

Latitude Measurement in Day Time and the Solar Declination

How is latitude to be measured in day time or near the equator? The solution to the problem 
is described in traditional timekeeping texts, like the 7th c. CE Laghu Bhaskanya,1:) and was 
known to Arabs from the 9th c. CE. This traditional Indian solution to latitude measurement 
involves measurement of the solar altitude at noon. Noon is relatively easily identified as 
the time of the day when the shadow is the shortest, or the time when the shadow just stops 
becoming shorter and starts lengthening. (This time can also be identified by drawing a 
circle around the gnomon and bisecting the angle formed between the lines joining the 
centre of the circle to the two points at which the shadow just touches the circle.) Likewise 
solar altitude may be measured by any instrument used to measure angles, such as the kamdl, 
a cross-staff, or a sextant, or any of the numerous European instruments that were devised 
in the 16th and 17th c. specifically for measuring solar altitude.

The situation aboard an English ship is described picturesquely by a traveller.16

Every' day, about the hour of noon, the Sun’s altitude was infallibly observ’d, not 
onely [sic] by the Pilots, as the custom is in all ships, and the Captain.. . ,  but 
. . .  there was no day, but at that hour twenty or thirty mariners, masters, boys, 
young men, and of all sorts came upon the deck to make the same observations: 
some with Astrolabes, others with Cross-Staffs, and others with several other in­
struments, particularly with one . . .  lately invented by one David, and, for his 
name, called David’s Staff [Davis Staff].
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However, the key difficulty is this: the observed solar altitude at noon is a function of two 
variables: the local latitude and the solar declination. As described in the Laghu Rlidskariya 
of Bhaskara I ,17 a widely circulated timekeeping manual,

sin = sin sin a, (7.1)

where is the declination, is the local latitude, and a is the solar altitude on the prime 
vertical (i.e., at noon).

Solar Declination, Equinoxes, and the Calendar

At a given place (i.e., holding fixed) the solar altitude at noon (i.e., a) keeps varying 
throughout the year as the sun’s declination ( ) varies, as it is seen to move north, and then to 
the south, and then back. How is the solar declination to be determined? Roughly speaking, 
this varies sinusoidally with a periodicity of one year, and can today be easily calculated 
from the date. A simple possibility is to make a linear estimate. Since the maximum solar 
declination, of 23°27 during solstice, is known, hence the average solar declination can be 
calculated, and the solar declination on any given day can be estimated from a knowledge 
of the number of days elapsed since the equinox or solstice. (This simple method would not 
be accurate, since even Bhaskara 1 observes that the change in solar declination varies from 
day to day.) However, even this simple method of determining latitude was not available to 
the Europeans in the 16th c. Thus, to determine the latitude from a measurement of solar 
altitude at noon, it is necessary also to have a proper calendar which correctly states the days 
elapsed since equinox, and hence correctly identifies the days of equinox. This was readily 
possible in Indian tradition, for the same Laghu Bhaskariya, for example, also (a) described 
various ways of determining the equinox, and (b) used a traditional system of day-count 
(ahargana) which facilitated the counting of the days elapsed since the equinox.

The Erroneous Julian Calendar

However, at the beginning of the 16th c. the European calendar (Julian calendar) could not 
properly identify the dates of the equinox. The reason was that they had long been using 
a calendar with the wrong length of the year. The Romans with their clumsy mathematical 
notation (Roman numerals) could not do mathematical calculations easily. They relied on an 
abacus, and found it difficult to handle fractions. Accordingly, they had simplified the length 
of the (tropical) year to be 365 \ days, a figure that was incorrect in the second decimal place, 
and contrasted poorly with the contemporary 5th c. CE estimate of the (sidereal) year by 
Aryabhata,18 which was more than ten times more accurate. The erroneous Roman figure 
for the length of a year led to an error of one day in a century. By the 16th c. CE, this 
error had piled up to 10 days. From the above formula (7.1) relating solar declination to 
local latitude and solar altitude at noon, it is clear that an error of ten days in the calendar
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will lead to inaccuracies of about 3° in latitude determination, not counting any errors of 
measurement and calculation. Taking 1° as 60 nautical miles, this was an error of over 150 
nautical miles! Hence, European navigational theorists soon realized that the solution of the 
latitude problem required a reformed calendar.

To summarize, in the 16th c. fixing latitude was a problem for European navigators. 
The time-measurement problem relating to latitude concerned the calendar, rather than 
the chronometer (a later development related to the longitude problem).

The European Focus on Mathematics and Astronomy

Traditional methods of calendrical timekeeping inevitably related to astronomy and mathe­
matics, and this was true also of Europe. Accordingly, prior to the 18th c. marine chronome­
ter, attacks on the European navigational problem in the 16th and 17th c. focused on mathe­
matics and astronomy, which were (correctly) believed to hold the key to celestial navigation.

This led to a urry of scholarly activity, and numerous star charts were published in 
that period. The Almagest (Syntaxis), like the Geographia, attributed to Ptolemy, became very 
popular, as did the Sphere of “Proclus”, and of Sacrobosco.19 Further, it was widely (and 
correctly) believed by European navigational theorists and mathematicians (e.g. by Stevin20 
and Mersenne) that this knowledge of celestial navigation was to be found in the “knowledge 
of the ancients”. This “knowledge of the ancients” verv much included non-Greek sources, 
since Stevin, for example, repeats Herodotus’ remarks that the Greeks were like children be­
fore the Egyptians. Stevin, incidentally, introduced Europe to the decimal system in 1585. In 
particular, while Europeans had a difficulty in acknowledging a theologically incorrect source 
of knowledge, they had no difficulty in using that knowledge after hiding the source, or cred­
iting it to a theologically correct source. rlb give an analogy, this was exactly in accord with 
the idea of converting an existing temple into a church instead of demolishing it.

The Jesuits

While calendar reform for latitude measurement was high on the European agenda in the 
16th c., and calendar reform required adequate knowledge of mathematics and astronomy 
to determine accurately the equinoxes, there was a further problem. A change in the dates 
of the equinoxes meant a change in the date of Easter, and changing the date of Easter was 
not a trivial matter in medieval Europe dominated by the Church. Indeed, the date of Easter 
practically signified the Nicene creed, for the sole point on the agenda of the Nicene Coun­
cil (First Ecumenical Council) held in Constantine’s court, was to fix the date of Easter. In 
medieval Europe, departure from the Nicene creed attracted charges of heresy, even among 
Protestants, and heresy meant social ostracism if not a painful death, so that even a New­
ton had to hide his heretical beliefs lifelong (and these views have largely remained hidden, 
even after his death, down to the present day). Accordingly, though dissatisfaction had been
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earlier voiced over the Julian calendar, since before Regiomontanus, the Julian calendar 
continued to be used, until reforming the calendar became a matter of overwhelming prac­
tical importance to the state. This happened just at the time that the Roman Catholic church 
had vigorously initiated the process of counter reformation to meet the emerging challenges 
to its authority. Eventually, a change in the date of Easter was authorized by the Council of 
Trent, which started in 1545, to spearhead the counter-reform.

This period saw the rise of the Jesuits, as part of the Church’s program of counter- 
reformation. At that time, science had not yet championed the Protestant cause, even in 
the popular imagination, and the Jesuits, with their success in founding educational insti­
tutions, were at the forefront of European knowledge. A key Jesuit figure was Christoph 
Clavius who headed the Calendar Reform Committee of the church for the Gregorian cal­
endar reform of 1582. Clavius studied in Coimbra under the mathematician, astronomer, 
and navigational theorist Pedro Nunes. Clavius lamented the Jesuit ignorance of mathe­
matics and astronomy, and subsequently reformed the Jesuit mathematical syllabus at the 
Collegio Romano,21 to change its orientation from spiritual mathematics towards practical 
mathematics. Clavius even wrote a text on practical mathematics.22 Clavius, incidentally, 
remained in correspondence with his teacher Nunes during the period just prior to the 
calendar reform.

By this time, the Jesuits had established themselves in India, particularly in Cochin, and 
in Goa, where they had introduced the Inquisition by 1560. Because state and church were 
so closely intertwined, Jesuit priests often doubled as military spies, and sent back military 
information in their despatches. In any case, Jesuits were secretive, and many Jesuit doc­
uments remain a secret to this day. For Jesuits, conquest and conversion were related, and 
it is well known that in 1580 they sent a mission to Akbar’s court, hoping to conquer India 
by converting the Moghul emperor, a la  Constantine. Though the mission obviously failed, 
they maintained a continuing presence in the Moghul court. To this end of conquest through 
conversion, the Jesuits learnt the local languages with missionary zeal. Valignano declared 
that it was more important for Jesuits to know the local language than to know philosophy. 
By 1577 they had already started printing presses in Tamil and Malayalam, at Vapicota, with 
a view to translating and disseminating canonical literature in the local languages.

Cochin was (and still is) the centre closest to the various manuscript sources of infinite 
series, and Cochin was where the Jesuits had a very strong base. Cochin was a special focus 
of attention because of the presence in the vicinity of a large number of Syrian Christians 
whom they regarded (and still regard) as heretic Nestorians, but nevertheless saw them as 
their natural allies, like Prester John, or the Mozarabs. The Jesuits maintained a large army 
in Cochin and were involved in pearl-fishing. With their well-acclaimed acumen in setting up 
educational institutions, the Jesuits took over the Christian college in Cochin, and, according 
to the Documenta Indica, they were teaching Malayalam to the locals, at the latest by 1592.
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By 1595 the Cochin college had a couple of hundred students, mostly “Thomas” Christians. 
These constituted a very useful source of local information for Jesuits.

To meet their objective of conquest through conversion, Jesuits naturally also studied 
and documented the local customs. They systematically collected and translated local man­
uscripts, and sent them back to Europe.23

hardly seven years after the death of . . .  Francis Xavier the fathers obtained the 
translation of a great part of the 18 Puranas and sent it to Europe. A Brahmin 
spent eight years in translating the works of Veaso (Vyasa)... several Hindu books 
were got from Brahmin houses and brought to the Library of the Jesuit college.

The situation is reminiscent of the mass translations at Toledo. The Jesuits did study these 
translations, and even adapted their gospels accordingly to suit local customs and nomencla­
ture. For example, the first book printed in Marathi, authored by Thomas Stephen (Thomas 
Estevao), in 1616, was called The Christo Parana. The next was the Parana o f St. Peter by one 
Estevao de Cruz in 1629.24

The traditional Indian calendar must surely have puzzled the Jesuits, especially the way in 
which dates of local festivities were fixed. The Indian calendar has civil days as well as tithl-s. 
Festivals, however, relate to both lunar and solar cycles: Diwali, for example, is invariably on 
an amdvasyd, while Iloli is always on a purnimd. Since festivals relate to both lunar and solar 
cycles, titlu-s were (and still are) used for festivals, and this necessarily involves a system of 
intercalary days and months. Thus, it is non-trivial to correlate this calendar with the Julian 
calendar, which was a civil calendar, based solely on the solar cycle, having botched up the 
notion of “month”, or a cycle of the moon, with various adjustments to suit the vanity of 
long-dead petty Roman despots.

For someone accustomed to one sort of calendar, it is very hard to understand the other 
sort of calendar. It is easy to get a feel for this difficulty: at least 9.9 out of 10 (elite) Indians 
today do not know how the date of a traditional festival is fixed, and will refer to the calendar 
to fix the dates of even important festivals such as Onam, or Diwali or Holi. Those being 
early days of mass-printing technology, mass-printed Indian calendars were not available so 
easily, and pancdnga-makers differed in their opinions! In any case, referring to a ready­
made calendar is one thing, and understanding how it is made is quite another. For the 
Jesuits, seeking to understand local customs, it was surely important to understand how the 
calendar was made, especially after the Council of Trent in 1548 had declared the intent for 
calendar reform, making the calendar a hot topic of interest.

Calendar-making in India inevitably involved complex mathematics and astronomy, at 
least since the Surya Siddhanta. As already observed, the Jesuits were initially not sufficiently 
well-trained in mathematics and astronomy to understand how the pancdhga was made. After 
about 1575, however, Jesuits, like Matteo Ricci, who trained in mathematics and astronomy,
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under Clavius’ new syllabus were sent to India. (Ricci also visited Coimbra and learnt naviga­
tion. He remained devoted to Clavius, and he later translated Clavius’ books into Chinese.) 
In a 1581 letter to Petri Maff'ei, Ricci acknowledged that he was trying to understand local 
methods of timekeeping from “an intelligent Brahmin or an honest Moor”.2;) Ricci had 
recently been in Cochin, close to Trichur, which was, then, the hub of mathematics and as­
tronomy, since the Vijaynagar empire had sheltered it from the continuous onslaughts of 
raiders from the north. Language, as we have seen, was hardly a problem.

There was, however, another difficulty, quite similar to the difficulty that arose at Toledo. 
Unlike the Arabs who freely acknowledged what they had learnt from others, the medieval 
church was loath to acknowledge any reliance on “pagan” knowledge. This was a centuries- 
old tradition of the church, dating back to the days when it prosecuted “pagans” in the 
Roman empire. Augustine, for example, had chided Porphyry for studying the “mores and
disciplines oflnde”—as if this was something offensive and sinful—and Indian thought (es-

✓
pecially Sankara’s Advaita Vedanta, popular in South India) was rightly seen as similar to 
“pagan” (Neoplatonist) thought. Given this church policy of religious parochialism, the 
medieval church was very reluctant to admit publicly the value of “pagan” knowledge, es­
pecially in so sensitive a matter as fixing the date of Easter. It was, however, theologically 
acceptable to run down “pagan” knowledge. Accordingly, the persisting Jesuit interest in 
Indian astronomy is confirmed by de Nobili’s 1610 polemic26 against the Vedanga jyotisa, 
the earliest Indian astronomical and timekeeping work that, because of its age (and the 
precession of the equinoxes), had been politely rejected as obsolete by Varahamihira,27 a 
thousand years earlier. De Nobili’s polemic is, thus, in the spirit of someone today running 
down the Bible as false on the ground that it gives an inaccurate value of 7t. However, De 
Nobili’s polemic demonstrates two things: (a) that the Jesuit interest in Indian mathematics 
and astronomy persisted beyond the calendar reform, and (b) that by 1610 the Jesuits were 
confident enough about their knowledge of Indian mathematics and astronomy to write 
polemics against its older versions. As we have seen, from the case of Euler, for example, 
this interest persisted at least until the 18th c.

IV
NAVIGATION AND TRIGONOMETRIC VALUES 

Latitude Determination and Precise Trigonometric Values

There was good reason for the continuing European interest in Indian books on mathe­
matics and astronomy, even after the Gregorian Reform. The Gregorian Reform28 of 1582 
did not quite solve the latitude problem. While an improved calendar helped to determine 
latitude, in principle, from the observation of solar altitude at noon, the actual computation 
of latitude required also a knowledge of precise trigonometric values, in accordance with 
equation (7.1). In Europe of those days, common people did not even know how to add
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and multiply, without using counters.29 The decimal system, long used in India, had just 
been introduced in Europe by Stevin in his De Thiende of 1585, translated as La Disme, and 
regarded as revolutionary. Therefore, the calculation of precise trigonometric values was a 
difficult matter. Hence, for latitude determination, from the measurement of solar altitude 
at noon, there remained the problem of computing precise trigonometric values (which 
were also needed for calculating loxodromes). How were precise trigonometric values to be 
obtained?

The first systematic use of sine and cosine values anywhere in the world is found in the 
treatise of Aryabhata, which contains a table of 24 sine and cosine values.30 Among Euro­
pean astronomers, trigonometry first appears with Regiomontanus, a thousand years after 
Aryabhata: Regiomontanus presumably learnt of Aryabhata’s work through the Arabs.

Loxodromes, Mercator s Chart, and Precise Trigonometric Values

Trigonometric tables were used also to calculate loxodromes, which were the focus of efforts 
of navigational theorists like Nunes, Mercator, etc. A loxodrome or a rhumb line is the 
path followed by a ship which steers a constant course set by the magnetic compass or easily 
identifiable stars. The name derives from the Greek loxos (= oblique) and dromos (= curve). 
The word probably derives from the Dutch word kromstrijk (curved line) used by Stevin to 
describe the curves proposed by Nunes—as the result of following a constant rhumb line 
(on the globe)—with whose analysis Stevin disagreed. (The idea was to distinguish it from 
straight line sailing.)

A loxodrome intersects the meridians at constant angles. Though Nunes thought loxo­
dromes were great circles,31 this approximation is valid only for relatively short distances, 
like the Mediterranean. For large distances, in non-cardinal directions, a loxodrome is a 
curve which spirals towards the poles. This is artistically visualized in the artist Escher’s 
painting “Sphere Surface with Fish”.

We recollect that, in 1504, Portugal (King Manuel) had banned the use of the globe for 
navigation, because of the large error that it introduced. Though no cause was stated for 
banning the use of the globe, the reason was presumably because of the wrong size of the 
globe institutionalized by Columbus, and the poor understanding of spherics in Europe at 
that time. In fact, ships had been forbidden to carry globes of any sort,32 and Pedro Nunes 
struggled in vain to defend the use of the globe for navigation.33

The big problem thus was to represent loxodromes on a plane map, as curves that the 
European navigator could easily understand. Mercator’s map, or the Mercator projection, 
represents loxodromes by straight lines. This map was advertised as being of great value to 
mariners: its value chie y lies in the fact that for those using charts for navigation, this map 
can be used to set a course with a ruler, as European navigators were accustomed to doing 
in the Mediterranean.
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As pointed out by Struik,34 the problem of calculating loxodromes is exactly the prob­
lem of the fundamental theorem of calculus: to hud a curve when the tangents to it are 
prescribed. How then did Mercator calculate loxodromes in 1568? This remains a long­
standing mystery. In any case, Mercator’s chart was not much used until the underlying 
principle was explained by Wright,30 who taught mathematics at Cambridge. As we saw in 
Chapter 3, in India, difference equations were numerically solved instead of appealing to the 
fundamental theorem of calculus. These numerical techniques continue to be of distinctly 
greater practical value today than metaphysical theorems, and these were the techniques 
actually used by Wright, and those earlier European navigational theorists like Stevin who 
gave “tables of secants” for the purpose of calculating loxodromes.

Geometrically, however, the idea explained by Wright is to project the sphere on to a 
cylinder and then unroll it. However, the “Mercator” projection is not a straightforward 
cylindrical projection. In Wright’s picturesque description, one should take a bladder, put 
it inside a cylinder, and in ate the bladder until the equator touches the cylinder. To get 
the positions of the other latitudes one should go on in ating the bladder, which now gets 
distorted and non-spherical, until that latitude touches the cylinder.

The precise mathematical formulae are

x

y

A - A0

sec x dx =  In ta n (— +  —) 
o 4  2

sinh-1 (tan ) ,

(7.2)

(7.3)

where A and are respectively the latitude and longitude of the point, and the x-axis of the 
plane map is at the equator, while the y-axis is at the longitude Ao- The map greatly distorts 
areas near the poles (“Greenland effect”), while preserving angles at any point, i.e., it is a 
conformal map. The conformality of the map is of great importance in navigation.

The British naval supremacy has been attributed to their better understanding of this 
formula! Clearly, however, the developments in calculus and astronomy in the 17th c., and 
their contribution to navigation were of great importance in the dominance that Britain 
came to acquire in the 18th c. (Another factor of importance, remarked by a traveller, is that 
the Portuguese navigators kept their methods a secret, while the British openly shared their 
knowledge, thus allowing knowledge to grow at a much more rapid pace.36)

Of course, the formula was not originally given in the above manner in which it is cus­
tomarily given today. If we follow through with Wright’s description, we see that each circle 
of latitude will be mapped to a circle of uniform radius on the cylinder. Since latitude circles 
on the earth shrink in length by a factor of cos , where is the latitude, this means that 
each circle must be stretched by the inverse factor of sec . If angles are to be preserved, 
this means that the distances between adjacent latitudes must also be stretched by the same 
amount, i.e., distances must be scaled by secants as the above formula shows. Wright ac-
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complished this by carrying out the integral numerically. But this required an accurate table 
of secants, hence precise trigonometric values. Before Wright, navigational theorists like 
Stevin were equally concerned with the calculation of meridional parts, hence with precise 
secant values and trigonometric values generally. It was presumably these concerns which 
led Clavius to the publication of his table of precise trigonometric values at the turn of the 
century. Clavius fails to provide any explanation of how those tables were obtained.

We have seen that calculation of loxodromes involved the solution of a problem equiva­
lent to the fundamental theorem of calculus. But that theorem was unknown to Europeans 
in the 16th c. How, then, did Mercator draw the chart? The abiding nature of the Mercator 
mystery is due to the fact that it cannot be appropriately solved within the framework of 
the Western historical narrative about the calculus. The mystery can be resolved by chang­
ing that narrative. It is hard to believe that Mercator drew his chart through sheer skill 
in draftsmanship. It is rather more likely that he had access to information from India 
or China, which he kept a secret. That this information was adequate to enable the cal­
culation of loxodromes is evident from the fact that loxodromes were earlier used to map 
the zodiac, and a Chinese [Dunhuang] star map from ca. 950 follows the very same prin­
ciple of isogonal cylindrical projection that has come to be known as the “Mercator” pro­
jection. This chart is reproduced in Needham’s volume.37 How did the Chinese draw the 
chart?

Clearly, the principles of using a finite difference technique for numerical integration, 
in the manner of Aryabhata’s computation of sine values, reproduced in Chapter 3, were 
certainly known to the Chinese by the 10th c. CE. Clearly, also, by this time, they were well 
aware of the principles of spherical trigonometry as found in e.g. Vatesvara’s work. The Chi­
nese, therefore, had the necessary mathematical equipment to draw the map. Presumably, 
Mercator did likewise.

European Interest in Trigonometric Values

That 16th c. Europeans were greatly interested in precise trigonometric values is shown for 
example by Nunes, Stevin, Clavius, etc. all of whom published lengthy tables of accurate 
trigonometric values. The Indian connection is manifest. Stevin mentions Aryabhata’s value 
of 7t, which was widely known in the Arabic world.38 Therefore, European navigational 
theorists were certainly aware of the prevailing Indian and Arabic techniques of computing 
trigonometric values, at least up to the time of Aryabhata, as known to Arabs, which diffused 
into Europe from the time of Regiomontanus. Clavius further used the Indian definition of 
the sine, also called the Rsine, as is clear from the very title of his work.39 The “coincidence” 
is all the more striking when we observe that the (large) value of R is the same as that found 
in Indian texts, and that all Jesuits in India (not Matteo Ricci alone) would have reported 
back to Clavius, anything of significant interest in mathematics and astronomy.
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Presumably, other European scholars were also well aware of the real source of these 
trigonometric values, in Indian texts, and were interested in establishing a direct contact 
with the Indian source, as in the case of spices. For example, Bombelli (d. 1572) mentions 
in the preface to hh Algebra40 that the Greek text of Diophantus of Alexandria makes several 
references to Indian sources:

a Greek work on this discipline has been discovered in the Library of our Lord 
in the Vatican, composed by a certain Diophantus of Alexandria, a Greek au­
thor, who lived at the time of Antoninus Pius. When it had been shown to me 
by Master Antonio Maria Pazzi, from Reggio, public lecturer in mathematics in 
Rome... (we) set ourselves to translate it... in this work we have found that he 
cites Indian authors many times, and thus I have been made aware that this dis­
cipline belonged to the Indians before the Arabs.

Fermat’s interest in this particular text of Diophantus is well known; so mathematicians like 
Fermat, and certainly all those who read Bombelli, were aware of this Indian connection.

To reiterate, Madhava’s trigonometric tables, which improved Aryabhata’s trigonomet­
ric tables, using the series expansion for the sine, cosine, and arctan functions, were then 
the most accurate trigonometric values available, and the coefficients needed to calculate 
these values, in a numerically efficient way, were encapsulated, as we have seen, in a couple 
of verses in various widely distributed mathematics/astronomy/timekeeping (jyotisa) texts, 
including the Karanapaddhati. Texts like the Yuktibhasa were in contemporary Malayalam 
which the Jesuits could well understand,41 while various other texts were in Sanskrit which 
they had got translated at the latest by 1600 and were then reading in the Sanskrit as is 
clear from de Nobili’s polemic of ca. 1610 against the Vedanga Jyotisa. The key manuscripts 
were housed in a place less than a hundred kilometres from Cochin. Any attempt to ac­
quire and understand Aryabhata’s texts or Bhaskara’s texts, in the locality of Cochin, would

/

have led in a natural way to these texts and to some of the authors like Sankara, author of
the TantmsangrahaVyakhya. (N11 a ka n th a ’ s 4 ryabhatiyabhdsya was a commentary on Aryabhata’s 

/
work, while Sankara’s Kriydkramakan was a commentary on Bhaskara’s work.)

Jesuits, of course, were not the only ones bringing these Indian books into Europe. As we 
have seen, many people in Europe believed that the answer to the navigation problem lay in 
the “knowledge of the ancients”, so that there were many other collectors of Oriental books 
and manuscripts in Europe of that period. Since these books were regarded as valuable, 
every itinerant, sailor, and merchant who could lay hands on them carried them back, either 
to keep as memorabilia, or to sell off at a good price.

Longitude Determination, Trigonometry, and the Size of the Globe

As we have seen in Chapters 4 and 5, longitude calculation can also be done by solving 
a triangle, if one has access to precise trigonometric values. This could be done in different
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ways. For example, from a knowledge of (a) the latitude difference, (b) the fact that latitudes 
and longitudes are orthogonal, and (c) either the course angle, or (c ) the distance, one 
could solve a triangle to compute the longitude difference. For short distances (like the 
Mediterranean sea) this could be a plane triangle. Solving such a triangle required precise 
trigonometric values.

We have also seen that the early 7th c. Bhaskara I states the criticism that this method 
is faulty, and spherical triangles should be used instead. For slightly larger distances, and 
for sailing in non-cardinal directions, one could solve a spherical triangle, e.g., using the 
well-known formula

cos D = sin a sin b + cos a cos b cos P, (7.4)

where D is the angular distance between points A and B, a is the latitude of point A, b is the 
latitude of point B, P  is the longitudinal difference between points A and B. (In applying the 
above formula, south latitudes and west longitudes are treated as negative angles.) While the 
distance travelled could be used as a measure of the great-circle distance, the difficulty was 
in converting the physical distance d on the surface of the earth to the angular distance D 
between the two points A and B. This conversion requires a precise knowledge of the radius 
of the earth, or the length of one degree of the arc. This knowledge was also required in the 
case of plane navigation. (This technique is still used in Mercator sailing and great-circle 
sailing.) Thus, in addition to precise trigonometric values, it was necessary to know the 
radius of the earth.

Now the length of one degree of the arc, or the radius of the earth, was known to 
Aryabhata, Bhaskara, et al. The trigonometrical method they used is not documented, but 
must be similar to the method documented by Al BIruni who had studied India, and doc­
umented Indian mathematics and astronomy, in great detail, apart from translating Indian 
mathematics and astronomy texts. The method uses triangulation to measure the height of 
a hill; then one climbs the hill and measures the dip of the horizon.42(For al Birunl this was 
clearly a new method, and, while carrying out his observations in “India”, his stated aim was 
to check the estimate so obtained against Caliph al Ma’mun’s measurement of one degree 
of the arc obtained by sending an expedition in the desert to measure this out physically. 
This triangulation method of measuring the size of the earth is implicit in the definition of a 
shdmam, or ydma, or zdrn, as the distance from here to the horizon, still used by Lakshadweep 
islanders.43 All of these figures are remarkably accurate, though they err in assuming the 
earth to be perfectly spherical.)

These Indo-Arabic figures for the size of the earth were presumably available to the Por­
tuguese. However, Columbus, systematically underestimated the size of the earth, supposing 
it to be only some |th of its actual size. One can understand that such systematic underes­
timation of the size of the earth would have facilitated the funds for Columbus’ scheme of 
sailing West! Obviously enough, Columbus’ “success” was unrelated to this estimate: he
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was simply aimed in a direction where there was so huge a land mass that he could hardly 
have missed it! However, Columhus’ success gave credence to his estimate of the size of the 
earth, and this estimate came to be accepted in Europe, and went unchallenged for another 
one and a half centuries. Accordingly, navigating by the globe fell into deep disrepute. 
Columbus’ incorrect estimate was corrected, in Europe, only towards the end of the 17th 
c. CE, after Picard’s measurements. However, by the time this figure came to be generally 
accepted, Europeans had evolved a different technique of navigation.

'Phis state of affairs is further circumstantial evidence for the import of the calculus into 
Europe, since it suggests that, although Clavius et al. stated very high-precision trigonomet­
ric values (which could have been obtained only by calculus techniques, thus suggesting an 
advanced knowledge of trigonometry'), they simultaneously lacked the grasp of elementary 
trigonometry needed to use these values for practical matters like determining the size of 
the earth accurately.

The other way to fix the longitude of a place was by telling the difference of time from a 
reference longitude.

How was this done prior to the mechanical clock? Prior to the mechanical clock, it was 
possible to fix longitude by telling the time difference using a clepsydra! 'Phis is the method 
suggested by Bhaskara I. Naturally, a clepsydra cannot be set to the time of a reference longi­
tude: however, one can use the clepsydra to measure the time difference between sunset and 
an event such as moonrise. One can now determine the time difference between the local 
time and time at the reference longitude by the simple process of comparing the observed 
time with the calculated (theoretical) time of the same event at the reference longitude.

On any day calculate the longitude of the Sun and the Moon for sunrise or sun­
set without applying the longitude correction, and therefrom find the time (since 
sunrise or sunset), in ghatts, of rising or setting of the Moon; and having done 
this, note the corresponding time in ghatis from the water clock. Prom the differ­
ence, knowledgeable astronomers can calculate the local longitude in time.44

But, unlike Indian astronomers who long ago agreed on the meridian through E'jjain as the 
reference longitude, 16th and 17th c. Europe lacked the concept of a generally agreed ref­
erence longitude (though the idea was later copied as the meridian of Greenwich). Though 
Regiomontanus had learnt these techniques of triangulation, presumably from Arab rather 
than Indian sources, and had compiled ephemerides, his table were very unreliable. Reli­
able and standardized lunar ephemerides started being produced in Europe only around 
the mid- 18th c. CE.

But Europeans encountered another difficulty in using these two methods of determining 
longitude. Both the above techniques require extensive calculations, and European naviga­
tors of the 16th and 17th c., being more accustomed to graphical and geometrical methods, 
were not well-enough versed in the algorismus to be able to do the required calculation.
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Thus, even after precise trigonometric values and a precise knowledge of the globe had 
become available, they continued to rely on the older techniques, and preferred a simpler 
mechanical way of determining longitude. This goal of enabling a common sailor to navi­
gate is also articulated in a contemporary poem concerning Gresham college, and its efforts 
regarding navigation, which contributed to the founding of the Royal Society.40

V
EVIDENCE EOR TRANSMISSION

We have now seen (1) the overwhelming importance of navigation for Europe, in the 16th 
c. CE; (2) the overwhelming importance of precise trigonometric values for navigation, in 
determining latitude, longitude, and loxodromes; (3) the easy availability of Indian texts 
giving these precise trigonometric values; (4) the systematic search for local texts by Jesuits 
in South India and the Toledo model of translating these texts and sending them back to 
Europe for further study; (5) the Jesuit’s special interest in mathematics and astronomy; and 
(6) their location in close proximity to a major repository of the key texts. Under these 
circumstances, it would have been a very odd thing indeed if this Indian knowledge was not 
passed on to other mathematicians in Europe.

However, we had earlier proposed that in view of racist history, and its double standards of 
evidence regarding transmission, it is necessary to adopt fresh criteria to judge transmission. 
Let us summarize the evidence in terms of those criteria.

Navigation and Motivation

In the 16th c. navigation was of overwhelming importance to Europe. This is quite objec­
tively demonstrated by the large rewards offered by various European governments for a 
good technique of navigation.

Accurate trigonometric values were critical for navigation: both for celestial navigation 
(for determining latitude and longitude by celestial observations), and for navigation by 
charts (for determining the loxodromes required to construct charts, for navigation accord­
ing to the European technique).

This relationship between navigation and trigonometric values was well known to Euro­
pean navigational theorists such as Stevin, and key Jesuit leaders such as Christoph Clavius. 
Hence there was a motivation to acquire texts related to precise trigonometric values.

This motivation must be combined with their strong motivation arising also from the 
needs of the Gregorian calendar reform, authored by Clavius, which had become a major 
religious issue in Europe.

The changes in the Jesuit mathematical syllabus, brought about by Clavius, provide fur­
ther evidence of the Jesuit motivation to learn about mathematics and astronomy, and the 
calendar.
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Finally, to carry out their agenda of converting people to (their brand of) Christianity, the 
Jesuits were strongly motivated to learn about local customs, festivals, and hence the local 
calendar. There are numerous Indian festivals, and not a single one of them then appeared 
on a fixed day according to the Julian/Gregorian (civil) calendar. The Jesuits would have had 
motivation to consult and interact with appropriate local calendar experts for this purpose.

Thus, we have established very strong motivation, beyond all reasonable doubt, that the 
Europeans, in general, and the Jesuits, in particular, would have wanted to consult and study 
the Indian mathematical and astronomical texts.

Cochin and Opportunity

Impelled by the above motivation, more than a hundred years were available to Christian 
missionaries and then Jesuits in close proximity of the above texts, in Cochin. Furthermore, 
in Cochin, the Jesuits shared a common patron in the Raja of Cochin with the very authors 
of these texts, like Sankara Variyar. Cochin was only a short distance from Trichur which 
was then one of the most well-known centre of astronomical learning in South India. The 
opportunity to acquire the Indian texts was enhanced by the active cooperation of the local 
Syrian Christian community, which cooperated with the Catholic missionaries for nearly a 
century, before falling apart with them.

We outline the story since it may not be fully known. It should be emphasized that Cochin 
was the first base of the Portuguese, starting 1500, well before Goa came within their control.

This happened for a peculiar reason. Vasco da Gama first landed in Calicut, where he was 
well received by the Samudiri (Zamorin) of Calicut, who (as his name suggests) facilitated sea 
trade, welcoming all traders by sea. When Pedro Alvarez Cabral arrived in Calicut in 1500, 
he was given a place to locate his factory, and a Gujarati merchant to instruct him in the 
local customs. But not having any money to buy the spices that he wanted to take home, 
and not finding any customers for the shabby commodities he had brought with him to 
exchange for spices, he tried spreading false rumours and then tried to seize the spices 
forcibly. In the resulting con ict, the Portuguese factory was razed, and Cabral and his 
men had to ee. Ten days later, around 26 November 1500, they arrived in Cochin, where 
the Gujarati merchant, who had accompanied and guided them, explained to the king of 
Cochin what had happened. As expected, they were welcomed, and given a place to locate 
their factory, because the king of Cochin was hostile to the Samudiri of Calicut. Five of the 
eight Franciscan friars (who had accompanied Cabral for missionary work) settled in Cochin. 
While there had been trade with Europe for many centuries earlier, the mission in Cochin 
was the first organized Catholic mission in India.

They were followed by large contingents of zealous missionaries, who worked 
from the city of Cochin as a centre. The harvest of souls was rich, the Christians
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multiplied along the coast and in the interior, and in course of time a bishop was 
assigned to them.4fc>

Language did not at all restrict the opportunity to acquire local texts. The missionaries 
naturally communicated with the local people in the local language, and not in Portuguese 
or Latin. However, from the beginning, the Portuguese had very few language problems. 
Calicut had exported spices to Europe from centuries before Vasco da Gama. The Venetian 
merchants who were involved in this spice trade were not only well aware of the source of 
spices in India, but, since it was a major source of wealth for them, they tried their best to 
stop the Portuguese by sending an ambassador to the Samudiri of Calicut, in 1501, through 
the Sultan of Cairo,4' asking the Samudiri not to trade with the Portuguese. In fact, when 
Vasco da Gama landed in Calicut, he found there two merchants from Tunis who were there 
to trade, and were able to converse with him in Castilian and Genoese languages.48 It 
was but natural that European languages were spoken in Calicut, which was a cosmopolitan 
place visited by merchants from China, Arabia, and Europe. In particular, because Portugal 
had emerged from Arabic rule only a few years earlier, Vasco da Gama had no difficulty 
in exchanging treaties with the Samudiri of Calicut in Arabic, which was translated for the 
Samudiri.

In Cochin, the Portuguese also had ample support from a section of the local population. 
In Cochin, Cabral immediately established contact with the Syrian Christians (whom the 
Catholics called Thomas or Nestorian Christians). After Vasco da Gama’s barbaric attack 
on the unarmed people and ships in Calicut port (because the Samudiri refused to concede 
Vasco’s extraordinary demand [mixing state, church, and trade] that trade in spices be made 
a Christian monopoly) and the gruesome consignment of mutilated human corpses he sent 
to the Samudiri, the Portuguese dared not come anywhere near Calicut, and Cochin be­
came their centre. However, the missionaries spread into the interior of Kerala setting up 
establishments in places like Cannanore and Quilon within a couple of years (1502). Syrian 
Christians were well versed in the local customs and also in a variety of languages ranging 
from Arabic to Aramaic in which their Bible was written. Two Syrian Christians, a certain 
Mathias, and his brother Joseph left for Portugal with Cabral.49 A Syrian Christian bishop 
gave Vasco da Gama a sceptre and promised all assistance. Two Syrian Christian priests ac­
companied Vasco da Gama to Rome, and Vasco da Gama was initially buried in Cochin at 
the Franciscan church.

The initial cooperation of the Portuguese with the local Syrian Christians was according 
to their original plan of forging a religious-military' alliance with “Prester John”, in their 
religious war. While the Syrian Christians were hardly in a position to provide any sort of 
military support, this tie-up did initially create a sort of fifth column that gave the Portuguese 
full access to a variety of local knowledge, thus enhancing their opportunity to acquire it.
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The contacts with the Syrian Christians were soon institutionalized. By 1510, the Por­
tuguese had started a school in Cochin, with Afonso Alvares as the teacher. This school was 
later rebuilt by Franciscans in 1520 along with various churches and seminaries. Another 
Roman Catholic college in India was opened in Kotinallur, around 1536, specifically for the 
Syrian Christians, and a residence of the Jesuit society was established in Cochin by 1550, 
a few years after the arrival of Francis Xavier in Cochin in 1542. In 1550, the Jesuits built 
a large three-storied college in Cochin, attached to the church. By 1558 Cochin had been 
converted to a diocese, and the church into a cathedral. By 1590 this college had a couple of 
hundred students, which is a very' large number compared to the then population of Cochin.

The Jesuits were rapidly acquiring and translating local texts; this further enhanced their 
opportunity to acquire the calendrical texts containing trigonometric values. Starting from 
ca. 1575, the Jesuits also had adequate knowledge of mathematics. Therefore, they would 
have understood the content in these texts. All the above shows that opportunity, too, is 
established beyond all reasonable doubt.

It should be emphasized that the Jesuits were not the sole channel for information 
transfer—they were not the only ones to have the opportunity to transfer books from In­
dia to Europe. Many others were also involved in collecting information about the new 
places that the Europeans had “discovered”.00 Travellers and sailors often acquired books as 
souvenirs, and these books found their way into the libraries of collectors. Naturally, books 
related to astronomy and navigation would have been high on the agenda of such travellers 
and sailors. Mersenne, for example, writes of the knowledge of Brahmins and “Indicos” and 
mentions the orientalist Erpen and his “les livres manuscrits Arabics, Syriaques, Persiens, 
Turcs, Indiens en langue Malaye”.01

Circumstantial Evidence

There is also strong circumstantial evidence that transmission of Indian mathematics and 
astronomy texts did take place to Europe in the 16th and 17th c. CE.

In the first place there is Mercator’s mysterious source of trigonometric values. Had 
Mercator obtained his values from some source like Regiomontanus there would have been 
no need for him to hide his sources, nor any possibility of doing so. On the other hand, 
since he had been arrested by the Inquisition, he had strong reason to keep any “pagan” 
sources a secret. Therefore, the very fact that he kept his sources a secret, combined with 
the fact that his map was similar to a Chinese map, is strong circumstantial evidence that 
his sources were non-Christian sources. As pointed out above, calculation of loxodromes is 
equivalent to the fundamental theorem of calculus, and Indian texts were the best possible 
source for this information.

The trigonometric values published by Clavius, who was at the centre of the Jesuit web, 
provide further circumstantial evidence that the Jesuits had obtained the latest Indian texts
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on mathematics and astronomy, and had studied them. Thus, Clavius’ trigonometric values 
use exactly the Indian definition of the sine and also the same value of the radius02 used 
by Indian sources in stating Madhava’s sine values. Further, Clavius was unable to give any 
explanation for the way those trigonometric values were derived, and, obviously enough, 
the derivation of such precise values required essentially calculus techniques. Had Clavius 
himself discovered a striking new procedure, by which to obtain more precise trigonometric 
values, would he not have announced it, to establish his priority, especially since this was 
towards the end of his life? In fact, Clavius, though he published sophisticated trigonometric 
tables in his name, lacked a proper understanding of even elemental')' trigonometry, since 
he was unable to use trigonometry to determine a key navigational parameter—the size of 
the globe.

Similarly, the “Julian” day-number system (not to be confused with the Julian calendar) 
supposedly invented by Scaliger, a contemporary of Clavius, is, except for its zero point, 
exactly the ahargana numbering system used by Indian astronomers and mathematicians 
from the time of the Surya Siddhanta, if not earlier.

Then there is the evidence of Clavius’ student Ricci’s interest in searching for Indian 
methods of timekeeping, and his visit to Cochin, just before the Gregorian calendar reform 
authored by Clavius.

The decimal system of representing numbers (using powers of ten) has been in continu­
ous use in India since Vedic times to the present. (While the names remain much the same, 
the current usage assigns different values to them, corresponding to different powers of 
ten, as we saw in Chapter 3.) Europe in the 16th c., however, used the Roman system of 
numeration, and Stevin in 1585 first propagated the use of the decimal system in Europe.

Then there is the polemic written ca. 1610 CE against the Veddhga Jyotisa, by Roberto de 
Nobili,03 which he could hardly have written without consulting that source. The Jesuits had 
read a variety of Indian literature to which they sought to adapt their own gospels, as is clear 
from the very titles of these publications. (The cases of Ricci, de Nobili, and the adapted 
gospels should properly be counted as documentary evidence rather than circumstantial 
evidence, but we mention it here to enable a clear view of the chain of transmission.)

Tycho Brahe was another contemporary' of Clavius, and the “Tychonic” system of plane­
tary orbits is remarkably similar to the model of Nilakantha, author of the Tantrasangraha. 
Couldn’t Tycho have independently rediscovered this model? Since noted historians like 
Owen Gingerich have advanced just such a thesis about Copernicus, contending that he 
might have independently rediscovered the model of Ibn-as-Shatir of Damascus, this point 
seems in need of an explanation.

As already noted, the vast number of such claims of “independent rediscovery” by Eu­
ropeans suggests that a general historiographical explanation is required for this peculiar 
phenomenon. Apart from the racist historian’s double standards of evidence (the origins 
of which we have traced to religious intolerance), the curious thing here is how Westerners
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developed a culture of hiding their sources. Like Mercator, Scaliger, and Clavius, Tycho too 
was very secretive about his sources, hiding them even from his assistant Kepler. Doubtless, 
priority was a Western a cultural value, unlike the case with Indians, Arabs, or Chinese— 
none of whom valued historical priority. However, it is not clear that the value of priority 
can, by itself, explain such extraordinary secrecy.

On the other hand, in Tycho’s time, the thousand-year old practice of religious intoler­
ance was scaling new heights, and had long made the rejection of non-Christian knowledge 
into a Christian value. This was an important value: the Inquisition propagated the belief 
that those who still held on to any remnants of “pagan” customs (e.g. in dress) deserved 
to be physically eliminated. As Mathematician/Astronomer of the Holy Roman Empire, it 
would have endangered Tycho’s position if knowledge of his non-Christian sources were to 
have leaked out. Furthermore, this was a time of intense religious turmoil, and the slightest 
evidence of religious impropriety in the upper echelons of the church hierarchy would surely 
have been made into a big issue by the opponents. This readily explains the extraordinary 
level of secrecy Tycho maintained.

More recently, it has been claimed that, infuriated by this secrecy, Kepler murdered Tycho 
to get at his secrets.04 While the recent forensic analysis of Tycho’s remnants seems to have 
established that Tycho died of poisoning due to a sudden overdose of mercury, it is obviously 
not going to be easy to establish after all these years who did the poisoning, especially since 
Kepler is already the hero of a certain story. The broad argument is that the forensic analysis 
shows two peaks of mercury concentration, so that the poison was administered twice—hence 
that it was administered by someone whom Tycho trusted. Since other members of Tycho’s 
household all stood to lose by his death, while Kepler stood to gain (Tycho’s papers and his 
job), Kepler could well have done it.

For our purposes, it is irrelevant whether, in fact, Tycho was murdered, or whether, as the 
earlier story went, he died of excessive drinking. The point is only the curious secrecy he 
maintained about his papers, even from those he otherwise trusted. Similarly, it is irrelevant 
whether or not Kepler was a murderer. More to the point he was an astrologer by profession, 
who calls astrology the natural means of subsistence for an astronomer. If he did not believe 
in the astrology he practised, he was obviously a charlatan, and a professional liar. If he did, 
he could hardly be reckoned to be a scientist. (If he only partly believed in astrology, he 
must have been both a charlatan and a confused person.) In any case, there is every reason 
to be sceptical about the stories given out by Kepler.

In the particular case of Tycho, the additional factor to be considered is that the model 
came first, and the observations followed. (Recall that in 1582, Tycho could not accurately 
determine a simple astronomical parameter like the length of the year.) Theory preceded 
observations also in Kepler’s New Astronomy, stating the first two of Kepler’s “laws”.00 The 
simple fact is that Tycho’s observations were inadequate06 for the accuracy with which Kepler 
obtains the orbit of Mars. To cover up this discrepancy, Kepler fudged his data.0/ It has
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been argued that Kepler did not intend fraud,08 and also (by Owen Gingerich) that he 
somehow made up for the inadequacy of his data through “brilliant insights”. As opposed 
to this sort of explanation by magic, there is a much simpler explanation. Nilakantha’s 
model was based on a very long baseline of observations, going back some 3000 years. His 
predecessor Paramesvara, for example, had himself carried out fifty years of painstaking 
observation. Nllakantha also had the calculus techniques at his disposal, and a planetary 
model which used variable epicycles (equivalent to elliptic orbits in a heliocentric frame). 
Therefore, he was able to arrive at a very accurate orbit of Mars. When Indian astronomy 
works, translated by Jesuits in Cochin, started arriving in Europe, Tycho, as one of the 
most famous astronomers of his day, and the Mathematician of the Holy Roman Empire, 
would naturally have been chosen as the person to whom they were referred. Nllakantha’s 
model was what later came to be called the “Tychonic” model, which Tycho was trying to 
check against observations. Why, after all, was Tycho so secretive about his papers, not 
even allowing his trusted assistant Kepler to see them? In any case, on Tycho’s sudden 
death, Kepler obtained not just Tycho’s observations, but also the rest of his papers wdiich 
contained the underlying theory. Being inclined towards heliocentrism, Kepler transformed 
Nilakantha’s “Tychonic” orbits to a heliocentric frame (a simple transformation). 'Phis made 
Nilakantha’s variable epicycles come out as ellipses. Being a professional astrologer, Kepler 
was good at making up stories, and he made up the story about how he had arrived at his 
results using Tycho’s data. Realizing that someone might want to check the data, he fudged 
it. This is a much simpler explanation than having to believe first in the magic about Tycho, 
then in the magic about Kepler, then in prolix explanations about why the fudging of data 
by Kepler did not constitute fraud.

Unlike the case of trigonometric values and planetary models, both of which had earlier 
precedents, the infinite series of the calculus had no previous precedents in Europe. How­
ever, the calculus suddenly starts appearing prominently in European mathematical texts and 
discourse from the 1630’s, less than half a century after the calendar reform (discounting 
the case of Kepler himself, wrho toyed with the calculus in 1615).

Cavalieri, himself a Jesuati, had produced a book on “indivisibles”. Cavalieri apparently 
waited for five years for Galileo, whom he regarded as his teacher, to publish first on the 
matter. Why did Cavalieri wait five years for Galileo to publish, before publishing his results 
on the calculus? This would have been a rather strange arrangement if Cavalieri had in­
vented the calculus himself. It w ould have been even stranger if Galileo had invented it, for 
Galileo himself published nothing on the calculus. Galileo’s access to Jesuit sources at the 
Collegio Romano is ŵ ell documented.09 Galileo did not himself take up the calculus because 
he did not quite understand it, as is clear from the difficulties and the various paradoxes of 
the infinite that he raised in his letters to Cavalieri.60 Thus, this state of affairs is better 
explained by supposing that there was a common body of Indian work related to the calcu­
lus, knowm to both Galileo and Cavalieri, and that Galileo w?as not satisfied with Cavalieri’s
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interpretation of it, and not willing to risk his reputation, while Cavalieri was. Nevertheless, 
out of deference for his teacher, he waited five years before staking his claim.

The in uence of Cavalieri’s work on Torricelli and Roberval is well known. Roberval was 
a member of Mersenne’s discussion group, and was involved, along with Fermat and Pascal, 
in debating with Descartes, the validity of these new methods. There is a clear chain of 
in uence from Cavalieri to Torricelli, to Wallis to Gregory and Newton. As is well known, 
while Newton acknowledged the in uence of Wallis, Leibniz acknowledged the in uence of 
Pascal on their respective works relating to the calculus. A diffusionist model for the calculus 
in Europe is, therefore, rather more appropriate than the simplistic Eurocentric model which 
gives all credit to Newton and/or Leibniz just because the two had a nasty priority dispute!

There is further circumstantial evidence of transmission. The calculus methods 
of Cavalieri, Roberval, Fermat and Pascal are very similar to those of the Yuktibhasa, 
TantrasangrahaVydkhyd, Kriydkramakari. As seen earlier, the key step in the derivation of the 
arctan series is the calculation
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This is exactly the formula used by Fermat and Pascal to evaluate the area under the 
“parabola” y = xk. Moreover, as Pascal remarks about this formula, it immediately makes 
manifest how to carry out the quadrature of curves of all types.

There is circumstantial evidence that other Indian mathematical texts were available to 
Fermat. Fermat’s challenge problem to European mathematicians, and particularly Wallis, 
involving the so-called Pell equation, is a solved example in the text of Bhaskara II. (The 
name Pell’s equation was given by Euler; Pell is innocent.)

In a letter of February 1657 {Oeuvres, II, 333-335, III, 312-313) Fermat chal­
lenged all mathematicians (thinking in the first place of John Wallis in England) 
to find an infinity of integer solutions of the equation x2 — Ay2 — 1, where A is 
any non-square integer.61

Fermat also wrote a letter to Frenicle, at about the same time, elaborating upon this 
problem: “What is for example the smallest square which, multiplied by 61 with unity 
added, makes a square?” It is well known that Indian mathematicians had a solution to 
this problem.62 In fact, singularly enough, exactly the case A = 61 is given as a solved 
example in the BijaGanita text of Bhaskara II. (A similar problem had earlier been sug­
gested by the 7th c. CE Brahmagupta, and Bhaskara II provides the general solution with 
his cakravdla method.63) This “coincidence” is not trivial when we consider that the solution, 
x — 1766319049, y — 226153980, involves rather large numbers, so that there is little pos­
sibility of independent rediscovery, especially in a Europe which, barely fifty years earlier, 
did not even know how to write such large numbers. This small possibility of independent 
rediscover)  ̂ is also emphasized in the fact that Fermat chose this for a challenge problem.



352 Cultural Foundations of Mathematics

This is further corroborated by the fact that it took until Euler for European mathematicians 
to find a solution to the problem.

Moreover, like many others in that age, Fermat was deeply interested in reconstructing 
ancient manuscripts. Fermat’s interest in Diophantus is particularly well known, and we have 
already seen how Bombelli remarks on Diophantus’ citations of Indian sources. Hence, it 
is rather more likely that Fermat had obtained a translation of (at least some portions) of 
Bhaskara’s text through his close Jesuit friend Jacques de Billy. Perhaps also, along with 
Bhaskara’s texts, Fermat also obtained some commentaries on Bhaskara’s work, such as 
the Kriydkramakari, which contains all relevant details relating to the calculus. Accordingly, 
Fermat’s work on calculus also originates in Indian sources, though these sources perhaps 
were, at least partly, independent of Cavalieri’s.

Pascal’s triangle, as is well known, is found in Chinese sources, and in much earlier In­
dian sources such as Pingala’s Chandahsutra, about 1800 years before Pascal. Since “Pascal’s 
triangle”, relating to the “binomial theorem”, was also known to various European math­
ematicians before him, it establishes wide access to information owing in from India and 
China.

Gregory, who worked in Padova, and does not claim originality, writes about exactly the 
series that are found in the Indian texts. Why did he make no claim to originality considering 
how bitterly Newton and Leibniz fought over the issue?

Singularly enough, not only are the infinite series the same, but even the term “indi­
visible”, used by Cavalieri, exactly re ects the terminology in the Yuktibhdsal Naiyayika-s, 
although Cavalieri obfuscates matters.

Finally, there is circumstantial evidence that other material in Indian astronomy texts was, 
in fact, continuing to be transmitted to European mathematicians like Euler wrote about the 
Indian sidereal year in an article on “Hindu astronomy”, and the “Hindu year”.64 Thus, 
Euler, as is well known, drew much inspiration from Fermat, and even solved the challenge 
problem of “Pell’s equation” naming it as such. Euler was, of course, interested in the nav­
igation problem, and was one of the recipients of the prize instituted by the British Board 
of Longitude. This suggests that Euler was familiar with the Indian sources to which Fermat 
had access.

Numerous mathematical algorithms suddenly appeared in that period in Europe, which, 
till a little while earlier, was suspicious even of algorithms for addition and multiplication! 
We have already pointed out “Stirling’s” method (Stirling was a contemporary of Newton) 
as an example.

This list can go on, but (unless one is a Western historian) it is very hard to believe that 
all these discoveries were, by a fortuitous coincidence, made independently at just the time 
when there was such splendid opportunity for their transmission, and such overwhelming 
motivation for Europeans to learn from Indian sources, along with such an active European 
effort to acquire this knowledge.

The trail left by the circumstantial evidence is summarized in Table 7.1.



1'able 7.1: The circumstantial trail.

Person Work Circumstantial evidence

Mercator ca. 
1560

Chart giving 
loxodromes as 
straight lines

1. Worked with Gemma Frisius, at Catholic University of 
Louvain. 2. Obtained projection from China, table of se­
cants from India. 3. Sources of secant values not known to 
this day—was arrested by the Inquisition. Had reason to 
hide “pagan” sources. 4. Chart required more precise se­
cant values than were then available in Europe. 5. Precision 
attributed to magical skill at draftsmanship.

Christoph 
Clavius 1582

Gregorian calendar 
reform

1. Pope stated length of year obtained from Alphonsine 
tables—but these were known from centuries earlier, from 
Toledo. 2. Tried to determine the length of the year obser- 
vationally, but failed. 3. Protestants did not accept the new 
calendar, since length of the year could not be accurately 
determined then by Europeans.

Clavius 1610 Accurate
trigonometric values

1. Sudden increase of accuracy to 8 decimal places.
2. Method not explained. 3. Same process took a thousand 
years in India. 4. Was well aware of practical importance of 
these values but did not know how to use them to fix the size 
of the globe. 5. As top Jesuit, had full access to translations 
coming in from India.

Julius Scaliger 
ca. 1570

Julian day number 
system

1. Similar to Indian ahargana system, with adjusted zero 
point. 2. No earlier background of astronomical calculations 
using this system in Europe.



Person Work

Simon Stevin 
1585

Decimal system

Roberto de 
Nobili ca. 
1610

Polemic against 
Vedanga Jyotisa (of ca.
— 1350 CE, rejected by 
Indian astronomers as 
obsolete since at least 
the 6th c. CE)

Tycho Brahe 
ca. 1585

Tychonic system

J ohannes 
Kepler ca. 
1615

Kepler’s laws, and 
super-accurate orbit 
of Mars



Table 7.1: continued

Circumstantial evidence

Proposed a revolutionary change from the existing Roman 
system of numeration.

Learnt Sanskrit and also the Veda-s falsely claiming to be 
a Brahmin (truth-seeker)! This was a pre-planned strategy 
of getting in uential higher-caste converts to Christianity. 
Shows how tenaciously Jesuits sought Indian sources like the 
Veda-s.

1. Introduced naturally by Nllakantha a century earlier.
2. Tycho had the system first, and looked for observations 
later. 3. His fame as an astronomer, and position in church 
hierarchy made him the natural person to whom new astro­
nomical books from India would have been referred.

1. Obtained access to Tycho’s papers on his death but 
fudged his observations, since his theory (very similar to 
Nllakantha’s) was more accurate than Tycho’s observations 
which he claimed to have used. 2. Was a professional as­
trologer, used to telling stories. 3. Experimented with the 
calculus in Stereometria Doliorum (1615).



Person Work

Galileo ca. 
1627

Refused to write on 
the calculus 
(presumably since he 
did not understand 
it).

Cavalieri 1632 Method of Indivisibles

Pierre Fermat 
1635

(Did not publish.)

Pascal 1635 Quadrature of higher 
order parabolas



labié 7.1: continued

Circumstantial evidence

1. Had full access to the Jesuit Collegio Romano. 2. Cavalieri 
waited five years for him to write. 3. Criticised Cavalieri’s 
approach to infinities, suggesting various paradoxes.

1. “Discovery” comes barely 50 years after first use of decimal 
notation. 2. Uses Indian techniques, but tries to provide a 
geometric explanation for them.

Challenge problem to British mathematicians was a solved 
exercise in Bhaskara II.

1. “Pascal’s” triangle known to Indian tradition as Pingala’s 
Meru Prastara from some 1800 years earlier. Also known 
to Chinese. 2. Uses the leading order expressions for



Table 7.1: continued

Person Work Circumstantial evidence

James Gregory 
1667

“Gregory” Series Did not claim originality.

Gottfried 
Leibniz ca. 
1672

“Leibniz” series 1. Newton argued that he had not understood the nature 
of the series, and had asked Gregory for details. Lack of 
understanding showed, according to Newton, that he was 
the second inventor. 2. Claimed he had looked at the work 
of Pascal. 3. Tried to put indivisibles on “sound” footing.

Isaac Newton 
ca. 1685

Sine series 1. Claimed credit for himself, mainly for Madhava’s sine se­
ries. 2. Also claimed credit for rigour, but his uxions had to 
be discarded because of their conceptual obscurity.

Leonhard 
Euler ca. 1740

Euler solver, “Pell’s” 
equation, etc.

1. Wrote an article on Indian sidereal year. 2. Published 
first European solution of Fermat’s challenge problem from 
Bhaskara, and called it “Pell’s equation”; must have had ac­
cess to Fermat’s Indian sources. 3. His ODE solver similar to 
Indian interpolation techniques. 4. Received prize for work 
on longitude. 5. His continued fraction expansion for tt sim­
ilar to Indian continued fraction expansion.
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Documentary Evidence

The documentar)' evidence from Indian sources has been fully covered in Chapter 3.
Matteo Ricci’s search for Indian calendrical sources, de Nobili’s polemics against the 

Vedãnga Jyotisa, Jesuit publications displaying their knowledge of the local language and local 
books, Euler’s article on the Indian sidereal year all provide direct documentary evidence of 
transmission.

Of course, someone might ask why Mercator, Clavius, Scaliger, Cavalieri, Galileo, Fermat, 
Pascal, Gregory, etc. did not acknowledge their pagan sources of knowledge in signed con­
fessions recorded for posterity. (Newton acknowledged the whole stream of earlier European 
sources.)

There are several reasons why it is unreasonable to expect documents from European 
sources explicitly acknowledging transmission.

First, let us recall that because claims of transmissions have been used to further racist 
history, we needed a higher standard of evidence than is common in historiography. The 
higher standard of evidence we are using here corresponds to the current legal standard 
of evidence for proof beyond reasonable doubt, adequate to convict a person of murder. 
Singularly, documentary evidence does not play such a significant role here, compared to 
the evidence of opportunity, motivation, and circumstantial evidence. The reason is sim­
ple: given that the punishment for such a crime may involve a person losing part or all of 
his life, a confession is hardly to be expected. Recognizing this natural tendency towards 
self-preservation, under the Indian legal system, signed confessions are inadmissible as le­
gal evidence, for it is naturally supposed that such confessions have been extracted under 
significant duress.

Likewise, one must recognize the natural tendency of European mathematicians towards 
self-preservation, under the circumstances of extreme religious intolerance in Europe, es­
pecially during the . As is now beginning to be pointed out even by Western scholars like 
Hobson, Europeans had so much to learn from India and China, so that if even a small 
part of it were acknowledged, there would have been a tremendous amount of documen­
tary evidence—and the great paucity of documentary acknowledgements by Europeans is 
inexplicable, except under the above hypothesis.

Although documentar)' evidence is highly valued in a scriptural tradition, as in a bureau­
cracy, it is also very easy to manipulate. False documents can easily be created, and true 
documents can be suppressed. We have seen this in the case of the remark about “Euclid” 
or the suppression of Newton’s history of the church. Further, given the differential costs 
of obtaining documentary evidence (I cannot, for instance, obtain a microfilm of Clavius’ 
trigonometric tables), many unreasonable consequences ow from this emphasis on docu­
mentar)' evidence. On the basis of the absence of documents, those who did not produce 
or maintain documents have no history. This inequitable feature of the rules of evidence
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is painfully evident in contemporary society where absence of documents is often used as 
a pretext to deprive people (like forest dwellers) of their lands, on the grounds that there 
are no documents to establish their claim to have been staying where they may have been 
staying for over a century. Once again the double standards are evident: if direct documen­
tary evidence is indeed such an essential thing, it should also be made impossible to convict 
anyone of theft or murder, until there is a signed confession to that effect. On the other 
hand, Indian law has rightly made such confessions legally inadmissible—recognizing also 
how easy it is to manipulate documentary evidence.

Next, the social value of priority in the West is manifest, and this value certainly existed 
also at that time—Newton, for instance, threatened to stop publication of his Principia to es­
tablish his priority over Hooke, whereas Gavalieri waited live years for Galileo to publish on 
the calculus. Further, we have seen how the Doctrine of Christian Discovery mandated that 
this priority should be assigned to a Christian—like the “discovery” of America by Colum­
bus. Under these circumstances, Europeans saw it as personally advantageous, consonant 
with prevailing social practices—and even morally correct—to not acknowledge their “pa­
gan” sources.

Next, to expose the duplicity of standards underlying the demand for documentary evi­
dence, in such a situation of copying without acknowledgement, it is interesting to speculate 
what would happen if every recent publication (by prominent Westerners) were to be copied 
(non-verbatim) by others claiming to have independently rediscovered it, and shifting the 
onus of providing documentary evidence on those who claim that it was copied. To refute 
the claim of independent rediscovery, one would need to produce a document to establish 
that the person concerned had actually seen the work in question. There seems little reason 
why prominent Westerners should enjoy a monopoly on this strange rule of evidence, the 
privilege of which should be extended to all and sundry—and especially to thousands of re­
searchers struggling in India and China without adequate libraries. There is not the slightest 
doubt that, if the work of prominent Westerners were to be systematically “independently 
rediscovered” in this way, there would be an outcry, and the “independent rediscoverers” 
would be branded as plagiarists without further ado, brushing aside as unreasonable the de­
mand for the above kind of documentary7 evidence! The demand for documentary' evidence 
varies with the direction of transmission.

Finally, this process of appropriating “pagan” knowledge to the West was assisted by dis­
honest European historians who rushed to give credit for any discovery to the first European 
or Christian name they could attach to it. For example, current histories associate trigonom­
etry7 not with Ãryabhata but with Regiomontanus who comes some thousand years later, and 
obviously got his information from Arab sources. Such a piece of false history', once artic­
ulated, can quickly be made persistent—and this process of falsifying history continues to 
this day. (For an ironic contemporary example, see Appendix 7.A; for the theory of this 
racist history, see the previous chapter.) Over centuries, documents repeating the falsehood
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accumulate. Note that, in this same racist history, a document from the 13th c. CE is treated 
as valid documentar)' evidence of Archimedes’ work from the —3rd c. CE. Going by this es­
tablished historical norm of documentary evidence, there is still a lot of time left to build up 
the necessary documentary evidence!

In general, it is possible to defend untruth by seeking to sharpen the standards of evi­
dence in an unreasonable way. For example, someone caught copying in an examination 
might insist on the evidence of video footage (knowing that no cameras were installed in 
the examination hall). We have, however, seen that it is possible to sharpen the standards of 
evidence in another way, which bypasses the demand for this particular (documentary) type 
of evidence. So let us move on to other means of eliciting the truth.

VI
THE EPISTEMOLOGICAL DISCONTINUELY

The epistemological evidence consists of two parts. If two students come up with identical 
(or very similar) answer sheets, then the way to determine whether one has copied is to test 
understanding, by means of an oral viva voce, or refer to the past background. The princi­
ples here are the following. First, an oral test is superior to a document as a means to test 
understanding. Second, one who writes without understanding is one who is articulating 
another’s thoughts. The third principle is that if someone has a background of poor per­
formance (in the immediate rather than remote past), and suddenly starts performing well 
by saying roughly the same thing as another with a long background of good performance, 
then an explanation is required.

While the calculus had a long and continuous past background in India, this background 
is missing in Europe, where the calculus appears suddenly. (Even if we grant the fairy tales 
about Archimedes, there is no development worthy of note between Archimedes and the 
16th c.)

Secondly, compared to the clear and comprehensive understanding of the calculus in 
India, Europeans had difficulty in understanding it. These difficulties about the calculus 
persisted for nearly three centuries after its first appearance in Europe. It is understand­
able that new ideas are often not immediately accepted, but it is another matter that those 
proposing the new ideas are themselves not clear about what they are saying. Moreover, the 
persistence of this state of affairs for so long a period as three centuries requires a separate 
explanation.

Why was the new knowledge not immediately accepted? That the calculus was transmitted 
like the algorismus enables an immediate answer to this question. The difficulties about “in­
divisibles”, “ uxions”, and “infinitesimals”, that plagued the understanding of the calculus 
in Europe for centuries, can be understood as analogous to the difficulties with zero.
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The calculus, being imported like the algorismus, involved a different kind of mathe­
matics. Hence, it involved epistemological differences, right at the outset, as evinced by 
Descartes’ difficulty. Indian geometry naturally considered curved lines since it used a ex- 
ible rope (rather than a rigid ruler) for measurement. Hence, there were was complete 
conceptual clarity about the meaning of the length or circumference of a circle. Simply lay 
the rope along the line, and measure it, as one would measure a straight line. European 
geometry, however, was based on the straight line and the straight edge. As we saw in Chap­
ter 1, many Europeans doubted whether measuring the length of even a straight line was 
part of geometry: and these beliefs decisively in uenced Hilbert’s synthetic interpretation 
of the Elements which disallows measurement (and which interpretation became part of the 
school curriculum). While Descartes championed metric geometry, he believed that only 
straight lines could be measured, and hence stated in his La Geometrie that calculating the 
length of a curved arc was “beyond the capacity of the human mind”. Descartes incorrectly 
presupposed that measurement necessarily involved a rigid rod. With this presupposition 
measuring the length of a straight line made sense; but measuring the length of a curved 
line was visualized as a process whereby the curved line was broken into an infinity of infin­
itesimal parts. Because Descartes’ understood mathematics as perfect each part had to be 
infinitesimally small for it to be measurable by means of a straight rod. Consequently there 
had to be an infinite number of such parts to be measured and the result summed. Hence, 
Descartes thought, like Galileo, that this process of measuring the length of curved lines 
involved infinity which was beyond the grasp of the human mind. Presumably Descartes’ 
statement expressed also his opinion about the techniques in Indian texts then being used 
by his contemporaries Fermat and Pascal, without naming them.

Clearly, the epistemologically new features of the calculus especially disturbed minds ac­
customed to anti-empirical ways of doing mathematics. The present-day classification of 
“pre-calculus” and “calculus” by historians of mathematics60 is just another indication of 
the persistent nature of those epistemological difficulties. There is no way to comprehend 
this classification, since there was no clear epistemological advance until Dedekind, and all 
that happened was that Newton and Leibniz conferred a certain social respectability on the 
calculus, which had been denied to it under the in uence of Galileo and Descartes.

An analogous epistemological discontinuity had occurred earlier in Europe in relation 
to the algorismus. The suspicion then centred around zero, and the technique of zeroing 
the non-representable. Because of these suspicions, it took Europe some five centuries to 
assimilate the algorismus. Therefore, it is not hard to understand that the techniques of 
the infinitesimal calculus were viewed with great suspicion, and it took over three centuries 
for these techniques to be accepted as valid mathematics, after the formalisation of the real 
number system and mathematical analysis in the 19th/20th c. CE. This issue is taken up in 
the subsequent chapters.
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A key point to note is that people do not simply grab any foreign piece of knowledge, even 
when it is of tremendous practical importance, especially when it con icts with an established 
tradition. Hence, Europeans, accustomed to geometric techniques of navigation, did not 
shift immediately to a technique of navigation based on mental calculation, but waited for 
a couple of centuries, for the development of the chronometer, an appliance that could be 
mechanically used without application of the mind. Calculations are, likewise, used today, 
now that calculations can be performed mechanically, without application of the mind!
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APPENDIX 7.A
THE TRANSMISSION OF THE TRANSMISSION THESIS

The manner in which history has been written, and still continues to be written, was brought 
home to me in a rather personal way in the course of writing this book. It would not be 
appropriate to discuss all aspects of the matter at this stage and in this book—some details 
have already appeared prominently in newspapers, which can be pursued by those inter­
ested. However, given the striking parallels between the transmission of the calculus and 
the transmission of the transmission thesis, a few facts can certainly be very brie y recapitu­
lated here to illustrate in a striking way the point of the preceding principles of evidence in 
historiography.

In 2001 a paper appeared in a little known journal on the subject of the transmission 
of the calculus from India to Europe.

The trio of authors cited several of my papers; however, they did not cite some key 
papers, important ideas from which were used in their publication in a significant way, 
and to which papers of mine the authors undoubtedly and undeniably had access. (See 
below.)

Sometime around 2003 an essay by a student appeared on a well-known website 
(McAndrews) on the history of mathematics. The essay gave the entire credit to the 
trio for various ideas related to the alternative epistemology and transmission of the 
calculus, without once mentioning my name. (The misleading nature of the article 
was, subsequently, brought to the attention of the student, as also those responsible 
for maintaining the website, but they refused to withdraw it. A physically or digitally 
signed statement of such refusal was also refused. Nor did they subsequently make it 
historically more accurate.)

In 2003 the above paper and student essay were brought to my notice, through a 
column and letter written by Subhash Kak, which sought to publicize this student essay 
and what he mistakenly called the work of “three British mathematicians”. (None of 
the three was either a British national or a mathematician, though they were Christians 
of various denominations—Roman Catholic, of Portuguese descent, Syrian Christian, 
etc. None of the trio has a doctorate degree in mathematics—one has no doctorate 
degree, while the other two have doctorates in physics and Greek classics respectively.)

In the case of the calculus, the principle of epistemological continuity was used above, by 
pointing out the thousand year old background of the calculus in India compared to its sud­
den appearance in Europe. Analogously, by 1998, I had already done enough preparatory 
work in connection with the transmission thesis to obtain a project from the Indian National
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Science Academy (INSA), on “Madhava and the Origin of the Differential Calculus”. A po­
sition for a research associate in this project was advertised on 18 July 1998, and appeared 
in the Historia Matematica website (http://sunsite.utk.edU/math_archives/.http/hypermail/ 
historia/jul98/0067.html) as follows.

Wanted: Research Associate in the History of Mathematics

This is a unique opportunity to work in a high-profile area for the project

Madhava and the Origin of the Differential Calculus,

sponsored by the Indian National Science Academy, coordinated by C. K. Raju.
The project seeks to revise the current history of the calculus. It will focus on 
early developments in the calculus 1400-1720, and will cover all aspects of the 
Madhava/Gregory/Taylor series expansions, and its transmission from the Mal­
abar coast to Europe, especially through manuscripts of Jyeshthadeva’s Yuktib- 
hasha... the work will involve a close comparison of the contents of these manu­
scripts with some of the work of Kepler, Cavalieri, Fermat, Pascal, Wallis, Gregory, 
Newton, Leibniz and Taylor.

Next let us look at the question of opportunity. Following the above advertisement, one 
of the trio of authors was selected for this INSA project as a Research Associate. To cut a long 
story short, in 2000 he was asked to resign on ethical grounds, and did so retrospectively, 
but failed to return a variety of source materials. This failure to return source materials 
was acknowledged. Shortly before the trio’s paper was submitted, in Feb 2001, in a signed 
handwritten statement, setting out an unconditional apology, on 8 November 2000, one 
of the trio of authors, J .  K. John, promised to return all the source materials of the INSA 
project still in his possession, and thereaf ter did return some of them, though not all.

After the appearance of the above advertisement, another member of the trio, D. F. 
Almeida, visited me, and a collaboration was set up. In 1999, shortly after the process of 
writing this book was formally initiated, I visited the School of Education, University of Ex­
eter, where Almeida was based, and gave a talk there, on epistemological issues, based on 
a paper on “Mathematics and Culture” that was subsequently reproduced in Philosophy of 
Mathematics Education (http://www.people.ex.ac.uk/PErnest/pomell/artl8.htm. The Uni­
versity of Exeter subsequently funded my brief visit to Rome, along with a translator, for 
collection of source materials. The result of this collaboration was to be jointly reported in 
the paper on transmission of the calculus66 to be presented at a conference in Trivandrum 
in Jan 2000. (This is one of the papers not cited by the trio; at the suggestion of one of the 
organizers of the conference, G. G. Joseph, the paper was split into two parts, to provide 
more time for presentation.)

However, I was suddenly invited to the 8th East West conference in Hawai’i, with over­
lapping dates, in Jan 2000. It was agreed that I would go to Hawai’i, while Almeida would

http://sunsite.utk.edU/math_archives/.http/hypermail/
http://www.people.ex.ac.uk/PErnest/pomell/artl8.htm
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present the paper in Trivandrum. Almeida, being in the School of Education, felt that this 
invitation for a plenary talk in an international conference, that too in a session related to 
technolog)’ and education, would greatly add to the credibility of these ideas with his col­
leagues, and was very particular that I should send him a copy of the paper,67 when I last met 
him in Goa in Dec 1999. (This Hawai’i paper is the other key paper not cited by the trio.) At 
that time, Almeida also formally agreed to be co-author of a chapter in this book, originally 
conceived as a series of essays by different authors. Later he asked for the revised copy of 
the paper in connection with a bid for funds from the Leverhulme trust, a bid in which G. 
G. Joseph, then a Reader in Economics at the University of Manchester, was invited to join, 
on the grounds that a British citizen was required to obtain this funding, and he also had 
some popular writings on the history of mathematics. At this stage the collaboration was 
terminated, due to disagreements, and I pointed out that it would be unethical for others to 
continue pursuing these ideas without my participation.

Finally, my Bangalore talk on the transmission of the calculus,68 in Dec 2000, happened 
to be in a session chaired by G. G. Joseph, who naturally had a copy of the detailed abstract, 
and was at that time giving the School of Education of the University of Exeter as one of 
his affiliations, and was obviously associated with at least one member of the trio, though 
he, himself, was not a signatory to the trio’s paper submitted subsequently on 22 February 
2001—it is not necessary to go here into what transpired in Bangalore.

It would not be appropriate to discuss motivation etc. in the context of this book, although 
I have discussed it elsewhere, for instance in my formal complaint to the University of Exeter.

Finally, there is the principle of epistemological discontinuity which can be very well illus­
trated in the context. The principle is very simple. Those who copy without acknowledge­
ment, also very often copy without adequate understanding. Therefore, lack of understand­
ing is a good indication of lack of originality.

This lack of understanding is barely illustrated here using a couple of the more obvious 
howlers in the trio’s paper.

The authors state69 (p. 87)

latitude was determined in the northern hemisphere by measuring the polar star 
declination (the angle of the pole star)—latitude was approximately equal to the 
altitude of the pole star. [Emphasis added]

As the deliciously vague phrase “angle of the pole star” suggests, there is a confusion here 
between the two angles: DECLINATION and ALTITUDE. The meaning of the sentence is 
quite unambiguous: the authors intend that the declination of the pole star is to he mea­
sured, and the altitude is presumably to be calculated!

This, of course, defeats a key aspect of the novel76 thesis that was advanced above: namely 
that Jesuits searched for calendrical manuals in India because Europe then needed a good 
calendar for navigation. Why was a good calendar needed for navigation? According to



How and Why the Calculus was Imported into Europe 365

my novel thesis, a good calendar was needed just because there was no easy way to measure 
declination at sea, but the (solar) declination could be easily estimated using a calendar, 
provided the calendar correctly fixed the day of the equinox. So if declination could have 
been measured so easily and directly at sea in the 16th c. CE, there would hardly have been 
any European need for a good calendar!

That this is no typo, but involves a conceptual confusion, is clear in the next howler, when 
the trio subsequently speak of

measuring the solar declination at noon and then looking up tables correlated 
with the calendar. [Emphasis added]

Since, according to the repeated claim made by the authors, the solar declination could be 
directly measured at sea, and since it is the case that altitude could easily be observed with 
a simple instrument like a cross-staff (or kamdl), latitude could be readily calculated, using 
the Laghu Bhaskariya formula. So what on earth was a “table correlated with the calendar” 
needed for? lb  help the navigator determine the date, perhaps!

That this is no typo, but a conceptual confusion, is proved beyond all reasonable doubt, 
when the authors repeat the same thing a third time, on the next page:

observations of solar declination or pole star.. . .  [Emphasis added]

ft was, 1 believe, an established principle in Europe since the 17th c. CE to “booby trap” a 
mathematical table by deliberately injecting errors in it, just as some computer programmers 
(like me) have been known to booby trap source code (when compelled to disclose it against 
their wishes to persons whose credentials are not established) by deliberately injecting bugs 
in it. The source of these errors can be found in the first part of the Trivandrum paper NOT 
cited by the trio, which makes the same mistake, on p. 6:

The widely distributed Laghu Bhaskariya (abridged works of Bhaskara) and Malm 
Bhaskariya (extensive works of Bhaskara) of the first Bhaskara (629 CE) explicitly 
detailed methods of determining the local latitude and longitude, using observa­
tions of solar declination or pole star, and simple instruments like the gnomon, 
and the clepsydra. Since local latitude could easily be determined from solar dec­
lination by day and e.g. pole star altitude at night (using an instrument like the 
kamal) an accurate sine table was just what was required__ [Emphasis added]

Since the objective here is only to illustrate the principles of evidence used to establish 
transmission, we take up just one more example to demonstrate the consequences of con­
ceptual confusion regarding key aspects of the transmission thesis closely related to my other 
key (Hawai’i) paper that is also not cited by the trio. This involves a somewhat subtler point.
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In the abstract of that paper, “Computers, mathematics education, and the alternative epis­
temology of the calculus in the Yuktibhasa”, presented before a large number of scholars at 
Hawai’i, I had argued as follows:

Current (formal) mathematics, being socially constructed, may change with tech­
nology__ Computers also use a different notion of number’: unlike luring ma­
chines, computers necessarily use oating point numbers, fundamentally differ­
ent from real numbers on which mathematical analysis is currently based. An 
alternative pedagogy and epistemology' of the calculus, bypassing real numbers 
is thus needed. A suitable alternative epistemology is found in the c. 1530 CE 
YuktiBhasa of Jyeshthadeva... Given the practical uses of computer simulation 
and the consequent social pressure to teach a changed notion of number’ can 
the incompatible epistemologies of mathematics be reconciled?

Or even more succinctly, as stated in the four-line abstract of the paper for the table of 
contents of Philosophy East and West:

Current formal mathematics, being divorced from the empirical, is entirely a 
social construct... Computer technology, by enhancing the ability to calculate, 
has put pressure on this social construct----

The paper pointed out the representation of real numbers involves a supertask not nec­
essary for practical purposes.

For practical purposes, no supertask is necessary; the representation of numbers 
on a computer is satisfactory for mathematics-as-calculation, but it is unsatis­
factory or “approximate” or “erroneous” from the standpoint of mathematics- 
as-proof. Indian mathematics, which dealt with “real numbers” from the very 
beginning (s/2 finds a place in the sulba sutras), does not represent numbers by 
assuming that such supertasks can be performed, any more than it represents a 
line as lacking any breadth, for the goals of mathematics in the Indian tradition 
were practical not spiritual. The Indian tradition of mathematics worked with 
a finite set of numbers, similar to the numbers available on a computer, and 
similarly adequate for practical purposes. Excessively large numbers, like an ex­
cessively large number of decimal places after the decimal point, were of little 
practical interest. Exactly what constitutes “excessively large” is naturally to be 
decided by the practical problem at hand so that no universal or uniform rule is 
appropriate for it. [p. 340, emphasis added]71

The trio seize without acknowledgement this thesis that I had presented a year earlier in 
Hawai’i:
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we believe that mathematics is a social construct that alters with changing tech­
nology and that the current revolution in information technolog)' will induce 
changes in mathematics__ (p. 96)

Mow is this to be linked to Indian mathematics? They take off:

we re-iterate that oating point numbers were used by the Kerala mathemati­
cians__ (p. 96)

Note that the thesis has been slightly changed: the term similar has been dropped, chang­
ing the thesis from analogy to identity, and the term Indian mathematics has been replaced 
by “Kerala mathematicians”. Note also how these slight changes have oversimplified the 
thesis, laying it open to all sorts of doubts. (Where did Kerala mathematicians use the con­
cepts of non-normal numbers and gradual under ow that one associates with oating point 
numbers?/2 Why only mathematicians confined to Kerala? Did they use numbers in a way 
different from other Indian mathematicians? What are the sources for this belief about use 
of numbers? etc.)

Through this oversimplification, the trio betray their lack of acquaintance with the phi­
losophy of number underlying Indian mathematics. The problem with this is, as Nagarjuna 
remarks, a half-understood concept of siinya can be as fatal as a snake grasped wrongly— 
even slightly wrongly. This lack of understanding proves fatal to the trio’s thesis as follows. 
Not cjuite understanding the Indian philosophy underlying the use of number, the trio of 
authors revert to a seemingly safe and conventional Western position (p. 96):

We accept that mathematical analysis is based on the complete real number sys­
tem needed for the existence of limits and that limiting processes can never be 
accomplished [sic] by a computer which uses a oating point number system.

However, this sudden reversion introduces a clash of epistemologies which stalls the orig­
inal thesis in mid air, resulting in the inevitable crash. For, what after all is the use oflndian 
mathematics in the context? The trio continues

we believe that a study of Keralese calculus will provide insights into computer-
assisted teaching strategies for introducing concepts in mathematical analysis__
[p. 96, emphasis mine]

But how on earth can oating point numbers be used to motivate or teach formal real 
numbers? That amounts to putting the cart before the horse! And even supposing that 

oating point numbers (and concepts like non-normal numbers) can somehow be used to 
motivate formal real numbers, why not simply use computers for this purpose? Thus, it 
seems cjuite obvious to me that the task of comjjuter-aided mathematics teaching can be
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performed perfectly well by software like my CALCODE (Calculator for Ordinary Differential 
Equations, which was purchased by the University of Exeter), especially since the ultimate 
object is to teach mathematical analysis! So, why bring in “Kerala mathematics” at all? Of 
course, the easiest way to understand the origin of these insoluble problems is to suppose 
that these problems have arisen from the oversimplification of a complex thesis, used with­
out acknowledgement.73

The more important point here is to observe how the attempt to bring a novel thesis 
into a conventional epistemic fold so quickly makes it meaningless. This is exactly what 
happened also in the case of the calculus when it came to Europe with an epistemology of 
mathematics and number, that was incompatible with the European perspective into which 
it was forced to lit.
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made in the contemporary case. Again contemporary events provide a wealth of detail not available about 
the past. For example, in the context of the earlier assertion of how European historians compounded 
the systematic denial of credit to “pagan” sources, it is worth observing how well this is illustrated by the 
work of the student historian Ian Pierce where even the slight acknowledgement to me in his sources 
disappears! Finally, it is also worth observing that the episode also illustrates how historical authority has 
been systematically misutilized to hang on to an historical account known to be incorrect, by refusing to 
withdraw or amend it—thus deliberately propagating a false account of history. There was a time when 
this was not the laughing matter it is today!
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C H A P T E R  8

Number Representations in Calculus, 
Algorismus, and Computers

Sunyavada vs formalism

A wrongly perceived notion of sunya ruins a person of mea­
gre intelligence. It is like a snake that is wrongly grasped or 
knowledge that is wrongly cultivated.

Nagarjuna 
MCdaviadhyainakakarika 24.111

OVERVIEW

T u t issue of transmission does not end with the receipt of the calculus in Europe.
Because of the epistemological differences between Indian and European mathe­
matics, actual assimilation of the calculus took a long time. It is worthwhile trying 

to understand this assimilation process, since this sheds light on the historical as well as 
the contemporary mathematical situation, and since such a task seems never before to have 
been attempted by historians of mathematics, who have not acknowledged or understood 
the historical existence of epistemological differences within mathematics.

There were great difficulties in understanding the calculus, within the frame of European 
mathematics, because Europe accepted the practical value of the Indian method of calcu­
lation, without accepting the accompanying method of proof, or even the accompanying 
notion of number, involving the idea of zeroing non-representables—an idea used also in 
present-day computation, and still regarded as an “error”. Hence, the eventual assimilation 
of the calculus within formal mathematics required the formalisation of ideal “real” numbers 
using set theory7 (as in Dedekind’s theory of cuts) and the formalisation of set theory in the
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1930’s. In viewing retrospectively the Indian infinite series through the filters of present-day 
mathematical analysis, we need to recognize that though a concept of real number (partic­
ularly irrationals like s/2) was in use in India since the days of the sulba, sutra, there was 
a difference—because of the difference in mathematical orientation, the absence of super­
tasks, and the explicit acceptance of the non-representable (which we call sunya, not to be 
confounded with zero).

A similar problem arose in the algorismus, where non-representables (sunya) could be ze­
roed, as in Indian tradition. This was a source of great confusion for several centuries after 
the algorismus first began to be imported into Europe, starting with Gerbert, later Pope 
Sylvester II (d. 1003 CE). The tradition was pushed into Europe by Florentine merchants 
who could see the clear practical value of the algorismus (over abacus) for commerce. These 
merchants were not much concerned about finer epistemological issues, and treated the al­
gorismus as something of a trade secret. As in the case of the calculus, practical value forced 
an epistemological transformation in the notion of number—unlike the numbers used in 
the abacus, the numbers used in the algorismus could no longer be literally held in the 
hand. Also, with numbers on the abacus, difficulties in representation were confined to large 
numbers (which difficulties could hence be ignored); however, the arithmetical operations 
of the algorismus gave rise to numbers, such as s/2 which could not be accurately repre­
sented. Though algorismus triumphed over abacus, the abacus tradition itself lingered in 
Europe, for uses of the “exchequer”, until it ended dramatically with the burning down of 
tally sticks leading to the burning down of the British Parliament. The confusion regarding 
non-representables also lingered; it persists to this date and can be traced even in the way 
zero is handled in recent computer languages such as Java.

Formal real numbers (or even integers) cannot be used with present-day calculus-related 
computations on computers, which use oating point numbers (and ints) instead, since no 
computer will ever be able to perform the supertasks that Platonic mathematicians take as 
the basis of reality. Floating point numbers do not obey the algebraic rules (“laws”) that 
real numbers do (e.g. the “associative law” does not apply). The difference between ideal 
real numbers, and oating point numbers becomes apparent exactly in the matter of non- 
representables. The manner in which non-representables are handled with oating point 
numbers on a computer is however distinct from the manner in which they were handled in 
Indian tradition or algorismus—a machine necessarily requires a mechanical rule, which was 
not the case in Indian tradition, which supposed the calculations to be done by an intelligent 
human being, who could handle exceptions intelligently.

Finally, because of the European understanding of mathematics as necessarily idealistic, 
the use of non-representable, as made evident in computer-based calculation, is seen as 
erroneous, so that the epistemological validity of a computation always is suspect. Thus, as 
in the earlier cases of algorismus and calculus, the same problem of practical value versus 
epistemological difficulty has arisen also in the case of computers, suggesting that a further
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transformation of the notion of number is required. This has serious implications for the 
future understanding of science, given the increasing role of computer-based calculation in 
scientific research.

As already argued earlier, there is no great virtue to the current notion of mathematical 
proof—except that it is tied to a particular brand of theology. Under these circumstances 
it is more appropriate to shift to the view of mathematics-as-calculation (as distinct from 
mathematics-as-proof). To enable such a shift it is necessary to review the use of (a) oating 
point numbers (in place of formal reals), and (b) non-representables (in place of infinitesi­
mals) as providing an alternative basis to the calculus, a basis distinct from the basis provided 
by formal real numbers (or non-standard analysis).

To this end, I suggest that Western philosophy is impoverished by having solely an ide­
alist approach to mathematics. Nagarjuna’s sunyavada rejects idealism as erroneous, and 
acknowledges the reality of non-representability. I propose this as an alternative to the for­
malist philosophy of mathematics.

I
INTRODUCTION

From all lines of evidence presented so far, it is clear that the calculus was transmitted from 
India to Europe in connection with the European navigational problem, and specifically the 
problem of the determination of the three “ells”: latitude, longitude, and loxodromes.

On the other hand, it is also quite clear that mathematics is not universal, and that there 
were fundamental differences in the Indian and European understanding of mathematics. 
Therefore, it is quite natural that the calculus was initially received in Europe with great 
suspicion, and not regarded as mathematics at all.

The tremendous practical value of the calculus was, however, manifest. Regardless of its 
theoretical acceptability among European mathematicians, the undeniable fact was that the 
series expansion method gave very precise trigonometric values, and the undeniable fact 
was that these trigonometric values could be used to great advantage in the very practical 
and important problem of navigation. This was especially true of the European method of 
navigating by dead reckoning, which required loxodromes, calculating which was a problem 
equivalent to the fundamental theorem of calculus.

The tension between the obvious practical value of the calculus to Europe, and its philo­
sophical unacceptability in Europe, was closely analogous to the present-day tension between 
the practical utility of numerical simulation on a computer, and the theoretical belief among 
present-day mathematicians that such numerical simulation is epistemologically inferior, 
hence less reliable than mathematically proven theorems. Numerical simulation of the stock 
market using, say, stochastic differential equations driven by LeVy motion,2 may help one
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to make a lot of money, but no formal mathematician will accept the simulated solutions as 
reliable in the absence of a formal mathematical proof that such equations admit solutions.

Historically, the tension between the obvious practical value of the calculus to Europe 
and its philosophical unacceptability in Europe led to a transformation of the basis of the 
calculus. This process went through various stages.

In the first stage, within about a century of its import in Europe, Newton’s way of us­
ing the calculus in his Principia had made it socially acceptable. Social acceptability comes 
from agreement with the prevailing social prejudices. The Yuktibhãsã treatment related the 
mathematics of series expansion to the physical belief in atoms, but it would have aroused 
horror in Europe for basing mathematics on physics—that too the physics of atoms champi­
oned by that political unworthy Democritus! Cavalieri was criticised by Guldin3 on exactly 
this ground that his indivisibles, like Kepler’s, were really atoms of some sort, and he was 
called a “land surveyor rather than a geometer”. On the other hand, Newton’s use of ux- 
ions also related the mathematics of series expansions to physics, but it aroused widespread 
social approval for it sought to base physics on mathematics—a procedure which is, till to­
day, regarded as entirely appropriate in the West. The presentation in Newton’s Principia 
Mathematica is modelled on the presentation in “Euclid”, and as the word “ uxion” suggests, 
Newton did not deviate from the “Aristotelian orthodoxy” of the belief in the continuum.

Despite the social acceptability, the epistemological unacceptability of uxions and in­
finitesimals persisted among mathematicians and philosophers. A detailed historical study 
of the epistemological reception of the calculus in Europe, from the angle of contrasting 
epistemologies, would be a matter of great interest.4 Such a detailed study, however, would 
be beyond the scope of the present book. We brie y review some of the highlights in the 
section below.

It is, however, entirely appropriate to take a look at the contemporary consequences of 
this clash of epistemologies. As is well known, the eventual epistemological acceptance of 
the calculus in Europe required a transformation of the number system.

II
THE RECEPTION OF THE CALCULUS IN EUROPE 

Berkeley s Criticism

The attempt to absorb the Indian series using Kepler’s or Cavalieri’s notion of indivisible, 
then Newton’s notion of uxion or Leibniz’s notion of “difference”, or infinitesimal, led 
to great conceptual confusion in Europe. A quick overview of the con ict regarding the 
reception of the calculus in Europe provides some useful insights.

The first thing to notice is that infinite series were perceived differently in India and 
Europe. Where Indian mathematics aimed to use the series for practical computation, Euro­
pean mathematicians (who also had the same aim) also sought to relate the infinite series to
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the imagined perfection of mathematics in Platonic idealism. Newton’s own account of the 
difference between his uxions and Cavalieri’s indivisibles or Leibniz’s “difference” claims 
exactly this “perfection”.0 'Phis attempt to claim “perfection” for something intended to be 
practical and useful was the genesis of all the confusion.

In India, infinite series were used to calculate reliable and accurate numerical values. As 
we have seen, there was valid pramdna for the Indian infinite series. The way the sum of an 
infinite series was defined, in practice it required only a finite task, analogous to summing 
an indefinite series, since it recjuired the sum of only a finite number of terms together with 
the calculation of a correction or exceptional term. Hence, in Indian tradition infinite series 
were handled smoothly, and there were no paradoxes of the infinite.

However, the Europeans (in the time of Newton and Leibniz) had a rigid rule-based 
approach to infinite series; hence they neglected the exceptional term and its significance, 
and regarded the series as extending to an infinite number of terms. Summing the series 
was seen to require a supertask of summing an infinite number of terms, since the notion 
of mathematics as being “perfect” recjuired that even the smallest cjuantity could not be 
neglected. This naturally led to the question of what exactly the sum of an infinite number of 
terms was, and how the sum was to be carried out. T his entailed all the associated paradoxes 
of the infinite, from Galileo, Descartes and onwards. It should be observed that 17th and 
18th c. European mathematicians did NOT think that this infinite sum had no intrinsic 
meaning; they did not think that the meaning assigned to the sum was just a matter of 
definition, and they did not proceed to define the sum in an arbitrary way. Rather, they 
thought an infinite sum had an intrinsic meaning; while some thought this meaning to be 
beyond the grasp of the human mind, others claimed to have found that intrinsic meaning, 
and to have given a rigorous formulation to it.

By hindsight, the definition of the sum of an infinite series, from this idealist viewpoint, 
recjuired some clear notion of “limit”, and a satisfactory notion of “limit” had to await the 
idealization of the real number system, which took around two centuries after Newton’s 
alleged discovery of the calculus.

In the meanwhile, Cavalieri’s indivisibles, Newton’s notion of uxions, and Leibniz’s no­
tion of differences caused enormous confusion. For our jmrposes it suffices to jtoint out that 
this confusion jjersisted long after these worthies, and is manifest in Berkeley’s criticism of 
Newton and Leibniz. Berkeley’s criticism was jnerhaps motivated by an awareness of New­
ton’s real religious views which were so vehemently against the church. (These little known 
views surfaced brie y, shortly after Newton’s death.) Irrespective of his motivation, Berke­
ley’s criticism was devastating. Berkeley6 had a variety of objections. First, he objected to 
the method of derivation, in which one first sujqjosed an infinitesimal increment, and then 
suj^posed the increment to vanish. Llis argument was that if one supjxtsed it to vanish, this 
contradicted the earlier suj^position, and so one ought to begin de novo, in which case the 
required result could not jDossibly be obtained, for there would be no increment. On the



380 Cultural Foundations of Mathematics

other hand, he pointed out that from a pair of contradictory assumptions, any conclusion 
whatsoever could be drawn.

He pointed out that the infinitesimals could neither be finite quantities (for that would 
destroy the alleged perfection of the theory), nor could they be infinitely small quantities 
(since they could then be neglected without fear of error), nor could they even be zero (for 
all the derivations would then fail). Finally, he pointed out that mathematicians of his time 
were unable to pin down the nature of infinitesimals which always disappeared from the final 
result. This led to his famous polemic:

And what are these same evanescent Increments? They are neither finite Quan­
tities nor Quantities infinitely small, nor yet nothing. May we not call them the 
Ghosts of departed Quantities?/

It is evident that Berkeley had accurately spotted the difficulties that arise in the tran­
sition from numbers according to a realistic philosophy such as sunyavada (which explicitly 
recognizes the existence of non-representables) to numbers according to an idealist philos­
ophy (which denies the existence of non-representables, in assuming that everything has an 
ideal representation).

Berkeley pointed to the difficulty in conceiving of infinitesimals, and how this difficulty 
was exacerbated by trying to conceive of infinitesimal parts of infinitesimals—i.e. of infinites­
imals of the second order, and of infinitesimals of various higher orders—“so that according 
to them an inch does not barely contain an infinite number of parts, but an infinity of an 
infinity of an infinity ad infinitum of parts.” These difficulties originated with the assumed 
perfection of mathematics:

It is said, that the minutest Errors are not to be neglected in Mathematics: that 
the Fluxions are... not proportional to the finite Increments though ever so 
small; but only to ... nascent Increments.. .And... there be other Fluxions, which 
Fluxions of Fluxions are called second Fluxions. And the Fluxions of these sec­
ond Fluxions are called third Fluxions: and so on, fourth, fifth, sixth, 8cc. ad in­
finitum. Now as our Sense is strained and puzzled with the perception of Objects 
extremely minute, even so the Imagination, which Faculty derives from Sense, 
is very much strained and puzzled to frame clear Ideas of the least Particles of 
time, or the least Increments generated therein... And it seems... to ... exceed, if 
I mistake not, all Humane Understanding. The further the Mind analyseth and 
pursueth these fugitive Ideas, the more it is lost and bewildered; the Objects, at 
first eeting and minute, soon vanishing out of sight. Certainly in any Sense a 
second or third Fluxion seems an obscure Mystery. The incipient Celerity of an 
incipient Celerity, the nascent Augment of a nascent Augment, i.e. of a thing
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which hath no Magnitude: lake it in which light you please, the clear Concep­
tion of it will, if I mistake not, be found impossible... And if a second Fluxion be 
inconceivable, what are we to think of third, fourth, fifth Fluxions, and so onward 
without end?

V. .. .1 ’hey suppose finite Quantities to consist of Parts infinitely little... Now to 
conceive a Quantity infinitely small, that is, infinitely less than any sensible or 
imaginable Quantity, or any the least finite Magnitude, is, I confess, above my 
Capacity. But to conceive a Part of such inf initely small Quantity, that shall be still 
infinitely less than it, and consequently though multiply’d infinitely shall never 
equal the minutest finite Quantity, is, I suspect, an infinite Difficulty to any Man 
whatsoever; and will be allowed such by those who candidly say what they think; 
provided they really think and re ect, and do not take things upon trust.8

On the other hand, if one conceives of only the first uxions, as certain mathematicians 
then favoured, why not the second, the third, and fourth, and so on?

Curiously, a key point of Berkeley’s criticism seems to have been overlooked by historians 
of mathematics so far: Newtons uxions and Leibnizs infinitesimals were anti-atomic. In the 
Indian tradition, the subdivision of an inch stopped when one reached atomic dimensions; 
we have seen how this was used in the course of the derivation of the sine series; but this 
belief in atomicity did not fit well with the then-prevalent Western theology'—and atomistic 
implications were rejected by the “Aristotelian orthodoxy”.9 Guldin contemptuously called 
Cavalieri a “land-surveyor” rather than a geometer just because of his own smug belief in 
the superiority of metaphysics over physics. While social desirability compelled the use of a 
continuum, the West then lacked a clear account of magnitudes or numbers as a continuum, 
which could be forever subdivided into “an infinity of an infinity of an infinity ad infinitum 
of parts”. Nevertheless, this was what Newton himself took credit for—for having replaced 
Cavalieri’s atomic indivisibles by continuous uxions—of which latter he could provide no 
clear idea. Note also how Berkeley echoes Descartes belief that these infinite procedures are 
beyond the human mind.

We reiterate that these difficulties with the calculus were as peculiarly European as the 
European difficulties with navigation. These difficulties were not intrinsic to the subject; 
they arose only because European mathematicians mistakenly took as universal their own 
idealistic philosophy of mathematics. There is no intrinsic difficulty in wearing a sari, unless 
one insists on wearing it like a skirt, imagining that it is a sacred and universal law of nature 
that women should wear only skirts.

Berkeley emphasized that he was not objecting to the conclusions reached by Newton and 
Leibniz: the conclusions might well be true, but he pointed out that the method of deriv­
ing them was not clearly explained, and hence not science. (Note that the conclusions 
had already been derived earlier by another easier-to-comprehend method—according to
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present-day historians of mathematics, the contribution of Newton and Leibniz was mainly 
the method per se.)

For Science it cannot be called, when you proceed blindfold, and arrive at the 
Truth not knowing how or by what means.10

In particular, he gave examples of how one could arrive at valid conclusions by a wrong 
method which involved multiple errors:

the two errors being equal and contrary destroy each other; the first error of 
defect being corrected by a second error of excess.11

Responses to Berkeley

The cogency of Berkeley’s arguments is evident from the fact that his contemporaries were 
completely unable to respond to his arguments, and were left frothing at the mouth. Jurin12 
argues with lengthy polemics and little substance, defending Newton against the charge of 
being an infidel. Jurin was obviously ill-informed about Newton’s religious beliefs, and his 
belief in the British system was misplaced: it was the British system which censored and held 
on to the secret of Newton’s religious beliefs for quarter of a millennium, and these are still 
not particularly well known. As for Jurin’s mathematical discourse, its level can be judged 
by the following quote:

The foundation of the Method of Fluxions I take to be contained in the following 

POSTU LATUM.

Mathematical quantities may be described, and in describing may be generated 
or destroyed, may increase or decrease, by a continued motion.13

In the same spirit of wonderful clarity, Jurin goes on to define such mathematical quan­
tities as “ owing quantities” and their velocities as “ uxions”. And then adds,

A nascent increment is an increment just beginning to exist from nothing, or just 
beginning to be generated, but not yet arrived at any assignable magnitude how 
small soever.

There seems little doubt that Bhaskara II, some 600 years earlier, did a considerably better 
job of clearly defining the instantaneous velocity of a moving point (planet, as observed in 
the sky), when its velocity was continuously changing. Perhaps, since he believed in clar­
ity from the beginning, and did not first create needless philosophical confusion and then 
struggle with it, his work is not valued!

Similarly, Robins14 responds by restating Newton’s mathematics—which does not help to 
meet Berkeley’s arguments.
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Relation to Present-Day Notions of Limit and In nitesimal

In particular, the attempt to justify Newton s argument retrospectively through the tuork o f future math­
ematicians does NOT meet the objections raised by Berkeley. As I have argued in another context, 
vague statements followed by retrospective disambiguation is a favourite technique of as­
trologers and oracles.

A well-known example of retrospective disambiguation is the Oracle of Delphi, who was 
asked what would happen if Croesus attacked the Persians, and the Pythoness responded 
that Croesus would destroy a mighty empire.15 A bit wary of oracular ambiguity, Croesus 
sought a clarification about how long his rule would last, and the Oracle informed him that 
it would last until a mule ruled the Medes. Convinced that a mule could hardly become 
king, Croesus attacked Persia and he lost. After the magnanimous Cyrus had granted him a 
reprieve, Croesus complained to the Oracle, sending his fetters. The Oracle responded that 
Croesus had neither understood what was said, nor took the trouble to seek enlightenment, 
so he had only himself to blame.lfc> The empire that would fall was his own, and the Mule 
in question was Cyrus, who had mixed ancestry. The meaning of the Oracle’s statement was 
crystal clear in retrospect; it was absolutely muddy and unclear in prospect. Therefore, the 
fact that a vague statement admits a valid retrospective disambiguation cannot validly be 
used to give credit to the source of the original vagueness, unless one simultaneously wants 
to give credit also to other vague predictions made by astrologers and oracles, for they will 
admit several retrospective disambiguations.

When we had no formal real numbers, Newton’s statements were disambiguated in one 
way as a case of uxions vs indivisibles (as in James Jurin’s “understanding” of uxions). 
When we had limits and formal real numbers with no infinitesimals, Newton’s uxions were 
retrospectively disambiguated in another way, as limits, which had banished for ever the con­
fusion about infinitesimals. When we have non-standard analysis, and internal set theory, 
Newton’s uxions are retrospectively disambiguated in a third way. It is clear that Newton’s 
vague statements can be and have been disambiguated in more than one way. To an unbi­
ased observer, this sort of thing establishes nothing except the great anxiety of the persons 
concerned (astrologers/oracles/historians) to allocate social credit in a particular way or to a 
particular person.

It may be perfectly possible, today, to set up a formal theory which retrospectively dis­
ambiguates in a formally acceptable way what Kepler did. In fact, computers do something 
similar: an apparently smooth curve drawn on a computer screen, or printed on a piece of 
paper, consists of a large number of straight lines that are indivisible at the level of pixels on 
the screen, or dots on the paper. If one believes that retrospective disambiguation is a valid 
argument for conferring credits, then every such fresh retrospective disambiguation should 
lead to a change of credits. Suppose a suitable retrospective disambiguation of Kepler were 
found. (This should be possible, since Kepler was an astrologer by profession!) Would one
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then give credit to Kepler for the calculus? (And, if so, why not to earlier Indians!? Especially 
considering that Kepler probably obtained translations of Indian texts from Tycho Brahe’s 
papers.) The simple fact is that the logic of Newton’s uxions or of Leibniz’s differences or 
iniinitesimals was not clear to them, and could not then be explained in a satisfactory way to 
their contemporaries even until after Newton’s death. Nothing that happens subsequently 
can alter this fact. Both of them are credited with the creation of the calculus, although they 
did not fully understand it.

The argument also works in the other direction. Notice that the infinite series made sense 
in India, at that point o f time, but according to the Indian norms of proof (pramdna), and the 
Indian notion of real real numbers (distinct from formal real numbers). In contrast, New­
ton’s uxions did not make sense according to the then-prevalent European norms of proof, 
as is clear from Berkeley’s argument which has never been clearly refuted. Therefore, the 
fact that the current political dominance of the West has made the Western notion of proof 
socially dominant today, cannot be validly used to retrospectively confer credit on Newton 
and Leibniz: we have to recognize that, unlike the Indians, both these worthies were grop­
ing in the dark in a way that was unacceptably confused, so far as their contemporaries were 
concerned. In any case, the only clear thing was the practical application of the calculus, 
which, to this day, does not require formal real numbers, or limits, does not use them, and 
manages remarkably well with finite differences—similar to those used by Aryabhata.

Newton on His and Leibniz s Contributions to the Calculus

It is also curious to see how strikingly at variance are present-day historians’ exaggerated 
accounts of the achievements of Newton and Leibniz regarding the calculus compared with 
Newton’s own account of his and Leibniz’s achievements! In summing up his priority dispute 
with Leibniz, Newton17 expresses familiarity with the earlier work of Cavalieri, Descartes, 
Fermat, Pascal, Barrow, Wallis, Gregor)', Brouncker, and N. Mercator,18 on the calculus. Un­
like present-day Western historians, Newton himself could not, at that point of time, pretend 
that his ideas of the calculus had been immaculately conceived.

Accordingly, Newton takes for himself only the credit for discovering the sine series! 
Newton repeatedly emphasizes that the series for the arctangent (“Gregory-Leibniz” series) 
was obtained by Leibniz from other sources. As Newton further says (about Leibniz), the 
“second inventor” of the same thing deserves no particular credit, and Newton was, at best, 
the fifth or sixth inventor of the sine series which is the thing for which he himself claims 
credit in the course of his priority dispute with Leibniz.

Clearly also, in the process of incorporating this sine series into European mathematics, 
Newton, like other European mathematicians before him, misunderstood the Indian way of 
handling infinite series; for he was unwilling to discard the smallest quantities, had no cor­
rection term, and futilely attempted to assign a clear meaning to the supertask of summing
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an infinite number of terms. As we have just seen, though Newton received far more social 
approval than Cavalieri, Newton could not offer an adequate account of his uxions, which 
were required just because Newton claimed “perfection” for his method (of uxions). Had 
Newton’s true religious beliefs surfaced in 1735, the present-day historians might well have 
viewed Newton in a different light! Further, as Newton repeatedly remarks about Leibniz,19 
how could someone claim to be the inventor of something he did not quite comprehend? 
Newton was applying exactly what we have called the epistemological test: lack of under­
standing tends to indicate lack of originality. The same applies to Newton, if we disallow 
retrospective disambiguation (as we ought to).

Ill
FORMAL REAL NUMBERS

Images and Dedekind Cuts

In the traditional account taught to mathematicians, acceptance of the calculus (mathemat­
ical analysis) required the formalisation of real numbers by Dedekind. As a prelude to this 
account, it is necessary to observe that, as pointed out in Chapter 3, real numbers were 
known to the Indian sulba sutra from some fifteen hundred years before even the use of the 
abacus was introduced in England, for example, and that words like “surd” deriving from 
those Indian ways of handling square roots and real numbers give away the real history of 
the subject. Thus, it is not as if Dedekind invented some new kind of numbers—what he did 
was to give an idealized or formalised or metaphysical account of them. Thus, we need to 
differentiate between real real numbers long known to tradition, and formal (or unreal) real 
numbers—and the kind of real number being talked about, whether real or unreal, should 
usually be clear from the context.

To return to Dedekincl, recall Proposition 1.1 of the Elements. The proposition is to build 
an equilateral triangle on a given base. The earlier doubt about the proof related to the 
question of picking and carrying lengths. But there was a further doubt. The proof of that 
theorem in the Elements must be regarded either as an empirical matter (“go ahead, carry 
out the construction and see that they intersect”) or as making use of an image, similar to 
Fig. 2.2. The image is visually so compelling that no mathematician sought to challenge the 
proof for well over a millennium after Proclus.

So far as the Elements were concerned, the image was essential to the proof: the two 
arcs were visually continuous, and their intersection was an intuitive necessity. In Proclus’ 
philosophy of mathematics, the use of images was even more permissible than the use of the 
empirical at the beginning of mathematics: for Proclus noted that Plato agreed that images 
served to stir the soul, and remind it of its innate knowledge. This was entirely in accord with 
Proclus’ understanding of the Elements as espousing “Neoplatonic” religious beliefs against 
the changed Christianity of the 4th c.
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However, the use of images had created political difficulties. This idea of the Alexandrian 
school was even more explicitly articulated in Porphyry’s On Images, which went on to explain 
in a beautiful way the detailed symbolism of the images of gods and goddesses maintained 
in “pagan” temples. However, Porphyry’s On Images was burnt along with the temple by the 
Christians in Alexandria who violently objected to the use of images.

Of course, Christians did later come around to use of images, after the second council of 
Niacaea—they now objected only to the images of “strange gods”. A few centuries after the 
fall of Alexandria, al BIrunI observed:

Many of the leaders of religious communities have so far deviated from the right 
path as to give such imagery in their books and houses of worship, like the Jews 
and Christians.. . 20

At the time of the reformation, many people were critical of the prevailing Christian or­
thodoxy. Thus, Newton observed in his suppressed History o f the Church, and its drafts, that 
Christianity in pre-Modern Europe made numerous appeals to images—such as its domi­
nant image of Christ on the cross—this was to him a gross corruption of the religion. The 
ideal quite clearly visible to Newton, and one to which he subscribed, implicitly at any rate, 
was to avoid the use of images altogether, for fear that one might confuse the image with the 
reality.

Therefore, regardless of actual practice in Europe, the ideal still was to avoid images 
in mathematical proof, and to this day, the epistemological subjugation of visual imagery 
creates problems for children learning mathematics. In suspecting images, Dedekind was 
being theologically correct.

Arithmetization of Geometry

Further, by Dedekind’s time, the arithmetic imported into Europe had been partly natural­
ized by marrying it to geometry, and the arithmetization of geometry (“Cartesian geome­
try”) was well established. Therefore, it was natural for Dedekind to try to translate the visual 
and geometric proposition about arcs into a proposition about numbers. This raised a new 
doubt. The image suggests that the two lines intersect; but did they intersect in reality? If 
the intersection of the arcs was translated into a proposition about numbers, then the two 
arcs could intersect only if the point of intersection in the plane could be represented by a 
pair of numbers. Did such a pair of numbers exist? Thus, by Dedekind’s time, the assertion 
about the intersection of the arcs translated naturally into an assertion about the existence 
of numbers—“existence” being understood in a Platonic rather than practical sense.

If these numbers did exist, what sort of numbers were these? If we take the base of the 
equilateral triangle as one unit, and represent it as the line segment joining the point (0, 
0) to the point (0, 1), then the arcs would intersect at the point (a:, y), where x = \, and
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y = (I2 — (|)2) = -jr. This last is not a whole number, either positive or negative, nor
is it a fraction. Now, as we have seen in Chapter 3, from the time of the sulba sutra-s, Indian 
tradition had no difficulty in handling such numbers, referring to the representation of \/2 
as 1.4142156 sdvisesa (this number and something left out), or later to tt as 3.1416 dsanna 
(near value), etc. However, such a representation of numbers, which left out something, was 
not acceptable in Platonic idealism, which demanded nothing short of “perfection”. While 
whole numbers and fractions could be satisfactorily represented from the idealist point of 
view, no such “perfect” representation was available for numbers like

If one now shifts to a set-theoretic view, using the relation of belonging, where the points 
in the plane are regarded as pairs (x , y), where x and y are natural numbers, or integers, 
or rational numbers, then the point ( ,̂ can not be regarded as belonging to the plane. 
The required point of intersection of the two arcs would, therefore, not “exist” (in a Platonic 
sense) in the plane, and there would be “gaps” in the two arcs.

Therefore, by reinterpreting the Elements, rejecting images and using the arithmetization 
of geometry, and set theory, Dedekind was led to suppose that the validity of the Elements, 
and, in particular, proposition 1.1 of the Elements, required that the arcs and line segments 
in the Elements were without any “gaps”. Translated into a statement about the existence of 
numbers (in a Platonic sense), this would happen only if, no matter where one “cut” the arc, 
there would be a number at that point, and never a gap.

It is well known how the formalisation of this idea of “Dedekind cuts” leads to the formal 
real numbers. Since this is something that is taught in elementary courses on mathemat­
ical analysis, and can be found in basic texts,21 it will not be covered here. It is also well 
known, and equally elementary, that it is through this theory of formal real numbers that 
the calculus today finds a “rigorous” basis in mathematical analysis, which is why most texts 
on mathematical analysis begin with an account of the formal real numbers.

The current history of mathematics practically attributes the real numbers to Dedekind. 
This overlooks, of course, the use of real numbers from two-thousand year earlier, but it also 
overlooks another key point. The formal construction of real numbers used set theory— 
a subject which itself aroused various serious mathematical doubts. Thus, what Dedekind 
achieved was to replace one set of idealistic doubts (about numbers) by another set of doubts 
(about sets), at least until these new doubts were supposedly settled by the formalisation of 
set theory in the 1930’s.

Completeness of Reals

From the point of view of contemporary mathematics, the key mathematical property of 
formal real numbers, R, that is needed is the topological property of completeness: R is 
complete.
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From the perspective of contemporary mathematics, this property of completeness of 
reals ensures that any sequence of real numbers which is “trying to converge” will actually 
find a real number to converge to. Formally, such an intrinsically convergent sequence is 
called a Cauchy sequence. More formally, a sequence is called a Cauchy sequence if for any 
given number one can find a natural number M such that the distance between the nth 
and mth term of the sequence is less than for all n and m greater than M. That is, for a 
Cauchy sequence, for large enough n and m, the distance between the nth and mth terms 
of the sequence can be made as small as we please. The completeness property of the reals 
is that every Cauchy sequence of real numbers actually converges to a real number.

A similar criterion applies to the sum of an infinite series of numbers, i=1 a*, by con­
sidering the sequence consisting of the partial sums up to n terms, Sn — ”=1 tq. If this
sequence of partial sums, Sn, forms a Cauchy sequence then the infinite series i=1 ai is 
regarded as summable, and the limit of Sn is the sum. We note in passing that, modulo a 
few quibbles, there is no fundamental difference between this current notion of the sum of 
an infinite series, and the way the sum of an infinite series was defined in India—viz., to 
the given fixed but arbitrary precision to which one is working, the successive partial sums 
of the series should become constant, in which case that constant value is the sum. Thus, 
ultimately, after nearly three centuries of groping in the dark, trying to comprehend the 
calculus from the days of Clavius, European mathematicians finally saw the light when they 
arrived at the Indian point of view1, with a few1 legalistic caveats!

The way this criterion works may be illustrated with an example. The sequence of num­
bers 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, 1.4142135, 1.41421356, 1.414213562,
. . .  (which intuitively corresponds to the decimal expansion of the real number s/2 )  is a 
Cauchy sequence, since the terms of the sequence cluster together, and the nth term of 
the sequence differs from the mth term only in the (n + l)th decimal place (assuming m to 
be larger than n), and this can evidently be made as small as we please.

How7 exactly does this differ from the sulha siLtra statement that s/2 is “1.4142 and some­
thing more” (where the “something more” can be calculated to any desired degree of pre­
cision using the algorithm for square-root extraction, stated by Aryabhata)? Well, asserting 
the completeness of real numbers does not help one to calculate the limit except to a de­
sired degree of precision, so one would still have to say that s /2  is “1.4142 and something 
more”, w7here the “something more” can be calculated to any desired degree of precision. 
However, since there is a mathematically proven theorem which asserts the existence of s/2  

one now7 has the assurance that the limit in question “exists”, with “existence” understood in 
a suitable sense (as in the statement “God exists”) which has nothing to do with real physical 
existence.

Although the above sequence is a sequence of rational numbers, the number to which 
it is “trying to converge”, viz. s /2 ,  is not a rational number (i.e. the square of the ratio of 
two whole numbers can never be 2). Rational numbers are incomplete, so this sequence is
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not convergent if we limit ourselves to the rational number system, for there is no rational 
number to which it can converge, even though the terms of the sequence are coming closer 
to each other. In this situation, Dedekind visualized that one would have to add to the 
rational numbers the various such limits of all Cauchy sequences. (Indeed, another way 
to construct real numbers is to regard a real number as an equivalence class of Cauchy 
sequences of rational numbers, two Cauchy sequences being deemed equivalent, if their 
difference converges to zero.) This gives the real numbers, which are thus complete by 
construction. The irrational numbers are then the real numbers that are not rational, i.e., 
they correspond to numbers whose decimal expansion neither terminates nor recurs.

The completeness of the real number system means that we can answer cjuestions like 
“what is the sum of 1 — 5 + ^ — y + -- - ?”, not in the sense that we can state the value of 
this sum precisely, but in the sense that we can assert with assurance that this sum “exists”, in 
a certain sense. Similarly, it also means that we can define derivatives and integrals as limits,
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provided the limits in question “exist”. The completeness of the real number system does 
not guarantee that all such limits required to differentiate and integrate functions exist. 
However, if the limit fails to exist, this failure is now believed to be intrinsic to the function.

IV
THE CENTRAL PROBLEM OF REPRESENTATION

The key non-elementary point here of course is this: the formalisation of real numbers did 
not resolve the central problem of representation—for real numbers cannot be represented 
as concretely as whole numbers or fractions. Thus, the formalisation did not really resolve 
the central dispute between Nagarjuna and Plato, between sunyavada and idealism, which 
was identified above as being at the heart of the European difficulties with the calculus. 
Instead, it shifted the battlefield: the problem of representability was just pushed into more 
obscure corners, where it did not need daily attention.

Thus, an engineer does not normally bother about the finer points of physics, feeling, in 
fact, a bit superior for not wasting his time bothering about these impractical details which 
are the concern of the physicist. The physicist tackles these finer points with gusto, confi­
dent that his approach is superior to the crude approach adopted by the engineer. But the 
physicist, in turn, feels that subtler mathematical problems are hardly his concern, and, in 
a superior sort of way, leaves such impractical matters to mathematicians—who are happy 
to spend a lot of time establishing to their satisfaction the existence of something that is
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obvious to others. The mathematician tackles these finer points with gusto__ Dedekind’s
formalisation of real numbers, by representing real numbers using sets, enabled mathemati­
cians to pass on the problems with infinitesimals to set theory, which was the domain of the 
logician or the metamathematician, who can, in turn, sidestep various subtle issues as the 
impractical concerns of the philosopher proper!

This way of sidestepping problems is credible just because within the existing social struc­
ture specialization is encouraged by industrial capitalism, so this amounts to not encroaching 
on the other’s territory—a “proof by territory limitation”22—and enables the persons con­
cerned (engineer, physicist, mathematician, . . .  ) to carry on with their daily jobs. To dispel 
such false credibility arising from the social acceptability of the argument, in the appen­
dix to this book we demonstrate how the philosophical differences, though subtle, connect 
to physics and engineering, and have important practical implications also for high-speed 
aerodynamics, the geology' of earthquakes, and quantum field theory.

Are Formal Real Numbers Appropriate for Calculus ?

To bring out the problems involved in a preliminary way, let us ask: are formal real 
numbers at all necessary for the calculus, and are they appropriate?

Thus, it is a historical fact that the development of the calculus preceded the formalisation 
of real numbers. (This is true, even by those accounts which maintain that Newton invented 
it.) It is also true that all present-day calculations involving the calculus are usually done 
on a computer which simply cannot use real numbers. Thus, it is apparent that calculus 
can get along fine without formal real numbers. The calculus certainly uses informal real 
numbers—but then those date back to at least 2500 years, to the time of the sulba sütra.

Even the claim that real numbers are appropriate for the formalist epistemology of the 
calculus does not seem to be valid. For example the limit of the difference quotient in (8.1) 
would fail to exist if we take x =  0, and y = sgn(;r), where the signum function

1 x > 0
0 x — 0 (8.3)

- 1 x < 0.

According to the standard mathematical narrative, this difficulty is intrinsic to the signum 
function, and is not a difficulty with numbers, for the standard mathematical narrative as­
serts that “ever\T differentiable function must be continuous”. However, that belief, often 
called a theorem, is not really acceptable even to formal mathematicians. It has been known 
for the good part of the previous century (ever since Sobolev and Schwartz, and, in fact, since 
the days of Heaviside, in the 19th c. CE, who comes only shortly after Dedekind) that it is 
perfectly possible to interpret the notions of “function” and “derivative” in such a way that 
“every integrable function is differentiable”, which is quite contrary to the above narrative, 
since non-continuous functions can be integrated.
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Therefore, the standard mathematical narrative is far from being the complete story, and 
it is perfectly possible to have a theory of differentiation which permits us to differentiate 
the signum function. Such a theory is required and used in present-day physical theory. As 
shown in Appendix A, the real number system is inadequate for an appropriately modified 
theory of this notion of differentiation.

Thus formal real numbers are not necessary for the calculus (since calculus may be done 
with informal real numbers), nor are formal real number the most appropriate for the cal­
culus (since that does not permit unrestricted differentiation of integrable functions, say).

Real Numbers vs In nities and In nitesimals

On the other hand, from within the formalist perspective, what happens if we use some other 
number system, say a formal number system larger than the real number system?

Apart from the notion of completeness, the real numbers can be alternatively charac­
terized by what has been called the “Archimedean property”. (I do not know the origin of 
this terminology; though I find it a bit jarring, I will continue to use it in the following— 
assuming, of course, that Archimedes was a short black man!) That is, given a positive real 
number x, one can always find a natural number n such that

x < 1 + 1 + ••• + 1. (8.4)
n times

Intuitively speaking, the Archimedean property says that no real number is infinitely large. 
Consequently, no positive real number can be infinitesimally small, and for any real number 
y such that 0 < y we can always find a natural number n such that 0 < n < y- (This can be 
seen by applying the Archimedean property to x = .̂)

The Archimedean property can be used to characterize the real numbers as follows: R is 
the largest Archimedean ordered held.

The formal definition of the algebraic structure called an ordered field would be tedious 
and would take us too far afield. This definition can be found in any elementary text on (for­
mal) algebra.23 Basically an ordered field is a set of numbers that can be added, subtracted, 
multiplied, and divided, and also compared in a way that is compatible with addition and 
multiplication. Rational numbers also constitute an ordered field—that is the smallest such 
field. On the other hand, R, as stated above, constitutes the largest Archimedean ordered 
held.

Thus, if one considers an ordered field which is larger than R, then the Archimedean 
property must fail in such an ordered held. So, in such an ordered held, call it S, we can 
find a number x such that

x > n
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for every natural number n. Such a number corresponds to the intuitive notion of an infi­
nitely large number. Since non-zero numbers can always be inverted in a held, the existence 
of infinitely large number in S means also that its inverse is infinitesimally small:

1
— < n 
x

for every natural number n. This means that any system of numbers larger than R must 
admit both infinities and infinitesimals.

In present-day formal mathematical analysis, suppose we take as the basic set of numbers 
a set S of numbers constituting a non-Archimedean ordered field. S could, for example, 
be any ordered held which is a proper extension of R. Calculus would look somewhat dif­
ferent in S. It would be possible to define idealized “limits”, but limits would no longer 
be unique, since any two “limits” might differ by an infinitesimal. (What we are saying 
here about calculus on a non-Archimedean field should not be confused with non-standard 
analysis, which is considered separately in Appendix A.) I have remarked elsewhere that the 
present-day mathematicians’ obsession with proving the existence and uniqueness of things 
is remarkably similar to the Christian theologians’ obsession with proving the existence and 
uniqueness of God; on this analogy, calculus in a non-Archimedean held would be a “pagan 
calculus”, where one would celebrate an infinity of (non-unique) God-s!

Discarding infinitesimal differences would not be a process very different from the process 
of rounding. If we do decide not to be bothered about infinitesimal differences, then with the 
availability of infinities and infinitesimals in S, it would be possible to make “infinitesimal 
changes” to the signum function in an infinitesimal region around zero, so that it becomes 
smooth, and can be differentiated in the classical sense. The derivative would be a func­
tion which would be infinite in an infinitesimal region of zero, and would be infinitesimal 
elsewhere—a function today known as the Dirac delta function, and widely used in physics, 
though for nearly half a century mathematicians declared it impossible for such a function 
to exist.

The point here is only this: the non-existence of the limits of the difference quotient, 
for a discontinuous function, is not a “natural” property—it is not a universal truth. It all 
depends upon how one understands the calculus. Even within a formal understanding of 
the calculus, it all depends upon the choice of the underlying number system, and the de­
finition oflimit that is adopted. There is nothing sacred about the real numbers R, or the 
definition oflimit in mathematical analysis—this just happens to be the first formalisation 
which succeeded in gaining wide social acceptance. The use of real numbers represents 
only a temporary consensus among socially authoritative Western mathematicians—a con­
sensus which seems compelling only because the present-day mathematician grew up with 
this narrative.
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V
ALGORISMUS

A similar problem related to the representation of real numbers had also arisen earlier in 
Europe with the import of the algorismus.

Roman Numerals and the Roman Calculus

To understand this, it helps to go back to the Roman system of representing numerals. Just 
as the Roman calendar was more systematic than the haphazard Greek calendar, the Roman 
numerals were more systematic than the earlier Greek (Attic) numerals. Where the Greeks 
would have written the number 47 as AAAA , the Roman still wrote XXXXVII; however, 
the Roman system scored over the Greek system of numeration in representing the numbers 
from 5 to 10 in a systematic way.24 However, the Roman system is not well adapted to express 
numbers much larger than a thousand or so. Thus, even a small number such as 1786 is 
expressed as MDCCLXXXVI, using 10 symbols! As can be seen, this system quickly runs 
into difficulties if one wants to represent large numbers. This is not to say that the system 
could not be modified to enable the expression of large numbers—it surely could—but the 
need to express large numbers did not historically arise for the Romans, so that they did 
not, in fact, modify the system. (When the need for more sophisticated calculations did arise 
in Europe, the Roman system of numerals was not modified, but was abandoned in favour 
of the Indian system of numerals, usually called Arabic numerals.) This suggests that the 
Roman system was used mostly for counting and addition, and rarely was there a need for 
more complex arithmetical operations like multiplication which would have thrown up large 
numbers.

Several aspects of this system have been pointed out earlier. Square-root extraction was 
far too formidable a matter with this clumsy system. There was no good way in the system 
even to write down or represent the square roots. In fact, this system of numeration created 
great difficulties even with the representation of rational numbers (fractions). Obviously 
a fraction like | cannot be expressed in Roman notation as ^7. The basic Roman system 
of fractions was to use the uncia, which was the 12 th part, related to the 12 ounces in a 
pound. Therefore, Romans could readily express fractions like | which corresponded to 
three uncia-s. Romans had special words like tres octavae for fractions like | which did not fit 
into this uncial system. Hence, Romans found it easier to represent the length of the year by 
the figure of 3651 days, using an uncial fraction which was a standard part of their system of 
numeration. They would have had a difficulty even in stating the correct length of the year 
as given by Aryabhata.20 Expressing precise fractions as a ratio of two very large numbers, as 
was done by Aryabhata, was quite out of question with Roman numerals, first because of the 
difficulty in representing large numbers, and secondly because there was no standard way of
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representing fraction nor any standard method of division available to the Romans, a point 
which becomes obvious if one tries dividing LCX by XXIII. (The terminology of “Euclid’s” 
division algorithm is obviously bogus.)

Setting aside questions of division and multiplication, in fact, the Roman system of rep­
resenting numerals did not easily permit even the elementary arithmetic of addition—the 
difficulties with the system of numeration become obvious if for example one tries adding 
XVII + LCXI. In fact, such additions could only be done by recourse to the Roman cal­
culus, or rather calculi. The word calculus is the diminutive of the term calx or stone, and 
refers to pebbles used in a manner similar to the abacus. Examples of how the Romans and 
Europeans up to the 18th c. CE used the abacus for addition and subtraction and multi­
plication can be readily found in the literature26 or online.2‘ In fact, the Roman system of 
numeration was closely tied to this technology of the abacus or the counting board. Multipli­
cation was done by repeated addition, and there was no standard technique for division.28 

Notwithstanding vastly exaggerated historical claims about astronomy and mathematics in 
the Roman empire, this was the canonical way of doing arithmetical calculations that Europe 
inherited and started off with at the beginning of the second millennium CE.

The House of Wisdom

With the rise of Arabs, and even before the formation of the Mouse of Wisdom in Bagh­
dad, in the early 9th c. CE the Indian way of doing mathematical calculations and astron­
omy travelled to Baghdad. The story is fairly well known. When the Arabs first turned 
their attention from military conquests to intellectual conquests, their interest in astron­
omy was aroused by the Zij-i-Shahryar which was an Arabic translation from Pahlavi of an 
Indian text on astronomy earlier translated from Sanskrit to Pahlavi at Jundishapur. Ibn 
al-Adaml, in the preface of his astronomical tables Nazrn al-iqd, records that during the 
reign of Caliph al-Mansfir, an Indian “astronomer” (“Ganaka” = calculator/accountant) vis­
ited Baghdad and brought with him various astronomical tables and texts for computa­
tions. Under the orders of Caliph al-Mansur, Brahmagupta’s Bmlimasphutasiddhanta and 
Khandkhadyaka were translated into Arabic with the assistance of Indian pandits by Ibrahim 
al-Fazari (d. 806) and Ya’qub ibn Tariq (d. 796), as the Sindhind and the Arkand. Kennedy29 

provides a long list of Arabic Zijes which incorporate characteristically Indian features like 
the use of the meridian of UjjayinI (under the name Arin), the Kaliyuga era (beginning 
—3102 CE), called the “Era of Flood”, the tables of sines (R = 150 used by Brahmagupta), 
tables of solar declination, and methods of spherical trigonometry. It is interesting that 
there are found also a large number of multiplication tables, typically giving 3600 entries, 
for multiplying sexagesimal numbers to the second sexagesimal minute.30 It is worth ob­
serving that this transmission of Indian astronomy to Arabs predates the Arabic manuscripts
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(hence, also, the Byzantine Greek manuscripts) from which information about Ptolemy is 
conjectured.31

A1 Khwarizmi who worked in the House of Wisdom (Bayt al Hikma), and had learnt San­
skrit, wrote a text on arithmetic, compiling and putting together various Indian texts. The 
original text (perhaps called Kitab al-hisab al-hindi) is now lost, and survives only in a 12th 
c. anonymous Latin translation: Algoritmi de numero Indorum (Al Khwarizmi on the Indian 
numbers). He also prepared a Zij, based on Indian parameters, and wrote a famous text Kitab 
al-jabr wa-l muqabala.32 The present-day word “algebra” derives from this text, just as the 
present-day word “algorithm” derives from successive Latin corruptions of al-Khwarizmi’s 
name as Algorismus, Algoritmus, and Algorithmus. Various other Arabic mathematicians, 
such as Ibn Labban,33 wrote treatises on the Indian system of arithmetic. Ibn Labban’s 
treatise (ca. 1000) also incorporates the earliest known Arabic multiplication table.

Algorismus in Europe

Though Indian numerals were already known in some pockets of West Asia by the seventh 
c. CE, where they were mentioned appreciatively by a Christian monk Severus Sebokht, it was 
largely through the Arabs that this Indian technique of calculation systematically travelled to 
Europe,34 where the numerals came to be known as Arabic numerals, and the arithmetical 
technique itself came to be known as the Algorismus—one of the Latinized corruptions of 
the name of al Khwarizmi. Among the first to try this algorismus technique, which had 
become famous by his time, was the 10th c. CE Gerbert (later Pope Sylvester III). Gerbert 
did not understand the technique. In fact, he did not understand the representation of 
numbers on the new technique. Con ating it with his own way of representing numbers, he 
merely used Indo-Arabic symbols on counters for abaci!

Yet it would be wrong to see in the apices nothing more than a trivial innovation 
introduced by Gerbert. The truth is that he did adumbrate the use of the new nu­
merals; he had heard marvellous things about the new computation which they 
made possible but which he, and perhaps also his informants, did not essentially 
understand.30

However, Europeans did eventually understand the algorismus. Various Europeans are 
known to have translated al Khwarizmi’s text, while probably drawing on various other Ara­
bic sources.36 These include Adelard of Bath (ca. 1142), John of Seville (ca. 1135, Liber 
Algorismi), Robert of Chester (ca. 1141), Alexander de Villedieu (d. 1240, Carmen de Algo- 
rismo), his contemporary John Sacrobosco (Algorismus Vulgaris), and Leonardo of Pisa (ca. 
1202, Liber Abaci). This process of popularizing practical arithmetic in Europe continued 
actively until the the 16th c. which saw the publication of Cardano’s, Practica Arithmeticae
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(1501), Stifel’s Arthmetica Integra (1514), Tartaglia’s Trattato di Numeri (1556), and Clavius’s 
Arithmetica Practicae (1583).37

While Florentine merchants were quick to realize that the reliance on counters put them 
to a competitive disadvantage, which they sought to eliminate by learning the algorismus, 
the rest of the society did not immediately follow suit, for the algorismus, of course, en­
tailed difficulties. Unlike the abacus, where one could hold the numbers in one’s hand, the 
numbers in the algorismus were abstract. The abstraction involved non-representables in 
an essential way. The use of non-representables to zero the numbers in a calculation was 
confounded with the use of the numeral zero.

The difficulty with the numeral zero was simply this: zero, by itself, stood for nothing; 
but when appended at the end of another number it enhanced the value of the preceding 
number. To understand this difficulty of representation, we need to understand that the 
system of Roman numeration, then in use in Europe, was primarily an additive system. That 
is, XIII represented X and III, or “ten and three”, as on the abacus. The representation 
of numbers using the place value system was impossible to understand on this logic. Thus, 
zero was understood to mean nothing, and the above additive logic suggested that 20 should 
then be read as “two and zero”, or “two and nothing”, which ought to have amounted to 2 .

These difficulties with the numeral zero led to the abuse of the numeral zero in contracts 
and to financial frauds. In 1299 the city of Florence came out with an edict prohibiting the 
use of the new figures for banking. (A similar thing survives to this day; a cheque must be 
filled with both words and numerals.) The figures themselves came to be known as ciphers 
(from as sifr = zephyr = zero), a term which even today means a hard to understand code.

These difficulties of representing numbers were compounded with the problem of rep­
resentation and non-representability. First, there was no way to represent fractions with 
Roman numerals. However, Brahmagupta’s fraction series expansion, which we have al­
ready encountered in Chapter 3, was a common sort of manipulation that enabled a fraction 
with an inconvenient denominator to be replaced by a fraction with a more convenient 
denominator—to the required level of precision. Secondly, this process of manipulating 
fractions could eventually lead to discarding or zeroing something as non-representable. 
This zeroing was very hard to understand, for here something which had a definite value, in 
another context, was treated as if it were zero. The two sorts of difficulties, notational and 
epistemological, were con ated and attributed to the mystique of “zero”.

The difficulties persisted for centuries, but the practical value of the algorismus domi­
nated in the end. According to standard histories of mathematics, the final victory of the 
algorismus is usually taken to coincide with the publication of Gregor Reisch’s Margarita 
Philosophica (Basel, ca. 1517), which shows a smiling Boethius and a glum Pythagoras, the 
former representing the algorismus, and the latter the abacus. Of course, Boethius was not 
the originator of the algorismus, as contemporary European myths made out, but current- 
day depictions of the victory tend to be equally misleading.
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One might say, in a nutshell, that zero overcame the abacus. But its victory, which 
started in the Middle Ages, took a long time.38

As emphasized above, the real issue was not zero, but one of the practical value of the al­
gorismus, versus its epistemology (which involved the non-representable). This was exactly 
the problem also in the case of the calculus. In both cases, the practical value forced ac­
ceptance: the practical technique remained unchanged, but epistemology was changed to 
accommodate it.

The End of Abaci

Also, abaci did not actually go out of circulation in the 16th c. Indeed, in the 17th c. we find 
the situation on the ground depicted by Shakespeare

Let me see: every ’eleven wether tods; every tod yields pound and odd shilling; 
fifteen hundred shorn, what comes the wool to? . . .  I cannot do’t without coun- 
ters.

Here “wether” refers to sheep, and tod to 28 lbs. Thus, the problem that the clown has to 
solve is the following: 11 sheep together give wool amounting to 28 lbs, which sells for 21 

shillings. Given 1500 sheep, how many shillings will the clown get? In fact, as late as 1673, 
in Moliere’s play Malade Imaginaire the opening scene has the hero checking his doctor’s 
bills with counters. It is only in the 18th c. CE that there was a serious decline in the use of 
counters in Europe.

The suspicions about the algorismus had meant that counters continued to be prescribed 
for use for purposes of the exchequer—a word which derives from the chequered (or chess­
board like) form of the table cloth on which counters were used, in the manner of an abacus, 
to keep an account of revenue. The exchequer of the Norman kings was also the court in 
which the whole financial business of the country was transacted, so the supreme court in 
Normandy was also called the exchequer, a term which was later superseded by the term 
parlement. These counters actually went out of history in quite a dramatic way, taking with 
them the British Parliament, as is well described in an 1855 speech by Charles Dickens.40

Ages ago a savage mode of keeping accounts on notched sticks was introduced 
into the Court of the Exchequer and the accounts were kept much as Robinson 
Crusoe kept his calendar on the desert island... it took until 1826 to get these 
sticks abolished. In 1834 it was found that there was a considerable accumulation 
of them; and the question arose, what was to be done with such worn-out, worm- 
eaten, rotten old bits of wood? The sticks were housed in Westminster, and it 
would naturally occur to any intelligent person that nothing could be easier than 
to allow them to be carried away for firewood by the miserable people who lived
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in that neighbourhood. However ...the order went out that they were to be pri­
vately and confidentially burned. It came to pass that they were burned in the 
stove in the House of Lords. The stove, over gorged with these preposterous 
sticks, set fire to the panelling; the panelling set fire to the House of Commons; 
the two houses were reduced to ashes; the architects were called in to build oth­
ers; and we are now in the second million of the cost thereof.

Thus, the burning down of the British Parliament in the 19th c. CE marked the real end of 
the clash between algorismus and abaci in Europe!

Irrational Numbers

Accustomed as they were to the abacus, the difficulties that the European encountered 
with the algorismus are also built into the very names for numbers. Thus, the solution 
of quadratic equations was very much a part of the Indian tradition. For example, we find 
Mahavlra posing the following problem to a child:

O! tender girl, out of the swans in a certain lake, ten times the square root of their 
number went away to Manasarovara when the rainy season arrived, |th of that 
number went away to the Sthala Padmini forest. Three pairs of swans remained 
in the tank, sporting in the water. What is the total number of swans?

In present-day terminology, if the number of swans is x, the above problem corresponds 
to solving the quadratic equation 10\/i + + 6 = x. In this case, the problem
has an integer solution ( x = 144), but the attempt to generalize this procedure to other 
situations leads to non-integer, and irrational solutions. Indian tradition had no problem 
with irrational numbers like \/2 or the so-called transcendental numbers like it for which it 
long accepted the impossibility of stating an exact value.

However, such irrational numbers arising from the solution of quadratic equations, or in­
terest calculations, were viewed with suspicion in European tradition, since the abacus could 
not very well be used to solve quadratic equations, or to represent irrational numbers. They 
were called “surds” in European tradition. The term “surd”, from the Latin surclus, means 
“deaf” in an active sense and silent, dumb, in a passive sense. By extension it refers to 
something not endowed with sense or reason (as in “dumb animals”), hence stupid and in­
sensitive. The term is a Latin translation of the Arabic acamm, as injabr acamm ( = surd root), 
arising in the theory of the forcible (jabrdasti) or algebraic (al-jabr = algebra) consequences 
of putting two quantities on opposite sides of an equation (i.e., setting up a muqabala, which 
results in the resolution of an issue by force).41 In the days when rational theology was being 
vigorously advocated, these numbers were also called irrational numbers, and this was un­
derstood not only in the sense that they were non-ratio numbers, but also in the sense that
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they were stupid and unreasonable numbers—numbers not quite endowed with the divine 
reason that rational theology championed after Proclus.

Dedekind Cuts and Supertasks vs Practical Tasks

Against this background of the experience of the algorismus in Europe, we can again ask: 
what exactly did the formalisation of real numbers achieve? Dedekind cuts helped to soothe 
fears of the irrational and socially deviant behaviour of these numbers, for they helped to 
assert confidently the existence of real numbers. But according to what standards is this 
existence today asserted? As already seen in Chapter 2, the formal mathematical existence 
of real numbers has nothing to do with any real or physical existence. This assertion of ex­
istence in a metaphysical or Platonic sense has not brought one any closer to the specification 
of an irrational real number like \/2, for the full specification of any such number requires a 
supertask—an infinite series of tasks—which will take an infinite amount of time to be per­
formed. Indian tradition does not admit the possibility of such supertasks, which are, from 
a practical point of view, at any rate, impossible.

As a matter of fact, Western mathematicians have been quite hypocritical about this point, 
and have adopted a double standard with regard to supertasks. While mathematics permits 
supertasks, metamathematics does not permit supertasks. For example, the “decidability” in 
Godel’s theorem relates to recursive decidability; if one were to allow supertasks (especially 
transfinite induction) in me/« mat hem a tics, eve 17 theory would become trivially decidable, 
simply by using transfinite induction to select a proof of a given statement from all sequences 
of statements that are proofs. Thus, Western mathematicians are, of course, well aware of 
not only the practical impossibility of performing supertasks, but also of the inadvisabil­
ity of founding mathematics on such beliefs. Nevertheless, they permit supertasks within 
mathematics. This is sheer hypocrisy: a principle not good enough for metamathematics is 
regarded as good enough for mathematics. Traditional Indian thought did not accept such 
hypocrisy in matters concerning truth and knowledge: the same general principles of proof 
were applied to all situations. Western thought, however, seems to have double standards 
everywhere!

As we have already seen in Chapter 2, social and cultural authority, rather than logic or 
reason, is the key force behind this Platonic myth that such supertasks lead to something 
more real than ordinary reality. Ultimately, the only “argument” available to the mathe­
matician is to disregard such scepticism about real numbers as socially unacceptable, just 
as the intuitionist skepticism about non-constructive proofs was deemed to be socially unac­
ceptable. Professional mathematicians won’t accept a change, since that might affect their 
jobs. Mathematicians are supposedly sceptical, but they can be sceptical only in a socially 
acceptable way! This way of determining social acceptability presupposes that professional 
mathematicians are the only ones who need to be consulted. How “social acceptability” can
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come to be decided in a way that excludes the majority of the human population is, of course, 
a separate question which we do not examine here. This sort of thing tends to reduce the 
seriousness of mathematics to that of a social event like a ball—possibly a very serious matter 
for the participants, but a mere play of vanities and conventions from the viewpoint of an 
outside observer.

VI
SUNYA

Most physicists and engineers, even today, do manage to get along without knowing or 
caring what a formal real number is. That is because, for any actual application of the 
calculus, to physics or engineering, one still needs to calculate, and any such calculation is 
always done (and can be done) only to a required finite precision.

Today, such calculations are typically done on a computer. Howsoever good a computer 
one might use, the computation can never go beyond a certain precision. The same con­
clusion applies to a calculation done by hand, or to what is called indefinite precision arith­
metic. Indefinite precision simply means that one can use as many decimal places as one is 
likely to require for all practical purposes.

Practically speaking, for any calculation one never needs more than a certain amount of 
precision, though the exact amount of precision one needs may go on changing from time 
to time, and from application to application. One never ever needs or can go to the limit. 
That means that there will always be an awkward part in any calculation that needs to be 
discarded. This part perforce has to be left non-represented.

Indian tradition has acknowledged the existence of non-representables, and has adopted 
a similar (though not identical) practical attitude to non-representables. The acknowledge­
ment of non-representability is the focus of the Buddhist philosophy of sunyavada advocated 
by Nagarjuna.

However, Western tradition has been very uncomfortable with this non-representable 
which it saw as impinging on the imagined perfection with which it had endowed mathe­
matics. A key problem in the European assimilation of both the algorismus and the calculus 
was the cultural inability of the West to come to terms with this idea of non-representable, 
or sunya, nowadays often facilely interpreted as zero.

The non-representable does indeed drop out of a calculation, like zero, but the process 
of zeroing a non-representable is not the same thing as the process of operating with the 
algebraic entity zero—the non-representable need not follow any of the simple algebraic 
rules followed by zero.

Secondly, in contrast to the abacus which gives a concrete representation to each number, 
the place value system provides a systematic nomenclature for numbers (including integers) 
which already encounters a first difficulty with the non-representable, a difficulty which exists
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also for integers, “because numbers are limitless, while signs are limited”.42 As opposed 
to the Roman system of numeration, where the nomenclature for numbers was somewhat 
haphazard and related to the word names and the abacus, the place value system involved 
a nomenclature for numbers that was not only systematic, but was closely linked to the basic 
arithmetic operations, as incorporated in the algorismus. This made the problem of non- 
representability manifest.

We saw above that there is nothing sacred about R. Even from within a formalist perspec­
tive, one may be required to work with a larger number system, where it would be necessary 
to accommodate infinities and infinitesimals, and disregard differences between numbers 
that are infinitesimally different. On the other hand, if we shift our philosophy of mathe­
matics from an idealist to a realist position, one can perfectly well work, in a similar way, 
with a smaller number system.

The Non-Representahle and Integers on a Computer

Present-day calculations done on a computer necessarily involve the use of such a smaller, 
finite number system, for a computer can only deal with entities that admit a concrete repre­
sentation. Hence, integers on a computer are different from the idealized integers of Peano’s 
arithmetic, for a computer can never do integer arithmetic of the sort formalised by Peano. 
We saw, in the earlier program, how addition of two numbers in a C-program would lead to 
the sort of arithmetic in which

20000 + 20000 = -25596

. 1'his happens because the computer reserved only 16 bits to represent an integer; so it 
could only represent integers between —32768 and 32767. The same C-program compiled 
on a 32 or 64 bit Windows platform would be able to represent a wider range of integers. 
'Eo obtain a similar “failure” of integer arithmetic on a computer, one would need a larger 
number of zeros in the numbers being added on the left. Indeed, the exact point at which 
computer integer-arithmetic fails can be pushed very far off, in a region where we don’t at 
all care what happens. The point, however, is that, unlike in Peano’s formal arithmetic, there 
always will be such a “don’t care” or non-representable region for any calculation done with 
integers or any other sorts of numbers on a computer. The limit is specified by the total 
storage available to the computer, which may be very large, and more than adecjuate for all 
practical purposes.

The Non-Representable and Floating Point Numbers

Of course, one is not obliged to use one bit to represent one place in the binary expansion 
of an integer; one can use instead the oating point (mantissa-exponent) representation. 
I'he range of numbers that can be expressed using 32-bit oats is now greatly increased, and
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typically extends from around 1.18 x 10-38 (or 1.415 x 10-45 for non-normal numbers) to 
around 3.37 x 1038. But now one encounters another problem. As a trivial example, if we 
extract the square root of 2 and square it, this will not give us back 2. Any practical calculation 
using oats on a computer involves explicit zeroing of terms regarded as insignificant.

Indian tradition was comfortable with this fact of life, for it did not see the world or math­
ematics as something that re ected the ideal rational laws of a transcendent God. However, 
i f  we regard the operations of extracting a square root and squaring as formal inverses of 
each other, then we are bound to say that the calculation of squares and square roots is ap­
proximate and involves an error. In this way of looking at things, all calculations, hence all 
practical mathematics, must forever remain erroneous.

The difficulty that the idealist philosophy has in grappling with non-representables has 
not entirely disappeared as of today, because it has not been correctly understood as such, 
and computational calculations are still seen with the idealist gaze.

Computational oating point numbers are formally described by the IEEE standard 
754. An even more idealized system of computational oating point numbers is some­
times used for theoretical purposes. These correspond to rounding or chopping arith­
metic.43 As we saw in Chapter 3, the calculations involving what would today be called 
irrational numbers were done perfectly well in Indian traditions using rational numbers. 
However, in traditional Indian mathematical calculations rounding, for example, was done 
on a rule-and-exception basis. This is different from the current treatment of oating 
point numbers on a computer, which is rule bound in a mechanical way that character­
izes both present-day computers and the Western understanding of mathematics. Thus, 
traditional Indian numbers are not identical with oating point numbers used on a com­
puter. However, for our immediate purposes we can regard them as similar, for the key 
point here is that whichever of these representations of numbers we choose, it must involve 
non-representables.

Failure of Algebraic Laws for Floating Point Numbers

Our key concern here is with the concrete mathematical consequence of the existence of non- 
representables. Consider the practical version of the oating point number system used on 
computers (IEEE 754). Setting aside the more technical case of under ow, there are various 
types of non-representables. One type of non-representable, called NaN (Not a Number), 
is that which cannot at all be represented as a oating point number on computers using 
the above standard. From the point of view of formal arithmetic, most real numbers fall 
in this category, as also most rational numbers and most integers! Changing the standard 
to what is euphemistically called “infinite precision” arithmetic will only change the “don’t 
care” threshold, but will not change any of the above statements.
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The existence of non-representables has various curious arithmetic effects. For example, 
most numbers on a computer will behave like zero when added to a much larger number. 
(Thus, there is a relation between non-representable and zero; the non-representables are 
zeroed in a calculation.) For example, if we are working with the IEEE oating point stan­
dard, then we have

1 + = 1,

where is any number less than about 10-7 (or less than the “machine epsilon” if double 
precision is used). The technical reason for this is that the computer must bit-shift the 
mantissa to equalize the exponent to add two numbers in the oating point representation. 
The above might not seem much of a catastrophe, but we also have, by the same logic,

107 +  1 =  107

if we use oating point representation on a computer.
That is, there is no absolute or mechanically representable notion of a non-representable. A number 

which is representable in one context may become non-representable in another. Thus, for 
example, the number = 10-8 is easily representable as a oating point number; however, 
in the arithmetic operation of adding it to 1, becomes non-representable, so that 1 + = 1.
Non-representability may he relative, and may vary with the context.

Various “laws” that formal integers and real numbers “ought” to obey are today taught 
to children. By these standards, the integers and oating point numbers on a computer are 
outrageous criminals who don’t respect any of these laws! As a consequence, most of the 
usual “laws” of arithmetic, including the associative “law” for addition and multiplication, 
fail. For example,

1+  ( ( - ! ) +  ) = 0 = = (l + ( - l ) )  + •

Numbers on a computer can hence never form a held or any of the more common algebraic 
structures to which idealized numbers are subject.

Another type of non-representable, called INF and —INF, arises when the exponent is 
larger than permitted. To understand how this case is handled, we need to understand the 
extended real number system.

Formally, the extended real number system R = R — oo, oo . Flere, the two symbols 
—oo, oo satisfy the following kind of algebraic identities: — = 0, a • oo = oo (if a > 0), 
etc. Division by zero is not defined, hence also [j is not defined; but this is more a matter 
of empty fastidiousness, for something very similar is defined: viz. the product 0 • oo is 
usually44 defined as 0 (since such a convention is especially needed in probability theory 
and the theory of Lebesgue integration).

Accordingly, the IEEE standard has three additional kinds of not-quite-numbers, INF, 
—INF, and NaN. The last is an abbreviation for Not a Number. It has been put in to take
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care of the kind of situations where an operation with oating point numbers is undefined, 
such as division by zero.

Like all standards, this standard too is undergoing a subtle practical transformation. For 
example, the Java language claims platform indifference. That is, a program built on one 
system will run identically on all other systems. (This is different from C or C + + programs 
that are portable, but may run differently on two different platforms, such as 32-bit Windows 
and DOS.) To this end, the Java language defines primitive data types like oats and ints 
in terms of bits rather than bytes. It claims to respect the IEEE oating point standard. 
However, the following problem arises. In Java (Version 2) an integer divided by zero leads 
to a run time error. But if the same int is cast as a oat and then divided by zero, the result is 
INF! That is to say, if 2 is regarded as a real number, then | = oo, while if 2 is regarded as 
an integer, then | is an illegitimate arithmetic operation. Java is a language of very recent 
origin. Thus, confusion about non-representables is still widespread to the present day.

Classifying and representing a few types of non-representables does not, of course, 
solve the problem of non-representables. The non-representable, per se, can no longer 
be ignored; its existence is today undeniable because computers cannot deal with non- 
representables—and, unlike human beings, present-day computers simply cannot pretend 
to be able to deal with a thing (an ideal point, for example) if they can’t!

Calculus on a Computer

Finally, let us notice that most practical applications of calculus to science and engineering 
typically require calculation of the solution of some sort of differential equation—that can be 
done very well on a computer. However, to do a calculus-related calculation on a computer, 
it is necessary first to translate calculus into the language and numbers available on a com­
puter. This is usually done by translating derivatives to finite differences, and real numbers 
to oating point numbers.

So we see that, to arrive at something of practical value, we are compelled to throw away 
formal real numbers, and return back to the starting point.

The only question that remains is one of epistemological security. Calculations done on a 
computer, though adequate for practical purposes, are regarded as intrinsically “erroneous”.

VII
SUNYAVADA VS FORMALISM

It is therefore worthwhile to brie y examine things from the perspective of sunyavada phi­
losophy, according to which it is idealist Platonic philosophy that is intrinsically erroneous.

We see here two clearly differing philosophies of number. According to one—the Pla­
tonic philosophy and its derivatives—only the ideal can be real. It can never be practi­
cally attained. The practical must remain forever erroneous and inferior. According to
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the other—the Buddhist philosophy of sunyavada—comprehension of reality requires us to 
come to terms with non-representability, and not to posit the existence of ideal entities that 
are neither manifest nor can be inferred from the manifest: idealizations are intrinsically 
erroneous and empty.

It is worth expounding this idea: since it is so contrary to the theology that has motivated 
Western mathematical thought since Plato, many people may have difficulty in understand­
ing it.

Thus, the motivation for idealistic mathematics has been mostly theological: Plato related 
mathematics to the soul as did Proclus nearly a thousand years after him, and both were 
quite explicit about the relation of mathematics to religious beliefs. The Christianization 
of mathematics at Toledo was also motivated by the key concern of making mathematics 
theologically correct, by transforming Procluvian philosophy and Islamic rational theology 
to something acceptable to the revised Christian doctrine of the 4th c. Though formalism 
secularized this, idealizations always tend to be coloured by religious beliefs, and only the 
practical can be truly secular. For example, it is well known how Hilbert’s notion of proof was 
initially found to be “theology, not mathematics” by Paul Gordon.40 One understands that 
believers will persist in their beliefs, but there seems no reason why anyone else is bound to 
accept this idealist theology or the valuation of the metaphysical over the physical, especially 
since this is of no particular practical value. On the contrary, idealistic mathematics is of 
some anti-practical value, since the theologification of mathematics is what makes it hard 
for students to understand.

Therefore, as an alternative to formalism and Platonism, we articulate the consequences 
here of the sunyavada philosophy of Nagarjuna. This philosophy is antithetical to the Pla­
tonic philosophy of idealism.

We have seen that the Buddhist notion ofpramdna accepts only two principles: the empiri­
cally manifest and inference. Therefore, while sunyavada would readily concede the existence 
of a physical dot on a piece of paper, it would deny the existence of an idealized mathemat­
ical point, or a notion of “pointness” the existence of which is neither manifest nor can be 
inferred from other things that are manifest. Therefore, instead of saying that the dot on a 
piece of paper is an erroneous representation of a geometrical point, sunyavada would say 
that the idealized geometrical point is an erroneous representation or empty conceptualiza­
tion of the real dot on the piece of paper. Although this point of view is really very simple 
and natural, it may seem very hard to understand for those who have been conditioned from 
childhood into unnatural ways of looking at natural things.

This point of view is called Madhyamika (more popularly known as zen, derived from 
sunya) or the “middle way” because it neither accepts the extreme of sasvatavada—the doc­
trine of the eternal existence of idealized entities—nor does it accept the nihilistic (ucche- 
davada) position of denying all existence altogether. This is expressed by Nagarjuna in the
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succinct formula which opens his Mulamadhyamakakarika: anucchedam, asdsvatam (“Neither 
non-existence nor permanence”).

For the same reason, sunyavada denies the existence of an immortal soul or idealized 
notion of identity—for the existence of the soul is neither manifest, nor can it be inferred. 
sunyavada would point out the manifest fact that the empirical world changes every instant, 
and so do individuals.46 There is no evidence to suggest that something “essential” in indi­
viduals remains the same across all these changes. Thus, the seed in the granary is not the 
cause of a plant, because it is different from the seed in the ground (which is bloated up etc.). 
Although the seed has changed, we continue to use the same name “seed” since there are 
so many seeds in the granary and they keep changing every moment, so that it is practically 
impossible to give all of them distinct names. Similarly, it is due to this paucity o f names, that 
one gives only a single name to an individual from birth to death, neglecting the variety of 
actually observed changes as non-representable. Since the very existence of the soul (or any 
kind of God) is denied, therefore, there is no question of mathematics being good for the 
soul, as asserted by Proclus. The idealized notion of a geometrical point or “point-ness” is 
empty. Similarly the notion of an idealized real number, or “pi-ness” is empty—devoid of 
any reality.

We recall from Chapter 3 that since —500 CE the sulha siUra-s had exactly this practical 
attitude towards real numbers, when they described the value of s/2 and ir as sa-visesa mean­
ing “this with something remaining”. A similar point of view was adopted a thousand years 
later by Aryabhata in the Aryabhatiya where the value of 7r is described as dsanna meaning 
“near”. We have also seen in Chapter 3 how yet another thousand years later Nilakantha 
unambiguously accepted this state of affairs. Thus, there is nothing specifically “Buddhist” 
in the acceptance of non-representability, it is just that sunyavada philosophy provides a com­
plete and explicit ontology and epistemology for this practical attitude, which has otherwise 
been dismissed as “erroneous” on grounds of high idealistic philosophy which may itself be 
erroneous as we have pointed out.

If social acceptability among professional mathematicians is the ultimate test of mathe­
matics, then it is possible that mathematicians with religious leanings or cultural predispo­
sitions may be inclined to choose one sort of mathematics over another. However, in that 
case, a better solution might be to clearly separate Platonic mathematics, Christian math­
ematics, etc. from secular, practical mathematics. The one sort of mathematics could be 
pursued, like music, or theology, for cultural and religious reasons, while there would be a 
much wider agreement on the other sort of mathematics. 'Phis would not be the same as 
the division between pure and applied mathematics, for the latter would no longer be epis­
temologically dependent upon the former—while “pure” mathematics would vary with the 
cultural milieu, practical mathematics would not.
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C H A P T E R  9

Math Wars and the Epistemic Divide in Mathematics

European historical difficulties with Indian mathematics 
and the present-day learning difficulties in mathematics

fundamentally change the content of mathematics?
Learning difficulties peculiar to mathematics are here traced to an epistemic schism in 

mathematics. Using “phylogeny is ontogeny” these difficulties are seen as re ections of

origin: (1) arithmetic, (2) algebra, (3) trigonometry, (4) calculus. This mathematics arose in 
a different epistemic context, and Europe experienced difficulties in assimilating it because 
it recognized only a single “universal” European mathematics. This led to the real math 
wars, lasting for a thousand years, first over algorismus and zero and then over calculus 
and infinitesimals. During this period the imported mathematics was slowly “theologified” 
to make it compatible with Western metaphysics. This also complexified mathematics: the 
formalistic understanding even of integers is far too complex to be taught at an elemental')' 
level. Idle concerns underlying formalism being metaphysical, formalisation did not add 
any practical or secular value to mathematics—but practical value is the main reason to 
teach mathematics at the elementary level.

Computers have precipitated a third math war by again greatly enhancing the ability to 
calculate in a way regarded as epistemically insecure—according to Western metaphysics. 
The suggested correction is to recognize the distinct epistemic setting of mathematics-as- 
calculation and teach it accordingly.

OVERVIEW

IY do school (K-12) students find mathematics especially difficult? What is a good 
way to ameliorate these difficulties? Would the new technology of computation

actual historical difficulties. Much mathematics taught at the K-12 level is of Indo-Arabic
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I
INTRODUCTION

The Math Wars in the United States

In recent times, mathematics education in the United States has been ravaged by the so- 
called Math Wars. Worry over the poor performance of US students in mathematics tests1 
again focused attention on mathematics education in the 1980’s. This led to the formula­
tion of a set of standards by NCTM2 in 1989 (contested by e.g. California,3 and updated4 
in 2000). The US Education Department brought out a White Paper on mathematics ed­
ucation/’ and, in October 1999, endorsed as “promising” certain texts promoting “con­
structivist”6 or discovery-learning methods of teaching mathematics. This “constructivist” 
curriculum has since been labelled “new new math”, “fuzzy math”,7 and “no correct-answer 
math” by opponents, who include Field Medalists and Nobel Prize winners.8 Worries about 
poor performance in mathematics persist,9 and the TIMSS-R10 sought to relate this poor 
performance to a variety of factors (apart from the curriculum), such as university degrees 
of maths teachers, home education resources, etc.

The Epistemic Divide

None of this addresses the root cause of learning difficulties specific to mathematics. The 
controversy surrounding the “new new math” of the 1990’s, like that surrounding the “new 
math” of the 1960’s, is situated by this chapter as only a symptom of a deeper and more 
persistent malaise, an epistemic schism within mathematics. The quarrel about what and 
how mathematics should be taught simply re ects fundamentally divergent perceptions of 
what mathematics is.

This divide in mathematics is rooted in history. Much of what is today taught in K- 
12 mathematics—arithmetic, algebra, trigonometry, calculus—is a product of a complex 
historical process of cultural assimilation as some of the very names “algebra”, “sine”, “surd”, 
and “algorithm” indicate.11 Elementary arithmetic algorithms, for example, competed with 
abaci for over six hundred years in Europe because of the difficulties encountered in this 
process of assimilation.

Phytogeny is Ontogeny

This chapter proposes that we learn from these historical difficulties by applying in a novel 
way the principle that “phylogeny is ontogeny”—that the learning process re ects the his­
torical evolution of the subject, telescoped into a much shorter period of time. Thus, the 
attempt is to understand the difficulties that students today have in assimilating elementary 
mathematics by studying the difficulties that arose historically in the process of culturally 
assimilating that mathematics. Correction naturally follows a better understanding.
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II
DETOXIFYING THE HISTORY OF MATHEMATICS

This, of course, requires a fresh approach to history not as an instrument of glorification, 
but as a means of understanding. This new approach makes epistemology the key to under­
standing the history of mathematics.

The Two Streams of Mathematics

Brie y, Europe inherited not one but two mathematical traditions: (i) from Greece and 
Egypt12 a mathematics that was spiritual, anti-empirical, proof-oriented, and explicitly reli­
gious, and (ii) from India via Arabs a mathematics that was pro-empirical, and calculation- 
oriented, with practical objectives.13 Much mathematics taught at the K-12 level is oflndo- 
Arabic origin: (1) arithmetic, (2) algebra, (3) trigonometry, and (4) calculus.

Despite the obviously different philosophical orientations of these two streams of mathe­
matics Europe recognized only a single possible philosophy of a “universal” European math­
ematics, into which it forcibly sought to lit both mathematical streams. One can understand 
how this happened under the in uence of religious politics as follows.

The Role of Religious Politics

In Europe ever since state and church came together some 1700 years ago, history became 
a malleable instrument of religious politics. Through Constantine, Charlemagne, crusades, 
and colonization, the church thrived on the most extreme agenda of hate and violence ever 
known to humanity. Papal fatwa-s, like the bull Romanus Pontifex, promulgated a doctrine 
known as the “Doctrine of Christian Discovery”,14 which required, inter alia, that no “theo­
logically incorrect” part of the world could, in principle, make any significant contribution 
to knowledge or discovery. Though these Bulls have been widely regarded15 as setting the 
agenda for religiously motivated genocide in the Americas,16 they also set the agenda for in­
tellectual genocide, by seeking to eliminate the contributions of the Persians, the Egyptians, 
Indians, and the Arabs, up to the 1 1 th c. CE, by the crude device of attributing all of it to the 
“Greeks”. Furthermore, the extreme violence of the church was also directed inwards: in the 
days of the Inquisition, the slightest acknowledgment of “pagan” in uence could easily have 
led to one being denounced by some rival, with grave and excessively painful consequences. 
Even in England, a Newton kept his theological deviance secret throughout his life, and the 
final version of his 8-volume History o f the Church still remains a secret.1 * All this resulted in 
the amusing historical fantasy that mathematics originated in “Greece” (located in Africa!)

This distorted history inevitably impacted also the philosophy of mathematics, so that 
mathematics came to be defined in Europe as something that imitated the “Greek” method 
of proof—as sanitized by Christian rational theology.18 A key element of this sanitization
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was the complete elimination of the empirical from mathematics, as in the current notion of 
mathematical proof due to Hilbert and Russell. The complete elimination of the empirical 
conveniently reduced mathematics to a branch of metaphysics.

Ill
THE REAL MATH WARS

Because of this agenda of forcing all knowledge to fit a convenient theological mould, Eu­
rope attempted to force the imported practical mathematics into a metaphysical mould of 
mathematics-as-certitude. This led to a protracted struggle lasting a thousand years: the 
resulting tensions were re ected not only in Clavius’ advocacy of practical mathematics and 
his in uential reform of the mathematics syllabus,19 but also in popular satire20 on Platonic 
mathematics. The difficulties with the infinitesimal calculus, and, more recently, computa­
tional mathematics, are some of the other high points of this struggle.

More systematically, in this thousand-year old and continuing clash of mathematical epis­
temologies, one can identify three phases, concerning algorismus, calculus, and computers, 
respectively.

(1) Algorithms and the First Math War. Today’s elementary arithmetic algorithms were 
accepted in Europe after some six hundred years of battle (from the 10th to the 16th c. 
CE) between earlier abacus methods and algorismus methods. Herbert (Pope Sylvester II,
d. 1003 CE) first used Indo-Arabic symbols on counters (apices) without understanding that 
method of computation.21 Algorismus texts were based on (al Khwarizmi’s) translations of 
Indian mathematical texts of the 7th c. CE, and these methods of arithmetical computation, 
studied for their practical value by Florentine merchants, were viewed with great epistemo­
logical suspicion in Europe. The turning point of this war is usually placed in the 16th c. 
CE,22 but the war truly ended only in 1834 with the burning of tally sticks which also burnt 
down the British Parliament.23 The difficulties have usually been regarded as relating to 
the symbolic representation of numbers versus the concrete representation of numbers in 
the abacus. (The usual algorithms for addition, subtraction, multiplication, and division, 
are impossible with the Roman numerals used in Europe, and explicitly require a place- 
value system.) Thus, zero was problematic since it had “no value in itself, but added any 
amount of value on being placed after a number”. But there were various other differences. 
The “Creek” notion attached a mystical significance to numbers, so that a typical challenge 
problem to a mathematician in 16th c. Europe was this: “Is unity a number?” (The expected 
answer being that unity is not a number.) The Indian notion, on the other hand, did not have 
such hang-ups. A more subtle problem related to the question of non-representable (sirnya, 
both infinitely large and infinitesimally small, later zero24). Thus a key problem was that, 
unlike Buddhist philosophy (particularly Sunyavada), idealist philosophy failed to seriously 
address the problem of non-representables. These difficulties, by the way, are not entirely
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over: look at the peculiar conventions relating to zero in the Java computing language: zero 
as integer behaves differently from zero as a oating point number!

(2) Calculus and the Second Math War. The infinitesimal calculus is another key aspect 
of mathematics-as-calculation, and the struggle to assimilate the calculus may be seen as ex­
actly analogous to the case of the algorismus. As my earlier papers have sought to show, 
from the 16th c. onwards, Indian mathematics/astronomy texts of Aryabhata, Bhaskara, 
NTlkantha, Sankara Variyar, and Jyesthadeva, containing key results of the calculus, were 
transmitted from Cochin20 to Europe by Jesuits like Matteo Ricci26 in connection with the 
European navigational problem (of determining latitude and longitude at sea), the related 
problem of computing precise trigonometric values,27 and the related28 calendar reform of 
1582. Despite the obvious practical merits of the calculus, its inherently foreign epistemol­
ogy was mathematically unacceptable to many in Europe, so that there followed another 
three centuries of warfare about the exact mathematical status and worth of “infinitesimals”. 
Basically, the Indian infinitesimal techniques involved two features that were unacceptable 
in Europe. The first was that the Indian notion of pramana, since it permitted the use of the 
empirical, was different from the European notion of mathematical proof. The second was 
that Indian techniques of calculation routinely used rounding, while the European notion of 
mathematics as certitude required that the smallest quantity should not be neglected. (This 
difference can still be seen in everyday commercial transactions today; in India, a vegetable 
vendor will routinely try to round off Rs 18 to Rs 20, by adding a small purchase, while Rs 
20.50 will equally be rounded down to Rs 20. This is not the case in the West, and this 
cultural difference is not really to do with the non-availability of small change.) Thus, while 
valid pramana was available for the infinite and indefinite series in Indian tradition, Cava- 
lieri, Wallis, Gregor)’, Newton, Leibniz, etc. struggled in vain to convert it into mathematical 
proof that was acceptable to Europeans. Despite the historical glorification with which we 
have been inundated, it is clear from Berkeley’s objections29 an actual epistemic advance 
had to await Dedekind’s semi-formalisation of real numbers in the late 19th c., and the for­
malisation in the 20th c. of the set theory that it used. Thus it took a long time to assimilate 
the calculus within formalistic mathematics.30

(3) Computers and the Third Math War. Computers, today, are rapidly widening this di­
vide in mathematics. Numbers represented on a computer necessarily disobey key theoret­
ical “laws”, such as the associative law, required of numbers in formal number systems, and 
taught to K-12 students. However, using this oating point representation of numbers,31 
computers enable numerical calculations that stretch far beyond what can be mathemati­
cally proved; such calculations may have great practical value, as in solutions of stochastic 
differential equations driven by Levy motion, used to estimate financial risk, or study pertur­
bation related to controlled fusion, or in solutions of functional differential equations used 
in my proposal for a new physics.32 Nevertheless, such numerical solutions continue to be 
regarded as mathematically valueless in the absence of a proof that the solution exists.
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IV
RESOLVING THE MATH WARS

The root cause of this thousand-year old math war may now be identified: each case of al- 
gorismus, calculus, and computers, enhanced the ability to calculate, but with techniques 
regarded as epistemologically insecure from the Platonic viewpoint. Being not indifferent 
to the practical value of the mathematics, Europeans sought to force this mathematics to be 
“theologically correct” by reinterpreting it. The difficulty of this task is what made the as­
similation of mathematics in Europe so difficult that it took nearly a thousand years. Using 
“phylogeny is ontogeny”, it is this superimposition of theology that makes mathematics dif­
ficult to learn today. To resolve the quarrel about the teaching of mathematics, we must first 
address this epistemic schism in mathematics. We must first decide in a culturally neutral 
way: does mathematics relate to calculation or to proof? And, what are valid methods of 
proof?

On the one hand, from a formalist perspective, proof33 has a higher epistemological value 
than calculation: it is today mathematically acceptable for a mathematical theorem to prove 
the existence of something without providing any accompanying method of calculation (or 
even construction), but no Field’s medal was ever given for making a complex calculation, 
unsupported by a proof; for something that lacks proof would not today be regarded as 
mathematics, and would not, therefore, qualify for a Field’s medal.

On the other hand, there is the undeniable fact that for all practical applications of math­
ematics, such as sending a man to the moon, it is not the existence theorem per se but the 
calculation that is important; and that calculation usually involves many layers of approx­
imation, and potential sources of error, in obtaining a numerical approximation to an ap­
proximate solution of a physical model which is itself “approximate”. Thus, the result of 
a typical calculation, though useful like the physical model, cannot but be “approximate”, 
empirically based, and fallible—quite unlike the result of a mathematical proof, which is 
believed to be an exact, formal, perfect, and certain theorem.

That belief is questionable.34 Brie y, Plato regarded mathematics as universal for he 
believed it concerned necessary truths. Formalists, while maintaining the Platonic divorce 
from the empirical, have shifted the locus of this necessary truth from theorem to proof, 
which is believed to connect arbitrary axioms to their necessary consequences. However, 
this belief too is incorrect, for proof uses logic, which is neither culturally universal (e.g. 
Buddhist or Jain logic35) nor empirically certain (e.g. quantum logic36). Furthermore, the 
notion of valid proof has varied across cultures: so formal mathematics contains no necessary 
or universal truths, but is purely a system of aesthetics like music.

This aesthetic does not suit practical mathematics-as-calculation which needs an alter­
native epistemological basis, a basis which acknowledges inexactitude, fallibility, differences 
from formal notions of “number”, and accepts a role for the empirical (“contingent”)
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within mathematics. Practical and useful mathematics, as decried by Plato, but as used 
in algorithms, calculus and numerical computation, needs a separate, non-Platonic, non- 
Neoplatonic (“non-Euclidean”) epistemology, and it needs to be taught in a different 
way.

V
CORRECTING MATH TEACHING

So what does the revised history and “non-Euclidean” epistemology of mathematics mean 
for classroom teaching?

Brie y, since formal mathematics is no more than a culturally-dependent system of aes­
thetics, while it may continue to be taught like Western music, there is no need to impose its 
consequences on K-12 children. What we need to teach children is practical mathematics. 
And this can be taught much more easily in the epistemic setting in which it originated.

As a concrete example, consider the case of “Euclidean” geometry, which has been part of 
the traditional European mathematics curriculum almost since the inception of Oxford Uni­
versity, and part of the Arabic and Neoplatonic mathematical syllabus for centuries before 
that. Allowing unrestricted recourse to the empirical in mathematical proof trivializes the 
book.37 On the other hand, Hilbert’s38 synthetic reinterpretation of the Elements, leading 
to the 1956 recommendations of the US School Mathematics Study Group,39 still used in 
Indian schools, has serious problems that have already been discussed.40 However, the fact 
that a certain book would get de-valued is hardly a valid reason for imposing a non-intuitive, 
non-metric geometry on K-12 students. Synthetic geometry should be set aside as an un­
successful attempt to make “Euclid” theologically correct. Though teaching geometry in the 
traditional Indian way with a rope would involve a serious epistemic shift away from present- 
day formal mathematics, it is practical, free from artificial theological encumbrances, and is 
very easy for children to understand. Thus, the “Pythagorean” “theorem” can be established 
in one step instead of 47 steps. Any philosophical or theological problems with this could 
well be discussed at the appropriate advanced level, instead of forcing children to grapple 
with the consequences of obscure theological concerns.

There would be similar radical changes also in the way one teaches numbers, algorithms, 
and calculus. For example, although the computer is ubiquitous, the way students are taught 
about calculations on a computers is roughly as follows. First, students are taught that num­
bers obey certain “laws” (note the theological overtones). Then, at an advanced level (pro­
vided they specialize in mathematics), they are taught the basis of those laws along with 
number systems such as the real number system. Only then are they positioned to under­
stand the rounding conventions used in oating point arithmetic, and the resulting “errors” 
as studied in numerical analysis, (dims, most students, including many who specialize in 
mathematics, never learn about the actual way in which calculations are performed on a
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computer.41) Instead of this long-drawn route, one could simply explain the technique of 
calculation with rounding, as done by Brahmagupta, for example, so that it would be very 
easy for even a K-12 student to grasp the process. The point here is not that one should 
copy what Brahmagupta did, but that one should proceed on practical rather than theolog­
ical concerns.

In particular, it may be worth re-examining whether one might want to teach as entirely 
separate subjects, from the outset, the two mathematical streams: practical mathematics and 
formal mathematics, with their distinct notions of number and proof. At the same time, 
one may want to re-examine the feasibility of teaching the consequences of formal math­
ematics at an elementary level where formalist philosophy itself cannot be taught. Such a 
re-examination would be particularly timely since the sudden growth of computer technol­
ogy has again upset the earlier balance (in the West) between mathematics as proof and 
mathematics as calculation, and this calls for a fundamental review of what mathematics 
should be taught and how.

It is not being proposed that one should rush into the classroom right away with the sug­
gestions that arise from this work. These suggestions are to be seen as constituting a future 
research program, which is a clear consequence of the revised historical understanding. A 
more precise set of recommendations would need to be evolved and documented in consul­
tation with a variety of people including students, historians and philosophers of science, 
math educators, computer scientists, etc. The classroom trials of these new teaching recom­
mendations should be taken up only after allowing a reasonable gap of at least a few years, to 
allow the documentation to circulate, to elicit reactions and suggestions from a wider circle 
of educators.
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38. I). Hilbert, The Foundations o f  Geometry, Open Court, La Salle, 1902.
39. School Mathematics Study Group, Geometry, Yale University Press, 1961.
40. “Equality” in the Elements was related to political equity by Neoplatonists and Arab rationalists. While 

Hilbert reinterpreted this equality as congruence, this reinterpretation does not hold good for “equality”,

http://www.IndianCalculus.info/Bangalore.pdf
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from Elements Prop. 1.35 onwards, which refers to equal areas. (Synthetic geometry does not define length, 
hence it is bit pointless to define area synthetically.) Consequently, the Elements, though known in India, 
remained part of sectarian education for centuries, until the book was finally translated from Persian to 
Sanskrit in the 18th c. See C. K. Raju, “Euclid”, and “India, China and Central and West Asia” cited above, 
and C. K. Raju, Philosophy East and West, cited earlier.

41. And even a well-established formal mathematician slipped in stating that there was only one possible 
“accurate” way to do rounding.
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A P P E N D IX  A

Distributions, Renormalization, and Shocks

Difficulties with the continuum approach to the calculus and an example 
o f how advanced formal mathematics needs empirical inputs

OVERVIEW

T HE previous chapters put forward the view that mathematics is not universal, that 
the epistemology of mathematics has varied across cultures, and that these epis­
temological differences have had a key role to play in the historical development 

of mathematics. A key difference related to the role of the empirical in mathematics: the 
mathematics that enters into a physical theory, is it a tautology or is it an auxiliary physical 
theory? Separating mathematics from the claims of necessary truth practically sounds the 
death-knell of formal mathematics, although it can well continue as an aesthetic form like 
music, which varies across cultures.

Present-day formal mathematics is so massive a structure that a doubt might well arise: 
exactly how would empirical considerations play a role at its frontiers? To address this doubt 
we temporarily adopt formalism solely to demonstrate its self-limiting nature to formalists, 
in the manner of Srlharsa who used the tools of Nyaya to demonstrate the inadequacy of 
Nyaya in his KhandanaKhandaKhadya (= breaking the opponent’s arguments into bits and 
devouring them). Thus, the aim is to use the techniques of formal mathematics to show 
to the formal mathematician the unsustainability of his own uncritical beliefs about formal 
mathematics.

To this end, we start by reconsidering the question about the foundation of the calculus 
within formal mathematics. This also involves an issue of substantial historical importance: 
since the days of Newton and Leibniz it has been uncritically taken for granted in the West
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that the continuum approach, and present-day formalisation, is somehow the “right” ap­
proach to the calculus. We have seen that this is not correct: applications usually require 
actual numerical calculations that are better done in other ways, usually using finite differ­
ences. We now bring out the difficulties created by the uncritical acceptance of the contin­
uum approach even at the level of formal theory.

To start with, at the level of present-day elementary mathematical analysis, the continuum 
approach requires that the functions to be differentiated must themselves be continuous. 
Thus, there is the difficulty that a discontinuous function cannot be differentiated. This in­
ability to differentiate discontinuous functions is put down to the intrinsic “nature of things”, 
rather than to the limitations of the method of formalisation. However, because the equa­
tions of physics are formulated as dif ferential equations, practical applications of the calculus 
have needed to differentiate discontinuous functions from the time of Riemann, whose little 
known work on discontinuities, related to shock waves, is almost exactly contemporaneous 
with Dedekind’s work on the continuum. Proceeding on cultural presuppositions, Riemann 
fell into a mathematical error that was later corrected on practical grounds by Rankine and 
Hugoniot. This “practical” trend in mathematics was continued by Heaviside and Dirac. The 
pressure of practice eventually prevailed on mathematical authority, as it usually does, and 
the “disreputable” practice of differentiating discontinuous functions was later formalised 
and accorded sanction in various ways by various formal mathematicians such as Sobolev, 
Mikusinski, and Schwartz, although it is the Schwartz theory of distributions that is today re­
garded by authoritative mathematicians as being the most satisfactory formalisation. These 
later theories permit unrestricted differentiation of a discontinuous (in fact integrable) func­
tion. However, in the process, something else is lost: namely the ability to multiply two 
Schwartz distributions pointwise.

Numerous definitions of the product of distributions have been suggested by now. Thus, 
the problem is no longer one of supplying a definition—the problem today is one of sur­
feit rather than a paucity of definitions. That is, the more serious problem now is that of 
selecting one from among the large number of definitions that have been supplied. One 
would like that the selection is based on considerations more serious than an appeal to the 
social authority of this or that mathematician. This frontier area of contemporary formal 
mathematics very well brings out how formal mathematics quickly reaches a dead end. We 
demonstrate how further progress in this area is impossible without a reference to the em­
pirical, and, in particular, to the areas of mathematical applications to physics where these 
products of Schwartz distributions especially arise. Two such key areas are the renormaliza­
tion problem of quantum field theory and the problem of shocks in real uids. In particular, 
for shock waves, because of the failure of the associative law for the product of distribu­
tions, different (otherwise equivalent) forms of the same differential equation may lead to 
different conclusions, so that the form of the differential equations at a discontinuity, must 
be empirically determined—a failure to do this was Riemann’s original error.
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Curiously, the definition of the product of distributions used in the stock renormalization 
procedure of quantum field theory, leads to a bad physical theory if the same definition 
is applied to shock waves—giving an example of how present-day formal mathematics has 
actually varied with the physical theory to which it has been applied. This example should 
be contrasted with the pretentious claims of ideal truth attached to formal mathematics.

The other interesting consequence that seems to follow is that the appropriate product 
of Schwartz distributions necessarily involves, either implicitly or explicitly, an extension 
of the concept of number, accompanied by a failure of the associative law, at some level, 
as happens with oating point numbers. Thus, it would seem that, within formalism, an 
appropriate foundation for the calculus can only be provided in a setting which uses a num­
ber system larger than the real numbers. Present-day formal mathematics asserts that the 
“Archimedean property” must fail in any proper held extension of the reals. That is, this 
larger number system must admit infinities and infinitesimals, that are used in a way much 
like non-representables are used with a finite set of numbers in computing. Thus, the idealis­
tic understanding of the calculus, using Dedekind’s semi-formalisation of the real numbers, 
and its subsequent formalisation within set theory, did not resolve the key epistemological 
problem of sitnya or non-representability, but merely hid it by burying it under a massive 
epistemological superstructure.

Renormalization in Quantum Field Theory

Today, the Schwartz theory of distributions is considered to be the most satisfactory extension 
of the calculus. Although Schwartz thought it impossible to multiply distributions pointwise, 
without losing some key aspect of the theory, many definitions exist today. Instead of re­
lying on mathematical authority, we propose to probe the empirical context in which the 
definitions are applied.

One such area of empirical application is quantum held theory. The propagators of quan­
tum field theory (fundamental solutions of the field equations) are generalized functions or 
distributions. Pointwise products of these propagators enter into the 5-matrix expansion of 
quantum held theory, which is a formal infinite series expansion, analogous to the “Taylor” 
series. All the verifiable consequences of quantum held theory rest on calculations which 
use this 5-matrix expansion. By means of a formal Fourier transform which is ritualistically 
assumed by physicists to map (undefined) pointwise products to (undefined) convolutions, 
these propagator products in configuration space are presented as divergent convolution 
integrals in momentum space. (T his way of using the Fourier transform is an excellent ex­
ample of how physicists use mathematics as a ritual to advance truth claims.) Even prior 
to the development of the Schwartz theory, physicists had developed ways to extract a finite 
part from these divergent integrals. The much acclaimed agreement of quantum f ield theory 
with experiments (to the seventh decimal place) depends critically on the method of extract­
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ing finite parts—and obviously there eould be several possible methods. The philosophical 
model of falsifiability of a theory supposes that the mathematics that enters into physics rep­
resents necessary truth or tautologous connections between hypothesis and conclusions. If, 
however, that is not the case, and this mathematics represents only a social agreement, or a 
complex social ritual, then the mathematics that enters into the theory is itself an auxiliary 
physical theory that should also be open to physical test. From the viewpoint of physics itself, 
the acceptance of mathematics as auxiliary physics may also help to overcome the limitation 
of present-day renormalization theory to a very restricted class of Lagrangians, which tends 
to exclude quantum gravity for example.

Classical Shock Waves and Relativistic Singularities

The classical understanding of the calculus required every differentiable function to be con­
tinuous. Accordingly, the classical (post-Newton) formulation of physics using differential 
equations has generated the myth that nature has divinely ordained physical quantities to 
vary continuously, except at “real” discontinuities such as Hawking-Penrose singularities, 
often interpreted as events of cosmic significance, on the grounds that physics fails there! 
Likewise, it has also long been believed that “real” discontinuities or shock waves cannot ex­
ist in the presence of dissipative phenomena like viscosity and thermal conduction, although 
every observed shock falsifies this belief. Accordingly, the classical Rankine-Hugoniot con­
ditions apply only to the case of Euler equations corresponding to a “perfect uid”. Of 
course, a Rankine-Hugoniot shock is only a model of a physical phenomenon, and consid­
ering that the real phenomenon of shock and blast waves occurs in real uids like air and 
water, there seems no a priori reason to exclude models of discontinuities or shocks in real 

uids. Mathematically, the real difficulty is that discontinuities in the presence of viscosity 
leads to the same problem of “products of distributions”. 'Frying to use here the products 
used in quantum field theory may well result in complete nonsense. The questions thus 
are: (a) whether it would be appropriate to have separate definitions of the product for each 
separate application to physics? and, if not, then (b) on what principle should one proceed 
to select a single product of distributions for several applications?

If the empirical is essential to mathematics, then mathematics must be regarded as an 
auxiliary physical theory, and in that case, one must apply to it the criteria such as sim­
plicity of hypothesis (usually called Occam’s razor, in Western philosophical literature), and 
refutability, usually applied to physical theories. If one does that, then one would naturally 
prefer that definition of the product which allows the same product to be used for both 
quantum field theory and for shock waves in real uids, and leads to empirically acceptable 
results in both cases. At present there is only one such product—proposed by this author. 
This approach incidentally also opens a completely independent empirical way to probe the 
validity of the renormalization procedure used in quantum field theory.
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As regards shock waves, the Rankine-Hugoniot conditions do not provide information 
on possible jumps [-^], [-^] in temperature and velocity gradients across the shock, and this 
information is needed to (provide full Cauchy data to) enable solution of the full Navier- 
Stokes equations behind the shock. The new junction conditions here obtained provide 
the requisite Cauchy data. For normal shocks, the new conditions indicate (“predict”) de­
partures from the Rankine-Hugoniot conditions proportional to the coefficients of viscosity 
and thermal conductivity , A, ; but small departures from those conditions are consistent 
with large jumps [ v n], [ T  n]. Shock curvature has an effect, in addition to gradient 
effects, due to terms like Tr(Ff) [T] (where K  is the extrinsic curvature tensor of the shock 
/ry/jcrsurface, and [T] is the jump in temperature across it).

However, one more condition is needed, and because of the failure of the associative law, 
one has to distinguish between different forms of the same differential equation: two forms 
that have equivalent smooth solutions may have inequivalent non-smooth solutions. Unlike 
the case of Lax’s “conservation form”, a post-facto rationalization, the only way here is to 
proceed empirically.

I
INTRODUCTION

One of the aims of this appendix is to examine whether the viewpoint developed in the pre­
vious chapters has any relevance to contemporary formal mathematics at an advanced level. 
As stated in the abstract, this appendix will adopt the techniques of formal mathematics to 
bring out the limitations of formal mathematics from within formal mathematics—i.e., to 
show that without reference to the empirical, formal mathematics is a self-limiting dead­
end, even if we forget about all “external” considerations of history and philosophy that 
have been covered earlier.

Another key aim of the appendix is to examine the reality of the claim that there is only 
one natural way to formalise the calculus—using the continuum. That is, we aim to examine 
whether that claim merely represents a long-standing and uncritical social consensus in the 
West, which is ultimately unjustifiable like so many socially accepted things.

A third key aim of the appendix is to expose the reality of how formal mathematics has, 
de facto, varied with the physical theory under consideration, showing that it is, at best, an 
auxiliary physical theory, rather than something necessarily true.

To this end, this appendix addresses three questions from different fields that neverthe­
less need to be addressed in one place. A book dealing with the historical development of the 
calculus in relation to the philosophy of mathematics perhaps provides the most appropri­
ate setting, though these considerations are substantially more technical than the preceding, 
and may be skipped by those who lack the background or the interest.
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The first question concerns a foundational issue in mathematics, from a viewpoint purely 
internal to formal mathematics. The classical semi-formalisation of the calculus in the works 
of Dedekind, Cauchy et ah, soon proved to be unsatisfactory because of its limited applica­
bility. From the 1930’s mathematicians like Sobolev started searching for alternative ways 
of doing the calculus. The Schwartz theory of distributions,1 or the equivalent theory of 
generalized functions,2 is today regarded as the most satisfactory extension of the calculus, 
though other theories like Mikusinski’s continue to linger. In the Schwartz theory, the ex­
tension of the calculus is achieved at a certain cost: namely the classical function concept 
is reinterpreted, or rather surrendered, so that pointwise values and pointwise products of 
Schwartz distributions do not make sense. It is, of course, possible to extend the Schwartz 
theory and define a product of Schwartz distributions, and numerous such products have 
been proposed. ( f  Given several competing and inequivalent products o f Schwartz distributions, on 
what basis shoidd one select the “correct” one?

This issue is closely related to the second question of propagator products in quantum 
held theory. The propagators of quantum held theory (fundamental solutions of the basic 
equations like the wave equation) are generalized functions or distributions. The verifiable 
consequences of this theory are derived using products of these propagators. By a ritual­
istic application of the classical calculus (Fourier transform) such propagator products are 
converted to divergent (undefined) integrals. That is, we suppose that

(/ -g) =  f  9-

Mere, / and g are possibly generalized functions, denotes the Fourier transform, and 
denotes convolution. For an appropriate class of functions / and g it is a theorem3 that 
the Fourier transform carries pointwise products to convolutions. The ritual consists in 
applying this theorem in a situation where neither the pointwise product on the left nor the 
convolution on the right is meaningfully defined. For example,

( • ) = = 1  1 = dx.

In quantum held theory, a finite part is then extracted from such divergent integrals through 
an elaborate process called renormalization. As we shall see, these ritualistic beliefs can be 
made “rigorous”, i.e. they can be formalised or put in the framework of formal mathemat­
ics. However, the deeper question that we still need to consider is this. If the mathematics 
underlying physical theory corresponds not to necessary truth, but only to the choices of 
mathematical authority, or to a mere social convention, or a sanitization of a complex rit­
ual, or introduces auxiliary physical hypothesis into the theory, what consequences does that 
have upon the refutability of the physical theory? Does the refutation of a physical theory 
refute only the physical hypothesis underlying the theory, or might it not also refute the 
underlying mathematics? If the latter, as seems to be the case, then would it not be more ap­
propriate to base mathematics on empirical considerations rather than on social custom and
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mathematical authority? This question about the nature of mathematics underlying physics 
can also be considered from a more acute angle internal to the theory, when the theory itself 
is in an unfinished state (like most physical theories) and one needs to determine whether 
the non-renormalizability of quantum gravity, for example, represents a failure of the physi­
cal hypothesis of that theory or whether it represents the unsatisfactory mathematics used in 
the theory, ( f  Does the non-renormalizability o f a theory represent a failure o f the underlying physical 
hypotheses or only o f mathematical technique ?

The third question relates to shock waves. In classical physics, uid ow is described 
by means of differential equations. This presupposes that the functions entering into the 
equations are differentiable. According to the classical calculus, prior to the Schwartz theory, 
a differentiable function is required to be continuous. This limitation of the mathematical 
model and technique has been elevated almost to the status of a divinely ordained natural 
law: the assumption is that physical quantities must vary continuously or smoothly. (Indeed, 
Stephen Hawking has gone so far as to characterize “singularities” at which this “natural 
law” of continuity breaks down as the “beginning” of the cosmos—a situation at which all 
“natural laws” themselves break down—a claim of great importance for religious politics.4)

In practice, of course, an explosion or blast gives rise to a shock wave which is better mod­
elled as a surf ace of discontinuity across which physical quantities like pressure, temperature, 
etc. do change abruptly or discontinuously. According to present-day physical theory, quan­
tities such as the pressure, etc. of a uid are local statistical averages, and these local averages 
cannot be meaningfully determined when large changes take place across the thickness of a 
shock wave which is typically of the order of a few molecular mean free paths. The quanti­
ties, however, are meaningful on either side of a shock wave. The quantities are, therefore, 
regarded as being discontinuous at the shock. That is, though the shock has a measurable 
thickness, this thickness is neglected, treated as non-representable, and the shock is treated 
as i f  it were infinitesimally thin or had zero thickness.

Since it was thought that discontinuous functions could not be differentiated, in place of 
the usual differential equations, these discontinuous changes are governed by a set of junc­
tion conditions (finite difference conditions) called the Rankine-Hugoniot equations, which 
enable one to calculate the conditions behind the shock, when conditions are known in front 
of the shock. (One can similarly work out junction conditions at Hawking-Penrose singular­
ities0—this is too technical a topic to take up here, and we will stick to ordinary shock waves 
in non-relativistic uids.) According to classical wisdom, the surface of discontinuity repre­
sented by a shock can actually arise only in an idealized model of a perfect uid which obeys 
the Euler equations (a simplified form of the full Navier-Stokes equations). In real uids, it 
is believed, dissipative effects due to viscosity and thermal conductivity would smoothen the 
shock into a thin layer across which there are large though continuous changes.

This piece of classical wisdom, based on the limitations of the continuum approach to the 
calculus, overlooks the manifest: shock waves are observed in air, for example, which is a
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real uid. Further, from a practical viewpoint, it is not feasible to compute a solution of the 
full Navier-Stokes equations across a shock regarded as a thin layer across which there are 
large but smooth changes. It is not even clear whether it is theoretically meaningful to speak 
of the Navier-Stokes equations within a shock, since the observed thickness of a shock may 
be of the order of only a few mean-free paths, at which level one can expect a breakdown of 
the continuum approximation used to derive the differential equations of uid ow. Under 
the circumstances, the only possible way out seems to be to revert to the statistical mechanics 
underlying the continuum approximation. This possibility is blocked in the case of relativis­
tic shocks, etc. where there is no statistical mechanics underlying the continuum approach 
(because general relativity lacks an appropriate description of “particles” of matter). Q. In 
real uids like air and water i f  one is interested in studying heat otu or viscous effects behind the shock, 
can this be done directly from the equations o f uid ow?

(Something more than the Rankine-Hugoniot equations is obviously needed, since the 
Rankine-IIugoniot equations do not provide adequate (Cauchy) data to be able to solve the 
full Navier-Stokes equations behind the shock. The relation of this question to products 
of distributions is as follows: this author pointed out long ago6 that, with suitable conven­
tions about products of distributions, the Rankine-Hugoniot equations can be regarded as 
identical to the Euler equations at the shock. The question then is: what are the conditions 
corresponding to the Navier-Stokes equations?)

The Calculus and Generalized Functions

The three questions above are all posed in a way that seems to be “internal” to the respec­
tive fields: functional analysis, quantum field theory, uid mechanics. However, each of 
the above questions relates, in one way or another, to the desirable nature of the calculus, 
l'he calculus is believed to have acquired a “canonical form” after the semi-formalisation 
of real numbers by Dedekind. This “standard” form of the calculus has gained widespread 
acceptance, and today this is the form on which the mathematician is brought up, for this is 
the “rigorous form” of the calculus that is taught in standard courses on real analysis. This 
form is satisfying in many ways from within the formalist viewpoint. However, there is the 
difficulty that a discontinuous function cannot be differentiated, although the need to differ­
entiate discontinuous functions arose in many applications. Riemann first encountered this 
around 1870, and, at the turn of the 20th century, Oliver Heaviside was bold enough to use 
such discontinuous “jump functions”, in engineering applications, contrary to the prevailing 
opinions of socially important mathematicians.

As usually happens, social opinion eventually bent before practical advantage. Another 
great innovator, R A. M. Dirac, saw the worth of the idea as an engineering student. He ap­
plied this engineering technique to physics, using especially the derivative of the Heaviside 
function, nowadays known as the Dirac delta function. This is a “function” which is infinite



Distributions, Renormalization, and Shocks 433

in an infinitesimal neighbourhood of zero, and is infinitesimal elsewhere. Since (formal) real 
numbers have the Archimedean property which does not permit infinities and infinitesimals, 
the delta function led to many a raised eyebrow, for (if one chooses not to abandon real num­
bers) the delta function challenged the very concept of function which some historians have 
claimed as central to the calculus.

The mathematician Sobolev started to put together a theory of such generalized func­
tions. Eventually, the theory was developed further and came to be accepted under the 
name of the Schwartz theory of distributions, though other theories of generalized func­
tions, such as that of Mikusinski have many elegant characteristics.

The Schwartz theory reinterprets a function as a linear functional, to permit unrestricted 
differentiation under the integral sign, using the formula for integration by parts

/ 9 = f(P)g(b) -  f (a)g(a) -  f g  .
a a

To tidy up this formula, we assume that the “test function” g vanishes at the limits of inte­
gration, for example, by allowing the limits of integration to be —oo, and oo, and letting the 
function g vanish outside a compact (bounded) set:

b b
f  g =  -  f g  ■

a a

Thus, within the integral sign the derivative can always be transferred to the test function 
g. When / is not differentiable, the right-hand side can be regarded as the definition of the 
left-hand side, 'lb ensure that this formula always makes sense, we assume that g is infinitely 
diff erentiable. The vector space of all infinitely diff erentiable functions which vanish outside 
a compact set constitutes one class of test functions, denoted by D (when equipped with an 
appropriate topology). Its dual space, i.e., the space of all continuous linear functionals 
on D, is called the space of distributions, denoted by D . If f  D , and g D, we write 
/, g fg.  With this notation, every f  D has a derivative f  D , defined by
/ , g — f ,  g , for all g D. Every ordinary function corresponds to a distribution; 

when it has a continuous derivative, the two notions of derivative coincide.
With this understanding we arrive at a situation where every integrable function is in­

finitely differentiable—the integral in question being the Lebesgue integral, which gener­
alizes the Riemann integral. The class of Lebesgue integrable functions obviously includes 
functions that are discontinuous in a variety of ways, including those discontinuous functions 
that are Riemann integrable.

However, this ease of unrestricted differentiation is achieved at a certain cost. The cost is 
that we can no longer speak of the value of a function at a point. This is convenient in a way, 
for we can speak of the delta functional, without being obliged to say what the value of the 
delta function is at zero. The inconvenience is that since we cannot speak of the value of the 
function at a point, we cannot also speak of the pointwise product of two functions.
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The Product of Distributions

According to Taub/ “Fortunately, the product of such distributions [as arise] is quite tract­
able”. Thus, for example, consider the Heaviside function 0, which is defined by

0{x) 1 : x > 0
0 : x < 0.

(The exact value at 0 is unimportant, because a single point has Lebesgue measure zero, and 
even if the value here is infinity, the earlier-mentioned convention 0 • oo = 0 ensures that it 
will contribute nothing to the integral.) daub’s argument is this: from

02 = 0.

we can easily apply the “Leibniz” rule (for the derivative of a product of two functions) to 
conclude that

20-0  =  0 ,

with primes denoting differentiation. Since 0 =  , this can be rewritten as

20■ =

which immediately tells us that

0■ =
1

(A. 1)

This is simple enough except that we also have

03 = 0,

from which, by the same logic, it would follow that

W20 =  0

Since

this corresponds to

0-

02 =  0 ,

1
3 ’

Comparing (A. 1) and (A.2) leads to the interesting conclusion that  ̂
obviously wrong here. Similarly,

(A.2)

j !  Something is

x 1(x ) = 0 = 1 • = (x xx) .
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Schwartz Impossibility Theorem

In fact, Schwartz8 generalized this to a theorem, nowadays called the Schwartz impossibility 
theorem, which suggested the impossibility of defining products of distributions, under cer­
tain natural-looking conditions. The product of a smooth function h C and f  D is 
easily defined in the natural way by h f, g = /, hg , for all g D. The right-hand side
makes sense, since if h C and g D, then hg D. This product has been called the 
Schwartz product. The Schwartz impossibility theorem asserts that there does not exist an 
associative differential algebra A D in which the product agrees with the Schwartz prod­
uct. That is, it is impossible to define the product of distributions so that the associative law 
holds and the product agrees with the Schwartz product defined for a smooth function and 
a distribution. More generally, the above examples show that either the associative law or 
the “Leibniz” rule (for the derivative of a product) must fail for any product of distributions.

Earlier De nitions of the Product

Nevertheless, by now dozens of definitions have been proposed.9 So, the problem now is 
this: which amongst these many definitions is the “correct” definition? This raises a funda­
mental question. Each such definition extends the Schwartz theory (which itself extends the 
calculus from the viewpoint of mathematical analysis). But, between competing mathematical 
theories, which theory slundd one choose ?

One possibility is to argue that definitions are arbitrary. This possibility suits the formal 
mathematician, for in practice this means the value to be attached to a definition is propor­
tionate to the social authority of the mathematician proposing the definition. So, in practice, 
accepting the arbitrariness of definitions translates into a bald reliance on social authority.

This may be fine from the point of view of the pure mathematician. But, just as the 
pure mathematician has been blind to the arbitrariness in the choice of logic underlying 
proof, so also those who use mathematics for practical applications (physicists, engineers, 
and so forth) have been blind to the arbitrariness underlying mathematical definitions. A 
definition selected merely on social authority amounts to an auxiliary hypothesis—a social 
belief introduced into physical theory. Thus, the refutation of a physical theory might well 
mean only a refutation of one of a number of arbitrary definitions in the mathematics that 
that theory used. This would he an extremely inconvenient situation for the refutation of a 
theory would not provide any serious guidance about the alternative physical theories to be 
explored.

The question of which definition to use can partly be settled by another approach which 
implicitly appeals to a principle of simplicity: if one definition of the product subsumes 
another, one would prefer the more general definition. To this end, let us consider various 
classes of definitions of the product. The implicit appeal to generality is just a disguised



436 Cultural Foundations of Mathematics

form of the appeal to brevity or simplicity of hypothesis, used to decide between competing 
physical theories.
Fourier transform method: For / ,  g D , define /• g = ( /  g) , where the superscripts A 
and V denote respectively the Fourier transform and its inverse, and denotes convolution, 
provided the convolution on the right-hand side is meaningful. This method of localisation 
and the Fourier transform has been used by Hormander,16 Reed and Simon,11 Vladimirov,12 
and Ambrose.13

Products defined by this method have been shown1410 to be a particular case of products 
defined by the following method.
Sequential method: For f ,g  D , define f  ■ g = D — limn (/ n) • (g n), where 
n, n are appropriate delta-convergent sequences.

This method has been used by Hirata and Ogata,16 Mikusinski,1' Fisher,18 and Kamin­
ski.19

In view of the suggestion by Parker26 to use Hormander’s product in a context similar to 
ours, it is well to clarify that most sequential products do not include the product 9 ■ which 
is required for our purposes. Also, no sequential product can hope to define 2. This entity 
may arise from the product 9 ■ , if the “Leibniz rule” holds, and its need is demonstrated
later on.
Colombeau s definition: Colombeau21 defined an associative differential algebra G D . 
The “Leibniz rule” also holds, but there is no contradiction with the Schwartz impossibility 
theorem because the product does not agree with the pointwise product of C  functions. 
The Colombeau product of any /, g D always exists in G, but admits an “associated” 
distribution iff22 the sequential model product exists. However, the product is not coher­
ent with “association”, so that 9 ■ need not have a unique associated distribution. The 
Colombeau product is, thus, closely analogous (Todorov23) to the simplistic pointwise prod­
uct of *-smooth functions in the non-standard space E  = C (Stroyan and Luxem­
bourg24) with “association” being like the selection of a standard part. Because the above 
product does not cohere with selection of a standard part, exactly as the Colombeau product 
does not cohere with “association”, Stroyan and Luxembourg leave it as an exercise to show 
why this simplistic definition is obviously unsuitable.
Hahn-Banach method: A similar ambiguity arises in the products defined by the Hahn- 
Banach methods (“subtraction of infinities”) used in quantum field theory (Bogoliubov and 
Parasiuk,20 Bremmermann and Durand,26 de Jager,27 and Manoukian28). Many physicists 
and philosophers of science are under the wrong impression that the procedure of “subtrac­
tion of infinities” used in quantum field theory is “not rigorous”. As a matter of fact, the 
procedure can be made perfectly rigorous (i.e., formalised) using the Hahn-Banach theo­
rem. The Hahn-Banach continuous extension theorem29 asserts that, for a locally convex 
topological vector space V, a continuous linear functional defined on a subspace S of V
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can be continuously extended to the whole space V. This enables us to “subtract infinities” 
as follows. First consider the product • . By means of a formal Fourier transform,

( • ) = = 1 1 =  dx.

To make sense of the divergent integral on the right, we notice that differentiating the 
integrand makes the integral converge (to zero). That is, we are in a position to define 1 1
(= 0). We can now apply the Hahn-Banach theorem to extend this to the whole space.

That is, the Hahn-Banach product is, in the first instance, similar to the product defined 
by the Fourier transform method: for f ,  g D , we define / • g by the Fourier transform 
method, as the inverse Fourier transform of f  g. But when the convolution on the right 
leads to a divergent integral, we “subtract infinities” as follows. Define f  g as the Hahn- 
Banach extension of (/ g) f  g, where the multi-index a  is so chosen that the 
convolution on the right-hand side is meaningful. Thus, f  g is defined on the subspace of 
Fourier transforms of test functions D(a) = D, = Alternatively, / • g is
defined on the subspace of test functions D (o) = D, — x . We notice that
this subspace is also the null space of and its derivatives to order a. Since the topology of 
D is locally convex, the Hahn-Banach theorem guarantees the existence of some extension.

The problem, of course, is that the Hahn-Banach extension is not unique. However, any 
two extensions to the whole space must agree on the above subspace; hence, their difference 
must vanish on the above subspace, which is also the null space of and its derivatives 
to order a. Hence,30 any two extensions will differ by a linear combination of and its 
derivatives to order a. (Thus, this definition leads to 0 ■ = A , ■ = B , etc., where
A, B  are arbitrary constants.)

Thus, the real problem with the definitions used in quantum field theory is not the ab­
sence of rigour, but the presence of arbitrariness. This arbitrariness is present at two levels: 
first in the choice of the definition, and then in the choice of the arbitrary constants that 
arise in the definition. One layer of arbitrariness may be removed in quantum field theory 
by appealing to invariance under various gauge groups. But this method does not work 
and creates obvious problems when dealing with distribution solutions of the Navier-Stokes 
equations. Very similar difficulties in fixing an “associated distribution” arise in Colombeau’s 
theory if one attempts to apply it to shocks in viscous and thermally conducting uids. 
Nonstandard product: According to the definition advanced by this author (in the days 
when he still believed in formal mathematics),31 the symmetric product of /, g D is 
defined by

f - 9  = \ (/ )fJ + (9 ) f  > (A. 3)

where denotes the Nonstandard extension to D , and is a positive infinite integer. The 
product defined in this manner always exists in D , is unique, and coincides with the se-
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quential product when the latter exists. The “Leibniz rule” holds, but the associative law 
fails. (The failure of the associative law is discussed below in more detail.) We have,

6- = \ , (A.4)

«• = l  + 2, (A. 5)

2 = (0) , (A.6)

where (0) is infinite. For applications to distribution solutions, a kind of “linear indepen­
dence” (Raju32 and section below) ensures that the final results are standard. In view of the 
Nonstandard transfer principle33 it follows that the final results could well have been derived 
without resorting to Nonstandard techniques. Nevertheless, the use of Nonstandard tech­
niques makes the final results far more transparent. Irrespective of the availability of a formal 
justification, this approach is remarkably similar to that of discarding non-representables.

There are various definitions in addition to those mentioned above.34 Which definition 
should one choose? Comparison theorems can only partially settle the question. In fact, 
formal mathematics simply cannot answer this question unaided, except by the exercise 
of the social authority of the mathematician. This exercise of social authority may (and 
often does) assume some very peculiar forms as when a reviewer (N. Ortner) implicitly put 
forward the absurd acl hoc proposal to use the ease of proving some theorem as a criterion 
for selecting between different definitions of the product of distributions!

The problem, however, cannot be settled by such frivolous reasoning, because mathemat­
ics is routinely applied to practical and empirical problems of physics, and the choice of 
mathematics is re ected in the resulting physical theory. The social prejudices that creep 
into mathematics re ect also upon the physical theory which relies on that mathematics. 
(And if we don’t believe in the myth that the present society is a utopia, then the method 
of deciding mathematical truth by social authority would also mean that various social evils 
can get re ected in both mathematics and physics.) If the “rigorous mathematical proof” 
of the existence of singularities merely means that singularities are socially acceptable, what 
does that say about the physics of singularities?35 In particular, in mathematics as in physics 
it is always preferable to appeal to the empirical rather than to social authority. This is 
especially true if the mathematics in question is to be usable in physics, i.e., it is better 
to regard mathematics as an auxiliary physical theory which itself needs to be empirically 
verihed/refuted.

To understand this better, let us consider two example areas of physical applications of 
products of distributions: quantum field theory and shocks. (We reiterate that, although 
some of the terminology and arguments used are those of formal mathematics, the underly­
ing philosophy has changed radically.)
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Quantum Field Theory

Quantum field theory usually begins with a set of field equations: the Klein-Gordon equa­
tion and the Dirac equation. The propagators of quantum held theory are fundamental 
solutions of these equations. These fundamental solutions are readily obtained by using 
the formal properties of the Fourier transform (namely that it carries differentiation with 
respect to x into multiplication by p and vice versa; in physics the Fourier transform also 
maps configuration space, whose variables are denoted by x, into momentum space whose 
variables are denoted by p). Using the conventions of Bogoliubov and Shirkov,36 for the 
Klein-Gordon equation, a fundamental solution D(x) satisfies

(□ — m2)D(x) — — (x), (A. 7)

where □ denotes the D’Alembertian (□ = — ,,gkk— and the metric tensor gmn has
signature —2). Using the above-mentioned formal property of the Fourier transform, we see 
that we should have

(p2 — m 2)D(p) = —1, (A.8)

where, as is the custom in physics, the Fourier transform of D(x) is denoted by D(p) by 
confusing a change of function with a change of the argument. Specifically,

D ip)
1_  ^

j r  —  m *
(A. 9)

where the function on the right is to be formally understood in the sense of the Cauchy 
principal value.

The retarded and advanced propagators are now obtained by specifying that the sup­
port of these propagators should be respectively the forward and backward null cone. For­
mally, one multiplies D(x) by the Heaviside function 6(x°) to obtain the retarded propagator 
Dret(x). Here x° denotes the time coordinate. The causal propagator Dc(x) is often used, 
and is described by its Fourier transform as Dc(p) = Tn2_ip-±_iiy The photon propagator37 
Dc0( x ) (fundamental solution of the wave equation) and electron (spinor) propagator Sc(x) 
(fundamental solution of the Dirac equation) can both be obtained from Dc(x) as follows:

Dq(x) = Dc(x )m = 0, (A. 10)

Sc(x) = (i + m )D c(x), (A. 11)
3

=  .  <A - I 2 >

=o

7  being the Dirac matrices, and denoting differentiation with respect to the
coordinate x . Though the expressions for these propagators are very simple in momentum 
space (p-space), we do not have the same simplicity in configuration space (x-space). Indeed,
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configuration-space representations of these propagators are hard to find in the physics 
literature.

The approximate expressions for the configuration space representation of these prop­
agators near the null cone can be obtained38 using the approximate expression for the
s i n g u la r  p a r t  o f  Dc(x) n e a r  t h e  n u l l  c o n e : 39

Dc(x)
= h  - (A) -  t L '

(A. 13)

w h e r e

- ( A )
1
2 < * > 4 x  •

(A. 14)

L
1
2

i l  l
Û(A) — 2—lo g  —m  A 2 5 

7T 2
(A. 15)

A = (x°)2 -  (x1)2 -  (x2)2 -  (x3)2, (A. 16)

and the logarithm and its derivative -  are both to be understood in the sense of principal 
value.

If we naively assume the chain rule

/(A) = / (A) A, (A. 17)

where / is a 1 -dimensional distribution (i.e., a distribution on R) and / its derivative, then 
we have

/(A) = 2/ (A) x, (A. 18)

where x is defined exactly like using the Dirac matrices. 
Observing that L = we obtain

Dc0(x)

Sc(x)

1
27r
i
7r

/ X X % m  t  X X m  / X X  m  T

"(A )* -  1 7  - (A)*  +  2 l  - (A) -  8 l L -

(A. 19) 

(A.20)

Propagators and Field Equations

Actually, we do not have to worry too much about the exact relation of the propagators to 
the field equations. The propagators are the substance of the theory; the equations are mere 
ritual. If we change the propagators we change the theory; we can derive all the empirical 
consequences of the theory from the propagators without once knowing what the equations 
of the theory are—though such a procedure might shock some physicists.

The derivation of the empirical consequences of the theory from the propagators requires 
perturbation theory or the 5-matrix expansion.



Distributions, Renormalization, and Shocks 441

S-Matrix Expansion

Consider the second-order terms of the 5-matrix expansion corresponding to the electron 
self-energy. In physical terms this may be visualized as a process in which the electron 
gives out a photon and recaptures it. This process may be geometrically visualized using 
the Feynman diagram for electron self-energy in Fig. A. 1. Likewise, the photon self-energy 
diagram may be visualized in physical terms as a process in which the photon creates an 
electron-positron pair; the two then annihilate to give back the photon. This process may 
be geometrically visualized using the other Feynman diagram shown in Fig. A. 1.

e

Figure A. 1: The Feynman diagrams for electron and photon self-energy. T he diagram at left 
shows an electron which interacts with itself via a photon. The diagram at right shows a photon 
which spontaneously produces an electron-anti-electron pair which then recombines to give back 
that photon. These diagrams are primarily meant to be able to write down the terms in the 5-matrix 
expansion, but some physicists tend to attribute a physical reality to them.

No reality is necessarily to be attached to either the physical process or the Feynman 
diagram. Both can well be regarded merely as convenient aids to the calculation of the 5- 
matrix elements, involving the propagator products 5 c(x) • Z)q(x ) and Sc(x) ■ Sc(x). The 
corresponding terms are ritualistically written as follows.
Electron self energy:

- i  : 'F(.x)^(.x -  y ) ^ ( y )  (A.21)

where the colons denote the normal product, and

£ > >  = - ie 2 C§(x). (A.22)
n

Here, gmn, as before, is the metric tensor (with signature —2) and e is the electron charge. 
Photon self energy:
Similarly, the photon self-energy corresponds to the 5-matrix term

- i  E  : Am(x)n"m(x -  y ) A n ( y )  : (A.23)
m,n

where
Umn{x) = — ie2Tr o'm5 c(x)7n5 c(-x )  (A.24)

For our purposes, it is only necessary to consider the product Sc(x)Sc(x), since the “singular” 
part of 5 C is actually a function of A, and A is an even function of x.
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If the product is defined in such a way as to permit the use of the “Leibniz rule” (as in 
the symmetric product defined by this author40), then it is easy to see that the key necessary 
condition for the propagator products to be finite is the finiteness of

1 2 1 1 2 i i 1
— — — — —  • + * —

4 7r 2 x  7r X X
(A.25)

In the above expression, (^)2 should not be confused with from which it may be infinitely 
different, for the former expression represents the product of the distribution  ̂with itself, 
while the latter is (up to sign) the derivative of Indeed, Mikusinski first attempted to 
prove the following identity involving the square of the delta function:

1 1 2 _ 1 1

7T2 X 7T2 X 2
(A. 26)

With this author’s definition of the product, both distributions on the left are infinite, but 
the difference is finite.41

The actual way in which the renormalization process is carried out in quantum field the­
ory is a bit different. The conventional approach (subtraction procedure) corresponds to us­
ing the Hahn-Banach method, already explained. That is, by means of a (ritualistic) Fourier 
transform, one transfers the propagator products in configuration space to divergent con­
volution integrals in momentum space. One then differentiates under the integral sign 
(corresponding to differentiating one of the convolvants) until the integral is convergent. 
The Hahn-Banach theorem now provides an extension to the whole space. The arbitrary 
constants that arise in this process are fixed by an appeal to some sort of symmetry or in­
variance requirements. The renormalizable theories are exactly those for which it is possible 
to eliminate the arbitrary constants in this way. (More recently, in the context of quantum 
gravity, it has been argued that one can get by without the need for renormalization; we will 
not consider this argument.)

New Renormalization Prescription

The above result, however, enables us to arrive at finite results for every theory as fol­
lows. (Although finiteness has been formally proven only for theories with a polynomial La- 
grangian, there is no reason why this should not hold also for non-polynomial Lagrangians, 
since the basic source of arbitrariness has been eliminated.) Referring back to the defi­
nition of A (A = 0 is the null cone), we see that although the one-dimensional products 
in (A.25) and (A.26) are finite, the propagators are actually functions of A. If we define 
/(A) ■ g(A) = fg ( A), the divergences are recovered.

The key point is that the product fg  is finite, and the divergences arise in defining the 
composition fg ( A), lb  give a close analogy, the function is well defined, but the definition 
of (x 2 — y2) leads to a divergent integral (see Jones42 or Geffand and Shilov43).
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Geometrically, this is easy to understand. Suppose we have a distribution in one variable, 
say (x), and we wish to define it so that it is concentrated on a surface, say (x, y) = 0. The 
natural thing to do is to introduce local coordinates (Gaussian normal coordinates, say) so 
that the equation of'the surface is, locally, n — 0. Having done this, we define ( ) = (n).

This procedure fails if the surface is not regular. In the case of the surface x2 — y2 =  0, 
the failure is at the point (0, 0). For the null cone, A = 0, the failure is likewise at the vertex.

The proposed solution44 accordingly is to replace the null cone by a regular surface. This 
can be easily done by introducing a single parameter l and replacing the null cone by a hy­
perboloid, with separation l. Unlike simple-minded techniques like a cutoff (which destroys 
Lorentz covariance) or a smooth regularization being left on (which destroys positivity of en­
ergy) this prescription is compatible with various requirements such as Lorentz covariance 
and the positive energy condition. All products of propagators are now finite, so there is no 
need to appeal to symmetry principles, etc.

Of course, changing the null cone to a hyperboloid changes the support of the propa­
gators, hence the propagators themselves. Since the propagators are fundamental solutions 
of the field equations, this procedure changes the basic field equations of quantum field 
theory. That should not be a matter of much consequence, since the content of the theory, 
as it currently stands, is in its propagators. The value of l would have to be determined 
empirically.

Choosing a Product

The wider question, with which we started, is this. Can the calculus be formalised without 
any reference to the empirical world? This led us to the question of the product of dis­
tributions. Just what makes a particular definition of the propagator product appropriate? 
As argued earlier, this can only be decided on empirical grounds, and by using principles 
usually associated with physical theories, like the principle of simplicity (Occam’s razor) or 
Poincare’s criterion of convenience. The “simplicity” or “convenience” in this case lies in 
being able to apply the same definition of the product also to the classical case of shocks. 
This is “simpler” or more convenient than the alternative which has multiple hypotheses, 
corresponding to having a separate definition of the product for each physical theory in 
which the mathematics is used.

The “subtraction of infinities” fundamental to quantum held theory never seemed quite 
satisfactory. One may now articulate this dissatisfaction more precisely as follows. As we 
have seen, the conventional renormalization process does not lack rigour (the procedure can 
be perfectly well formalised); rather the dissatisfaction relates to the arbitrariness inherent 
in the procedure. If we try to benchmark the procedure by applying it outside the limited 
context for which it was invented, for the study of shock waves, for example, the conventional 
procedure fails the test. From the point of view of particle physicists, who may well prefer
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to stick to their mathematical rituals, an underlying mathematical unity, like Occam’s razor, 
cannot be compelled, so particle physicists may well disregard the proposed test. But it 
is well to realize that the mathematics they use is no necessary truth, but something that 
falls between an auxiliary physical theory and mere social convention. On the other hand, 
a new arena of application not only provides unexpected insight into the strengths and 
weaknesses of an old ad hoc procedure, but it opens the possibility of improving upon the 
existing renormalization procedure. Putting the mathematical procedure to empirical test, 
in a context other than the immediate context for which it was invented, will also help 
to allay the suspicion that the procedure was invented solely to enable back-calculation of 
known results!

Unlike the Hahn-Banach products of quantum field theory, the above definition of prod­
ucts applies to both quantum held theory and to shocks in an Eulerian ow, and can be 
used to derive the classical Rankine-Hugoniot equations in that case.4;’ The question now is 
this: can this theory he used to say something new? In the case of quantum held theory, as 
already pointed out, the new renormalization prescription allows one to try out arbitrary La- 
grangians. In the case of shock waves, we now show how the Rankine-Hugoniot conditions 
can be extended to shocks in real uids with viscosity and thermal conductivity.

II
SHOCKS IN REAL FLUIDS

Viscosity and thermal conductivity are not usually associated with the ow behind a shock, 
but there are many contexts where they are needed.

Viscosity of the Earth s Outer Core

The viscosity of the earth’s metallic liquid outer core has been called one of the most im­
portant and least well-determined of all geophysical parameters—estimates of the viscosity 
span 13 orders of magnitude! A systematic increase in both shear and bulk viscosity with 
increasing compression is predicted by the standard Enskog model of a hard sphere uid. 
When applied to water at 15 GPa, this method leads to very large effective viscosities.

At present, the direct experimental measurement of the viscosity of liquid metals at outer 
core pressures is not possible in the laboratory. Shock-wave methods have been devised 
to overcome this problem.46 lo  theoretically validate these methods, ad hoc inclusion of 
boundary-layer effects is clearly inadequate at such high viscosities, and a systematic theory 
of shocks with viscosity is needed—one needs to be able to solve the full Navier-Stokes equa­
tions behind a shock. Shock loading methods used in the laboratory study of the viscosity of 
liquid metals presuppose a proper theory to handle viscous effects behind a shock.
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Aerodynamics

In high-speed aerodynamics, such as the ight of the NASA space shuttle, shocks are usu­
ally studied using the Rankine-IIugoniot conditions and the Euler equations. This excludes 
an accurate study of, say, heat conduction effects in the high-speed ow behind the shock. 
While existing computer architectures have insufficient computing power for a “grand chal­
lenge” problem like accurate simulation of high-speed Navier-Stokes ow, TFlop/s machines 
are now well above the horizon, and one may use them with appropriate modifications of 
existing parallel numerical codes as envisaged by Raju et al.47

Shock Re ections

Recent experiments on shock re ection suggest that ignoring viscosity and thermal conduc­
tivity behind the shock may result in larger inaccuracies than has previously been supposed.

Consider a compressive wedge mounted in a steady or unsteady supersonic ow. Since 
the ow is supersonic it cannot smoothly negotiate the obstacle that it suddenly encounters, 
and an attached or detached shock wave is formed depending upon the angle of the wedge. 
This shock wave may itself meet another obstacle further down (such as the wall of the 
wind tunnel or the wings of the aircraft or the strap-on boosters of a launch vehicle) and 
is re ected in different ways. Substantial increases in e.g. temperature may take place on 
account of multiple re ections.

The case of regular re ection is fairly well described by the inviscid two-shock theory with 
one incident and one re ected shock, using the oblique shock (Rankine-Hugoniot) condi­
tions.48 But there are photographs of regular re ection configurations in which the re ected 
shock wave is seen to be curved along its entire length, and right up to the point of re ec­
tion. There is a discrepancy between experimental observation and theoretical prediction of 
the two-shock theory for the angle between the incident and the re ected shock. Shirouzu 
and Glass49 suggested that viscous effects are responsible for the discrepancy. Ben-Dor°° 
compared experimental observations with the angles between the various discontinuities at 
the triple point predicted by the inviscid three-shock theory. The discrepancies (as large as 
5°) were certainly larger than experimental uncertainties,

The Dif culty of Incomplete Cauchy Data

Though technologically feasible and needed for some important applications, as indicated 
above, certain theoretical and mathematical difficulties are encountered in trying to solve 
the full Navier-Stokes equations behind a shock.

'l'o solve the full Navier-Stokes equations behind the shock, the Rankine-Hugoniot con­
ditions clearly cannot be used. For this purpose, let us once again neglect the thickness of
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the shock and model it as infinitesimally thin, so that as the shock evolves, its history is mod­
elled by a hypersurface . Assume that the state ahead of the shock is known. To calculate 
the state behind the shock it is necessary to know the Cauchy data behind the hypersurface

The full Navier-Stokes equations involve the second derivatives of velocity and temper­
ature. Consequently, the Cauchy data on must include the initial values of velocity and 
temperature on and the values of normal derivatives of velocity and temperature on 
l'he usual Rankine-Hugoniot conditions, which may be used for the Euler equations, do 
not involve the derivatives of velocity and temperature at all, and consequently provide no 
information on the values of any derivatives behind the shock. Since the use of the Rankine- 
Hugoniot conditions results, in this case, in an improperly posed initial value problem, one 
needs a new set of junction conditions to be able to solve the full Navier-Stokes equations 
behind . Brie y, the Rankine-Hugoniot conditions do not provide information on possible 
discontinuous changes in velocity and temperature gradients across the shock; this informa­
tion is needed to solve the full Navier-Stokes equations behind the shock.

It is possible, of course, to make up for insufficient Cauchy data through various ad hoc 
assumptions. For example, for very weak shocks one may suppose that is characteristic. Or 
one may suppose that the ow behind the shock is steady, and that changes in temperature 
are inconsequential, thereby arbitrarily equating to zero any initial velocity and temperature 
gradient behind the shock. One may suppose that the gradients of velocity and temperature 
are continuous across the shock, even though the velocity and temperature themselves have 
a discontinuity. Such ad hoc solutions are clearly unsatisfactory, and may lead to completely 
erroneous conclusions.

Irrelevance of Shock Structure

To get over the difficulty of inadequate Cauchy data, should one rather drop the simplifying 
assumption of an infinitesimally thin shock? In favour of this it could be pointed out that 
shocks are actually observed to have a small thickness (of the order of a few mean free paths). 
Viscosity also has a “smoothening effect”—viscous diffusion tends to smoothen out sharp 
velocity gradients—and it is generally believed that in the presence of viscosity the shock 
broadens from an infinitesimally thin surface of discontinuity to a finite region across which 
there are large but smooth changes. This belief is supported by the success of numerical 
schemes which use artificial viscosity.

Several issues need to be clarified here. Firstly, a viscous profile does not necessarily 
exist01 for all shocks satisfying the Lax entropy conditions,02 and the Riemann problem 
does not admit a unique solution in the class of shocks admitting viscous profiles. Moreover, 
the profile does not remain smooth if thermal conductivity03 is taken into account.
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Secondly, in the traditional continuum theory of the viscous shock profile, based on the 
works of Becker,y4 Gilbarg and Paolucci,00 Gel’fand,°6 weak, steady solutions of the hyper­
bolic system of conservation laws

ut + f{u )x =  0 (A.27)

are obtained as the limits (in D , as —► 0) of smooth solutions of the associated family of 
parabolic equations

ut + f(u )x = 2uxx. (A.28)

However, the solution of the associated parabolic equation (A.28), for a given , only provides 
an interpolation between the boundary values assumed to be given by the usual Rankine- 
Hugoniot conditions—the viscous profile is derived by assuming that the inviscid approxi­
mation applies on either side of the shock. Since the “boundary conditions” (i.e., the junc­
tion conditions across the shock) must be prescribed first to obtain the viscous profile, it 
would be incorrect to use the viscous profile to draw any conclusions about the conditions 
behind the shock in the viscous case. The theory of the viscous profiles is, in fact, quite 
irrelevant to the question at hand. For similar reasons, existing kinetic theories of shock 
structure are not of much help, apart from being inconvenient to apply (impossible to apply 
in the case of relativistic shocks).

Thirdly, in numerical computations, precision suffers in the presence of large gradients 
in a thin region, so that non-numerical methods to get across the shock are desirable.0/

Fourthly, the observed thickness of shock waves is not especially relevant—the contin­
uum approximation is simply more convenient. The observed thickness is small enough to 
be consistently treated as infinitesimal in the continuum approximation. Moreover, the fact 
is that shocks are observed in real uids like air and water which do have some non-zero 
viscosity and thermal conductivity. Using the Euler equations and the Rankine-IIugoniot 
conditions to model shocks in air or water amounts to neglecting viscosity to set up a con­
venient model for calculations across shocks. Taking thermal conductivity and viscosity into 
account enables an alternative model with greater precision, without losing the convenience 
of the continuum approximation.

Using the above product of distributions it turns out that while solutions with a simple 
discontinuity are not possible unless viscosity and thermal conductivity are both zero, the 
Navier-Stokes equations do admit solutions with singular support on a regular hypersurface 

. The physical interpretation is that viscous diffusion and thermal conductivity would 
smoothen out any jump (simple discontinuity) in velocity and temperature on the two sides 
of a shock except in the presence of a (dynamically created) surface layer, which must therefore 
accompany shocks in real uids.
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The Form of the Equations

Thus, it seems desirable to develop an appropriate modification of the Rankine-Hugoniot 
conditions, for use with the full Navier-Stokes equations. The new conditions should enable 
the study of solutions of the full Navier-Stokes equations behind a shock.

A new problem that arises is this: what form of the equations of uid ow should be 
used? To obtain the right conditions, in the Eulerian case, it is necessary to fix on a specific 
quasi-linear/ora of the equations (called the “conservation form” by P. D. Lax). While this 
approach works for the Euler equations, it fails for the full Navier-Stokes case.

The Schwartz impossibility conclusion explains the need to fix on a specific form of the 
differential equation (such as the conservation form): equivalent forms of an equation have 
the same smooth solution, but for a discontinuous solution, the implicit assumption of both 
the “Leibniz rule” and the associative law, used to establish the “equivalence”, is no longer 
valid. Therefore, for smooth ows of a perfect uid, one may use equivalently the equations 
of conservation of mass, momentum, and energy or mass, momentum, and entropy, whereas 
in the case of a shock the two systems of equations are known58 to be inequivalent after 
Riemann, and only the first system of PDEs is physically meaningful.

Ill
DERIVATION OF THE NEW JUNCTION CONDITIONS 

The Form of the Equations

We use the Navier-Stokes equations in the following form:

------b — ^
t X1

= o, (A. 29)

Ui ( UiUj) 
t xJ

V ! à
X1 x i  ’

(A. 30)

1
-  ukuk + e

1
= ,• Uj ukuk + e + p xJ 2

T
U{ ij

CC à
(A.31)

Here e — is the energy' density per unit volume, being the usual energy density per 
unit mass, ij is the viscous stress tensor, i j  = (u ij + uj^) + Xu^i, with A = — | ,
being the usual coefficients of shear and bulk viscosity respectively, a comma in the subscript 
denotes differentiation as usual, and the summation convention applies to repeated suffixes.

Because of the Schwartz impossibility theorem, the correct form of the equations, for dis­
tribution solutions, can only be decided by recourse to empirical considerations. Relativistic 
covariance is one of the reasons for choosing the above form of the equations: the above 
form is appropriate for generalization to the relativistic case. The above form is also quasi­
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linear, and reduces to the usual “conservation form” if viscosity and thermal conductivity are 
set to zero.

Notation and Coordinates

Let denote the shock hypersurface (assumed to be regular). divides spacetime into 
two half-spaces V+ and V~, where the superscript + denotes the undisturbed region ahead 
of the shock. As an aid to derive the junction conditions, we introduce Gaussian normal 
coordinates x based on , so that the equation of is x l = n = 0. Here n denotes the 
normal to and x° denotes the timelike coordinate.

Let +, -  denote the characteristic functions of V+ and V~. In terms of coordinates,

II+ 0 n < 0,
1 n > 0,

(A. 32)

= 1 -  +, (A.33)
+ _  
î (n) 1 , (A.34)

here f = —, (n) denotes the Dirac delta concentrated on (for an invariant definition
see, e.g., Gel’fand and Shilov, vol. 1), and 1 is the Kronecker delta. Here, (A.34) is a 
compact way of stating the result called Green’s theorem (Gauss theorem, Stokes theorem, 
fundamental theorem of calculus).

From a formal perspective, what we are doing is to seek distributional solutions of the 
Navier-Stokes equations in the form

/ = /+ + + / - ■  + / , (A.35)

where f +, f  are smooth functions, and f  = lim supp /, , for a test function 
= 1 in a neighbourhood of . We use the usual notation

, with

[/] = lim ( f +(p) -  / (p)) , 
V

(A.36)

/ = lim \ ( f +(p) + f~ (p)) »V 2
(A.37)

to denote the jump and the mean values of / across .

Failure o f  the Associative Law

The failure of the associative law is manifested through

'-K II 1
-1 (A.38)

for functions /, g of the form (A.35) with / = g = 0. Thus, (f g ) = f  g unless one of
/, g is further continuous across . The precise form of the association of factors must be
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decided semi-empirically. That is, if we forcibly impose the associative law upon the number 
system underlying the calculus, the associative law fails somewhere else, and the only remedy 
for it is to refer back to the empirical world!

Reduction to Standard Form

l'he junction conditions are derived by assuming that the given partial differential equation 
holds on in the sense of distributions, using the above product of distributions. The 
infinities disappear from the final result because an equation of the type

f + + + g~ ~ + a  (n) + b (n) + c 2(n) = 0, (A.39)

can hold in the sense of (Nonstandard) distributions ifP9

f + = g~ = a = b = c =  0. (A.40)

(Here, denotes the derivative of the Dirac which is well defined under the assumption 
that is regular.) Thus, the original partial differential equation splits into partial differ­
ential equations for V , while on it reduces to a set of algebraic or ordinary differential 
equations giving the junction conditions.

Junction conditions for shocks in arbitrary continua may be derived in an invariant man­
ner using the above algorithm. For the general relativistic case of arbitrarily curved shocks, 
these were first reported in Raju,60 and the following may be regarded as the non-relativistic 
counterpart of those conditions.

Junction Conditions for Plane Shocks

Assuming that , p, e in (A.29)-(A.31) are of the form (A.35), applying the above algorithm 
and assuming for simplicity that , A, are constants, we obtain the following conditions 
for the case of a plane (straight) shock

p = (2t7 +  A) [v], (A.41)

e = ~r [T ], 
«1

(A.42)

M  = o, (A.43)

p +  v2 =
dv .

(2?7 +  A)[ ], 
o n

(A.44)

( v) [w +  i V2 ] = / sr ■, r#T_ d e
(2?7 +  A )b ] +  «[ ] o n  o n dt

(A.45)

Here v is the velocity normal (and relative) to the shock, and w = e + p denotes
the enthalpy. The bold-faced terms emphasize the difference from the Rankine-Hugoniot
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conditions: all these terms vanish, and we obtain back those conditions if we put = A = 
= 0. If the shock is steady, the time-dependent term in the last equation vanishes and 

the conditions reduce to a set of algebraic equations. In the above, , , A were assumed
constant: to allow for their discontinuous variation, they should be moved inside the square 
brackets.

The terms p, e may be regarded as purely mathematical constructs to enable better mod­
elling and computation with shocks. But a physical interpretation is possible. The term 
p signifies the presence of interfacial tension on the shock. Viscous diffusion is unable to 
equalise velocities on both sides of the shock because of the presence of this tension. The 
presence of tension also indicates that the evolution of a compressive shock dissipates en­
ergy. Similarly, the term e signifies the presence of an interfacial energy7, which prevents 
thermal conduction from equalising temperatures on the two sides of the shock. Both terms 
are purely dynamic in origin. Visualized in terms of a smooth approximation, one would 
say that the pressure dips at some point inside the shock while energy7 density per unit vol­
ume peaks inside the shock. (Of course, as Poincare stated long ago, an infinity of physical 
explanations may be possible for the same mathematics.)

Junction Conditions for Curved Shocks

The junction conditions may be evaluated quite similarly for the case when is curved, with 
extrinsic curvature tensor (second fundamental form) K . The conditions in full relativistic 
generality were derived by Raju.bl The non-relativistic limit was worked out subsequently 
by Shukla.62 The first three of the above conditions remain unchanged, while the last two 
conditions change to

[p+ V2} =  (2 +A)[—  ] + { r ,T r (K )
n

d In a1/ 2
+  (2rj +  A)---- --------  [v], (A.46)

o n

( v ) \ w  + \ 2v l \ =  (2 +A)[u— ]+  \— \ - —  + { k,{T}
n n t

+77- h t , 2] Tr ( K) ,  (A.47)

where g =  det(gij), gij being the first fundamental form of . The changes from (A.44) 
and (A.45) are indicated by boldface, and , , A are again assumed constant. Unlike
the case of a normal shock, it is clear that curvature effects are present even if changes in 
temperature and pressure gradients are negligible across the shock, and the term [T] Tr(A) 
seems numerically the largest. However, a clearer understanding of the significance of the 
various terms must await detailed simulations and testing.
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IV
THE FIRST LAW OF THERMODYNAMICS 

The Two Additional Conditions

Apart from altering the Rankine-Hugoniot conditions, we have obtained two new conditions. 
However, there are now four new variables: e, p, Therefore, two more conditions
are required to complete the specification of Cauchy data on , since an arbitrary equation 
of state may not be used on —one expects that the nature of the surface layer is determined 
by uid properties and shock kinematics. Both these conditions may be obtained directly 
from the first law of thermodynamics as follows.

Consider the first law in the form

de = wd + TdS. (A.48)

The form (A.48) of the first law does not change if the thermodynamic variables appearing 
in it are regarded not as functions of other “independent” thermodynamic variables but as 
functions of the coordinates. Therefore, following Mistier et al.,63 the “d” in (A.48) may be 
interpreted as an exterior derivative. Taking the inner product of both sides with the unit 
normal to , we obtain, in Gaussian normal coordinates,

—  = w —  + T — . (A.49)
n n n

To interpret (A.49) for distribution solutions we need the product 9 ■ debited by

0 . =  ( 9 - ) - 9  ■

=  -  _  2 
2

Applying the above procedure, we obtain three equations:

[e] = w [ ] +  r [S ],

e = ( T) S,

M ] = [T]S.

Eliminating S, and using w = e + —, we obtain the required two conditions.

(A.50)

(A.51)

(A.52)

(A.53)

The Form of the First Law

The difficulty is that the associative law fails, and one does not know the “correct” form of 
the first law of thermodynamics to begin with. Thus, if we had started with the first law in 
the form

dw =  V dp +  T d S , (A.54)
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we would have obtained, in place of (A.51), the equation

M  = v \ p ] + T [5]. (A.55)

How does one decide between these two conditions? One way is to go back to the case of 
an ideal uid for which = A = = 0, so that the Rankine-Hugoniot conditions together
with the conditions (A.51) or (A.55) form an overdetermined system. The requirement of 
consistency may be used to choose between the two forms. Thus, the Hugoniot relation

M  = V \p\ (A.56)

is a consequence of the conditions (A.43)-(A.45), for the special case of an ideal uid. It is 
clear that (A.56) is consistent with (A.55) only if [S'] = 0, so that (A.55) and a posteriori (A.54) 
must be rejected.

Entropy Change and the Impossibility of Rarefaction Shocks 

On the other hand, if (A.51) is interpreted as

[e] = « ' [ ] +  T  [S]. (A.57)

then it follows (using some algebraic manipulations) that consistency with the Hugoniot 
relation (A.56) holds if

[S1 = AT V f  [p]3- (A'58)
where j  = ( v) is the mass ux across the shock. This is an exact expression for the
entropy change across a shock, and shows the impossibility of rarefaction shocks. In the case 
of an ideal gas, in the weak shock limit, one may suppose v+ —> a, a2 = yp , a being the
sound speed. We may also suppose that T  —> T+, V —> V+ to obtain

[5] =
3

7 + 1
1 (7 + 1)V+

12 T+ 7 %
(A.59)

This differs from the usual approximate expression64 for entropy change only by the addi­
tional factor of -jpy, where 7  is the ratio of specific heats. The interpretation (A.59) of (A.51), 
however, is definitely valid only in the weak shock limit.

Incidentally, to obtain [S'] > 0, we can do away with the restriction to weak shocks, by 
writing (A.51) in the form

M  = - M  + t a j IS], (a .60)

where hi is an “uncertainty” factor given by

hi

or hi

1,
, 1 1 m

4 T '

(A.61)

(A.62)
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Since and T  are positive quantities (except in anti-matter), it now follows that =

+~ _ < 1, since + — _ < max( +, - ) < + + _ . A similar inequality holds for 
T, so that 1 — h\ < 1, so that hi > 0. If we start with the interpretation (A.60) in place of 
(A.57) the only change is that the left-hand side of (A.59) gets multiplied by hi, so that we 
obtain the impossibility of rarefaction shocks without any of the usual assumptions65 such as 
the positivity of

From the variety of forms of the equations that we have needed to use, it should, however, 
be clear that ultimately the decision as to the form of the equation, or the precise association 
of factors, can only be taken empirically.

V
CONCLUSIONS

The idea that the calculus had finally found a satisfactory formulation in the works of 
Dedekind, Cauchy, and Weierstrass is true in only a very limited sense, even within for­
mal mathematics. This formulation of the calculus is not only no good for computing (as we 
have already seen) but it is also inadequate for a variety of applications, particularly quantum 
field theory and the classical theory of continua.

The further development of the calculus to include contemporary applications requires a 
fundamental shift in mathematical philosophy, with an explicit acknowledgment of the role 
of the empirical as better than relying upon the social authority of the mathematician.

The re-introduction of the empirical into mathematics makes mathematics an auxiliary 
physical theory, so one selects between different possible mathematical theories by applying 
criteria similar to criteria used for physical theory. In particular, one may validly apply 
criteria such as simplicity, or Occam’s razor, or the less-problematic principle of convenience 
suggested by Poincare'. This means that one must choose as valid that formulation of the 
calculus with the widest possible physical applicability.

This also enables us to extend the formulation of the calculus by singling out a product 
of distributions. As a means to empirically test this mathematics, we explained how this 
leads to a new prescription for renormalization, which makes any quantum field theory 
finite (although a formal proof of finiteness is available only for theories with an arbitrary 
polynomial Lagrangian). The new renormalization prescription involves only a single new 
parameter that can be determined empirically.

This also leads to two new sets of junction conditions: (a) (A.41)-(A.45) and (A.51)-(A.53) 
for plane shocks, and (b) (A.41)-(A.43), (A.46)-(A.47) and (A.51 )-(A.53) for curved shocks 
in real uids. These conditions provide Cauchy data for the full Navier-Stokes equations 
behind the shock, when conditions ahead of the shock are known.

For normal shocks, the new conditions indicate (“predict”) departures from the Rankine- 
Hugoniot conditions proportional to , A, . For small values of these coefficients, small
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departures from the Rankine-Hugoniot conditions are consistent with large jumps in veloc­
ity and temperature gradients across the shock.

The conditions for curved shocks explicitly involve the extrinsic curvature of the shock hy­
persurface, and the terms [T]Tr(K) and [r]Tr(/f ) introduce departures from the Rankine- 
Hugoniot conditions, even if gradient effects are ignored behind the shock.

The underlying mathematics is, therefore, empirically refutable.
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BirkhofT, G., 25

his metric approach trivializes Elements, 
31

al BIruni
accuracy of the instrument he used to 

measure angles, 251
confirmation of al Mamun’s figure for size 

of globe, 231
estimate of earth’s radius, 215 
geometry of determination of the size of 

the earth, 233
use of eclipses for determining longitude, 

260
Bohr complementarity, 82 
Bourbaki, N., 88 
Brahmagupta, 95, 172, 194 

0 0,' 95, 106
and “Pell’s” equation, 351 
and Sind-Hind, 259 
as source of algorismus, 419 
calculation of complex derivatives, 145 
computation of difficult fractions using 

the fraction series expansion, 158 
computation of longitude, 228 
criticised by Vatesvara, 236 
first sine difference proportional to co­

sine, 237
formula for cyclic quadrilaterals, 227 
formula for quadratic interpolation, 141 
formula for second difference and Stir­

ling’s formula, 198
fraction series and Roman arithmetic, 396 
fraction series expansion, 110 
his rule interpreted by Bhaskara, 99 
his sine table found gross by Vatesvara, 

252
how his rule should be read, 96 
quadratic interpolation enabled use of 

values 15° apart, 140 
second difference and quadratic interpo­

lation, 140
spacing of sine values and higher accuracy 

of quadratic interpolation, 141 
sphericity of earth, 215 
sunya and counters, 420 
teaching his method to K-12 students, 

418
time variation with meridian and Arabs, 

223

took 24th part of quadrant as equal to the 
Rsine, 143

translated into Arabic by al Khwarizmi, 73 
translation by al FazarT and ibn Tariq, 394 
use of second difference, 110, 133, 197 
why Vatesvara found his table gross, 252 
zero refers to non-representable, 96 

Brahmajdla Sutta, 85 
Brahmasphutasiddhcmta, 394 
Buddha

difference of logic made refutation diffi­
cult, 86

fortune telling regarded as unethical by 
common people in his time, 205 

Wriggling of the Eel, 85 
Buddhism

ux and identity, 88 
logic of 4-alternatives, 84 
logic related to Jain logic, 83 
logic related to structure of time instant, 

86
logic, Udyotkara’s act and Schrodinger’s 

cat, 86
varied notions of logic, 85 

calculus
and “Newtonian Revolution”, 326 
and the second math war, 415 
are formal real numbers appropriate?, 

390
chain of in uence from Cavalieri to New­

ton, 351
contemporary relevance of revised his­

tory, xl
did it find a staisfactory formulation in 

analysis, 454
Indian infinite series known to Western 

historians for 170 years, xxxv 
input to Newtonian physics, xxxv 
is there only one natural way to formalise 

it?, 429
its formalisation and products of distribu­

tions, 432
its importance for present-day science, 

112
its sudden appearance in Europe, 350 
non-existence of derivative of a discontin­

uous function not natural, 392 
practical applications require a notion of 

number different from reals, 404 
practical value vs initial theoretical unac­

ceptability in Europe, 377
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real numbers irrelevant for practical ap­
plications, 400

relevance of revised history for math edu­
cation, 417 

Roman, 393
with a non-Archimedean held, 392 

calendar
errors in Julian calendar, 333 
European calendar in Goa, 207 
Gregorian calendar lacks concept of rainy 

season, 207
Gregorian reform, see Gregorian calendar 

reform
Gregorian reform needed for latitude 

measurement, 334
its importance for Indian agriculture, 207 
its recalibration required determination 

of latitude, 213
Jesuit interest in Indian calendar, 336 
recalibration and triprasna, 219 
recalibration requires determination of 

latitude and longitude, 213 
use across India necessitated recalibra­

tion, 213
Cavalieri, Bonaventura

first appearance of calculus in Europe, 
xxxvi

had access to Jesuit sources, 112 
his approach regarded as epistemologi­

cally insecure in Europe, 112 
his series same as Indian series, xxxvii 
the in uence of his work on Torricelli and 

Roberval, 351
why did he wait live years for Galileo?, 

350
Chandahsütra, 313 
Chao Yu-Chin, 148, 149 
Chi, R. S. Y., 88 
Christo Purana

The Christo Purana, 336 
chronometer

practical difficulties in using it, 331 
Clavius, Christoph, 344

and reform of the math syllabus, 74 
headed the Gregorian calendar reform 

committee, 335
inputs from India for Gregorian reform, 

74
Colbert, Jean-Baptiste

and formation of French Academy, 260 
prize for longitude determination, 330 

Collegio Romano, 74

Columbus
erroneous estimate of size of the earth, 

228
used dead reckoning, 329 

compass
magnetic and stellar, 242 
magnetic compared with pole-star, 242 

computers
and the schism in mathematics, 76 

Constantine, 20 
Copernican Revolution

and Indo-Arabic astronomy in Maragha, 
326

cultural purity, doctrine of, 22

Daya Krishna, xxxviii 
De Thiende, 338 
Dead Reckoning, 228, 230 
Dedekind, Richard, 28

real numbers as key epistemological ad­
vance in calculus, 113 

real numbers impossible in computer 
arithmetic, 94

real numbers not studied by physicists 
and engineers, 76

what did the formalisation of real num­
bers achieve?, 399 

deduction
as cultural truth, 81 
is it universal?, 60 
less certain than induction, 81 
varies with logic used, 80 

departure
and Arabic tirfa calculation, 254 
calculation in Dead Reckoning vs kamdl, 

230
related to longitude by Bhaskara I, 226 

Descartes, Rene"
quote from La Geometrie, 38, 75 

Dickens, Charles, 397 
Digha Nikdya, 85 
Diiinaga, 86, 88

Easter
relation of its date to latitude problem, 74 

Elements, 67-69, 75, 275, 308, 310
as basis of current mathematics, 61 
as mentioned by Proclus, 10 
attributed to Euclid of Megara, 11 
available info on Euclid irrelevant to un­

derstanding of, 25 
equality changed to congruence, 32
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equality reinterpreted as congruence, 69 
Euclid not originator of theorems in, 31 
geometric equality and political equity, 12 
Heiberg changed primary' sources to suit 

its reinterpretation, 284, 285 
Hilbert’s reading rejects SAS, 30 
irrefragable because of arrangement of 

theorems in, 10 
known to Europe via Arabs, 11 
later theorems use SAS, 28 
metric interpretation possible, 31 
multiple authorship and multiple objec­

tives, 26
multiple authorship of, 25 
obscurities in, 26 
obscurities of type 3, 28 
obscurities should not be judged using 

formal mathematics, 27 
obvious to an ass, 70 
physically originated in Africa, 26 
Proclus’ prologue, 16 
Proof of SAS originally involved empiri­

cal, 69
synthetic approach and SAS postulate, 30, 

31
Theon’s, 12
transmitted by Arabs to Europe, 25 
trivial ised by consistent acceptance of em­

pirical, 70
was Euclid the star figure?, 24 
why important to Christian rational the­

ology', 26
why important to Islamic rational theol­

ogy', 26
The Eleven Pictures of Time, xliii 
Ellis, R. H., British officer, 240 
empirical

accepted by Proclus at beginning of math­
ematics, 68

as sole means of validation in Lokayata, 
63

asinine knowledge and maths compared, 
70

can it be accepted at one point in maths 
and rejected elsewhere?, 69

e.g. of use in Yuktibhdsd proof., 67 
its acceptance would destroy the differ­

ence between physics and mathemat­
ics, 71

its rejection in maths related to the crite­
rion of refutability, 63

maths as means of moving away from it, 
68

no reference to it in mathematical axioms, 
62

not contingent in Indian thought, 63 
not entirely rejected in Elements, 68 
not rejected by Proclus, 68 
regarded as contingent in West, 62 

Epicurean ass, 70 
epistemological continuity

of Indian astronomy contrasted with Hel­
lenic, 204

of infinite series with Indian tradition, 
113

epistemological discontinuity, 72 
and calculus, 74
and sudden appearance of calculus in Eu­

rope, 113
import of algorismus, 73 
is it a natural law?, 76 
of science in Greek tradition, 280 

epistemological test, 276, 314 
use by Newton, 385 

Eratosthenes
used to date Euclid, 11 

On the Eternity of the World, 21 
On the Eternity of the World: Against Proclus, 21 
Euclid

and origin of current notion of mathe­
matical proof, 10

as mentioned in quote from Proclus, 10 
claims of his existence set de facto standard 

in historiography, 25 
did he exist?, 11
existence depends on single remark of 

“Proclus”, 11
existence important only for cultural pu­

rity, 24
Fowler’s comment, 11 
his historical context, 11 
historicity not established by quote from 

Proclus, 13
name used for Hellenization, 26 
not mentioned by Theon, 12 
not originator of theorems in Elements, 10 
of Megara, 11
regarded by Proclus as arranging the Ele­

ments, 11
shifted from Megara to Alexandria, 11 
Uclides, 11
unknown before Proclus, 12 
was he an actual person?, 11
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why the story might have been fabricated, 
22

Eudoxus, 10
Euler, Leonhard, 180, 186

“Pell’s” equation named by him, 351 
access to Indian works through Fermat, 

140
and Fermat, 352
and Indian continued fraction expansion 

for 7r, 179
article on Indian sidereal year, 352 
awareness of Indian astronomical works, 

179
conservation form of equations of uid 

motion, 448
did he arrive independently at his 

method of solving ODE?, 140 
Did he know of Bhaskara II’s work via Fer­

mat?, 140
equations and Rankine-Hugoniot equa­

tions, 432
equations for perfect uid, 428, 431, 445 
equations neglect viscosity and thermal 

conductivity, 447
“Euler-Maclaurin” expansion, 161 
“Euler-Maclaurin” sum formula, 186 
had access to Indian sources of astronomy 

and mathematics, 140 
his method compared with Aryabhata’s,

140
ODE solver and fundamental theorem of 

calculus, 184
ODE solver and interpolation formulae,

141
published solution of “Pell’s” equation, 

199
received prize from Board of Longitude, 

372
summary, 356
was his solver for ODE independent of 

Aryabhata?, 109 
Eurocentrism, xxxvii

distinguished from racist history, 273 
Eutocius of Alexandria

and difficulty in arithmetic with Roman 
numerals, 193

commentator on Archimedes, 192 

Fa-Hsien
account of celestial navigation, 217, 219 

falsihability, 68, see also refutability
and single exceptions as disproof, 69

Ibrahim al-Fazarl, 394 
Fermat, Pierre

and standard of evidence for transmis­
sion, 313

challenge problem on “Pell’s” equation, 
351

first appearance of calculus in Europe, 
xxxvi

his calculus methods similar to Indian 
methods, 351

his interest in ancient manuscripts, 352 
letter to Frenicle, 351 
links to Bhaskara II in his challenge prob­

lem, 140
used series similar to Indian infinite se­

ries, xxxvii 
Fillozat, Jean, 147 

oating point numbers
failure of associative law, 93 
IEEE standard 754, 93

Galileo
access to Jesuit sources, 350 
and longitude problem, 330 
why did he not publish on the calculus?,

' 350
Ganita, 123

second sine difference, 132 
square roots, 129
square, cubes, square roots, cube roots, 

128
Ganita Kaumtidi, 110

formula for vdrasankalitd, 199 
use of formula to calculate descendants of 

a cow, 165 
Geographia, 334 
La Geometrie, 75 
geometry'

khichdi geometry of NCERT text, 34 
and motion, 29
arithmetization of and formal reals, 386
as a priori, 30
measurement and physical notion of rigid 

body, 29
metric approach and SAS theorem, 31 
metric simplifies Elements, 31 
synthetic with unmarked rulers and col­

lapsible compasses, 31 
synthetic, and maths as proof, 31 
traditional, 34

Gerbert (Pope Sylvester III), 395



Index 465

first recorded attempt to relate to algoris- 
mus, 74 

ghati, 227
Gingerich, Owen, 348
Gold, ofVatesvara, 194, 198, 214

solution in plane triangles criticised, 237 
Gola, chapter oi'Arydbhatfyd, 213

time varying with longitude, 252 
Gold, of Paramesvara, 195 
golden ratio, 247 
Gordon, Paul, 405 
Govindasvamin

attempted precision to the third minute, 
xi

reason for his lack of success, 162 
Greenwich

meridian derived from the idea of a prime 
meridian like that of Ujjayiiu, 216 

Gregory, James
lacks priority, 313 
letter to Collins, xxxvi 
made no claim to originality, 112 
minor error in his letter, 112 
used series similar to Indian infinite se­

ries, xxxvii 
“Gregory” series, 112

found in Indian tradition, 112 
Gullivers Travels, 72

Haldane, J . B. S., 82
his explanation used as analog)' for Bud­

dhist logic, 83
interpretation of apparent contradiction 

in Jain logic, 82 
Harappan ports, 148 
Harrison, the carpenter, 261, 331 
Heath, T. L.

ambivalent attitude towards Arabic 
sources, 54 

Heiberg, J. L.
how accurate is his reconstruction of 

Archimedes?, 192 
Helmholtz, Hermann von, 29 
Herodotus

Greeks learnt geometry from Egyptians, 
26

Hetucakro, 86, 88 
Heyne, xxxv 
Hilbert, David

Foundations of Geometry, 26 
as author of Elements, 25

could he have permitted empirical in one 
place and rejected it elsewhere?, 70 

current definition of mathematical proof, 
62, 67

made mathematics mechanical, 69, 136 
non-definition of area in synthetic geom­

etry, 123
reinterpreted Euclid, 10 
sought standardization, 69 
thought he re ected Western view since 

Aristotle, 69 
Hippalus

alleged discovery of monsoons, 217 
history of maths

cannot assume mathematics as universal, 
9

must re-examine current notion of math­
ematical proof, 10 

history of science
advantage of doing with philosophy, 

xxxix
and its philosophy, xxxvi 
as post-retirement pursuit, xxxvi 
effect of excluding philosophy, xxxvii 

history, racist
agenda of cultural genocide, 272 
and problem of moral justification of en­

slaving the converted, 271 
Biblical citations in support of violence 

against non-Christians, 292 
British belief in doctrine of Discovery, 291 
church role in propagating, 272 
colour of skin as evidence of religious be­

lief, 271
colour of skin as index of religious belief, 

294
Copernicus could not have acknowledged 

his non-Christian sources, 295 
difficulty of acknowledging non-Christian 

sources during Inquisition, 296 
Discovery and “ultimate dominion”, 291 
distinguished from Eurocentrism, 273 
Doctrine of Christian Discovery, 51, 57, 

271, 291, 292
Gibbon on concocted narratives of Chris­

tian martyrs in Rome, 283 
Greeks regarded by Eusebius as theologi­

cally correct, 273
Las Casas’ account of genocide in Amer­

ica, 292
moral justification for retaining converts 

as slaves, 293
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quote from bull Romanus Pontifex, 292 
triumph of narrative indoctrination over 

facts, 296
House of Wisdom, 394 
Huen Tvvsang, Chinese traveller 

translated work of Dinnaga, 86 
Huntington, Samuel, 60, 304 
Huygens, Christiaan, 260, 330 
Hypatia, 16

IEEE standard
and cancellation of zero, 98 
and non-representables, 98 

Indian elephant
in Maya architecture, 306 
vs African, 306 

Inquisition
and “Hellenization”, 6 
and European difficulty in acknowledging 

“pagan” sources, 272, 357 
and fears that Toledo translations would 

spread heresy, 6, 268 
and origin of racism, 271 
arrested Mercator, 272 
its introduction in India, 335

Jai Singh
and out of date information supplied to 

him by the Jesuits he entrusted, 310 
and translation of Elements from Persian 

into Sanskrit, 308 
did not incorporate telescope, 307 
rejected what would today be regarded as 

“superior” knowledge, 308 
Jehangir, Moghul emperor, 308 
Jerome, 20 
Jesuits, 74, 334

adapted gospels to suit local customs, 336 
and dates of Indian festivals, 336 
burning of earliest Aramaic Bibles in In­

dia, 324
Cochin college, 335
confident about their knowledge of In­

dian mathematics by 1610, 337 
differed radically from Indian ideas of 

holy men, 323
how Christian missionaries made Cochin 

their first base, 345
initial support for Christian missionaries 

from local population near Cochin, 
346

interest in Indian calendar, 336

knew Malayalam in the 16th c. CE, 74 
related conversion to conquest, 335 
started printing presses in Tamil and 

Malayalam, 335
studied local customs for their objectives, 

336
success in educational held, 335 
translated local manuscripts, 336 

Justinian, 20
Jyesthadeva, 195, 196, 255, 313, 326 

contains no astrology, 205
jyolisa

as timekeeping, 205 
mistranslated as astrology, 205

kamdl, 232, see also rapalagai
and al Blrunl’s measurement of the size of 

the earth, 251
a formidable navigational instalment, 

252
accuracy and range in fingers, 245 
accuracy in modern terms, 250 
construction using finger measurements, 

245
distance between knots must be in har­

monic progression, 245 
golden ratio, 247
harmonic interpolation using two-scales, 

248
how used to measure pole-star altitude, 

243
lost tradition, 241
problem of harmonic interpolation and 

Vernier, 247
related to linger measurements, 244 
source, 241
theory compared with instrument, 245 
theory of its construction, 242 
truly complete navigational instrument, 

255
Kamalakara, astronomer in Jehangir’s court, 

308
Kant, Immanuel

geometry as a priori, 30 
mathematics prior to physics, 30 
motion not a priori, 30 
cjuote on fixity of pure reason, 81 
should logic be fixed a priori'', 81 

Karanapaddhati, 113, 148, 255, 326, 341 
al Kashi, 148, 149 
kalapayadi

coefficients for cosine series, 119
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sexagesimal expression given for n, 119 
Kautilya

right time for crossing the sea, 217 
Kepler, Johannes

accused of murdering Tycho, 349 
data led to Newtonian physics via infinite 

series, xxxvi
interest in astrology, 204 
lacks credibility, 349
made a living by casting horoscopes, 255 
probably obtained translations of Indian 

texts from Tycho Brahe’s papers, 384 
regarded astrology as natural profession 

for an astronomer, 349 
transformed Nilakantha’s orbits to helio­

centric frame, 350
why he needed to fudge his data, 350 

Keynes, J. M.
trickle-down theory, 277 

Khandakliadyaka, 194, 197, 394 
Khandanakhandakhadya, xlii 
al Khwarizmi, 73, 124, 395 
Kitab al-hisab al-hindi, 395 
Kitab al-jabr iua-l muqabala, 395 
kolpalagai, navigational instrument, 241 
Kriydkramakan, 154, 195, 326, 352

higher order interpolation in, 140 
notation for rational functions, 182 
sum of infinite series defined, 180 

Kunhi Kunhi Maestry
how he earned his living, 255

La Disme, 338 
Ibn Labban, 395
Laghu Bhdskariya, 194, 237, 255, 322, 332, 333 

a practical manual of astronomy known to 
navigators, 255

and counting of days elapsed since 
equinox, 333

Indian prime meridian defined, 237 
its techniques replaced by inferior tra­

verse tables, 258 
local circumference of earth, 237 
longitude and departure related, 254 
longitude and time difference in observa­

tion of eclipse, 237
longitude determination using a clepsy­

dra, 371
longitude determined by eclipse method, 

253
solar altitude and declination related to 

local latitude, 333

solution to problem of measuring latitude 
in daytime, 332

time difference and physical distance 
from prime meridian, 237 

Udayadivakara’s Sundan on, 198 
were its method known to Lakshadweep 

islanders?, 254 
widely distributed, 74, 255 

Laghuvivrti, 113, 195
coefficients for computing trigonometric 

values, 120 
Lakshadweep, 252 
Lalla

chapter on false notions, 214 
latitude, see also kamal 

and ahargana, 221 
and pole star altitude, 219 
determination and arctangents, 220 
determination in day required a good cal­

endar and a day-count, 333 
determination of equinoctial midday 

shadow described by Vatesvara, 220 
determination required a reformed Euro­

pean calendar, 334
equinoctial midday shadow related to 

pole star by Vatesvara, 220 
European difficulties with their ritual cal­

endar, 259
from equinoctial midday shadow, and 

Bhaskara I’s description, 219 
limitations in using the pole-star, 332 
measurement in daytime according to 

Bhaskara, 332
need of precise trigonometric values, 337 
pole star altitude and triangle-instrument, 

220
related to solar altitude and declination 

by Bhaskara, 333
Vasco da Gama failed to comprehend the 

kamal, 331 
Lebesgue integral 

and 0 • oo, 96 
and extended reals, 95 
few physicists and engineers use it, 76 

Leibniz
and navigational problem, 260 
his date long after Indian series, 313 
made no fundamental epistemological 

advance in the calculus, 113 
relation of his work to Indian work not 

studied, 327 
series for n, 112
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Lildvati, xlii
Liu Hui, 148, 149
logic

2- valued logic not universal, 88
3- valued logic used by Reichenbach lor

q.m., 82
Ajatasattu’s appraisal of Sanjay’s logic, 84 
appealing to empirical may not lead to a 

2-valued logic, 89
appealing to empirical would legitimize 

empirical in mathematics, 89 
as the basis of mathematical proof, 81 
Bhadrabahu’s ten-limbed syllogism, 82 
Buddhist logic and Buddhist instant, 86 
Buddhist logic as quasi truth-functional, 

83
Buddhist logic related to Haldane’s view, 

83
Buddhist logic related to Jain, 86 
cannot be fixed without appealing to God 

or social authority, 88 
cultural dependence, 77 
deduction not infallible, 80 
dependence of theorem-hood upon, 80 
did Dinnaga ignore problem of identity 

across time?, 88
did Dinnaga start with 2-valued logic?, 88 
four-alternatives, 84
Haldane’s interpretation of syadavada, 82 
Jain logic of syadavada, 81 
many-valued, 86 
pre-Buddhist, 84 
predicate calculus of Dinnaga, 86 
quantifiers introduced by Dinnaga, 88 
quasi truth-functional, 78 
quasi truth-functional and q.m., 86 
truth tables for 3-valued logic, 78 

Lokayata
counterpart in Epicureans, 70 
would reject Plato, 71 

longitude
Aryabhata on time variations across the 

globe, 223 
tirfa calculation, 227
al Biruni’s determination of the size of the 

earth, 231
and chronometer, 223 
calculation from size of the earth, 229 
Columbus’ erroneous estimate, 228 
computed from a solution of triangles, 

230
determination at sea using karndl, 252

determination by solution of plane trian­
gles criticised by Vatesvara, 227 

determination using clepsydra, described 
by Bhaskara I, 224 

determined using a clepsydra, 343 
difficulties in using the chronometer in 

late 1864, 261‘
formation of British Board of Longitude 

in 1714,261
geometry of al Birunl’s determination of 

the size of the earth, 233 
method of dead reckoning, 228 
Newton’s deposition before British parlia­

ment, 260
Newton’s incorrect estimate of size of 

globe, 228
practical difficulties in using chronome­

ters, 331
related to departure by Bhaskara I, 226 
Royal Academy improvement of using the 

telescope and eclipses of the moons 
of Jupiter, 260

size of the globe from al Ma’mun’s expe­
dition, 231

solution of plane vs spherical triangles in 
Bhaskara I, 227 

loxodromes
calculation equivalent to knowledge of 

fundamental theorem of calculus, 
339

calculation required precise trigonomet­
ric values, 74

how did Mercator calculate them?, 339 
need of precise trigonometric values, 338 
problem preceded longitude problem, 

331
represented by straight lines on Merca­

tor’s map, 338
required for Dead Reckoning, 260 

Lukasiewicz, Jan, 78

Madhava, of Saiigamagrama, 111, 113, 114, 
148, 197, 313, 326 

accuracy of sine table, 122 
and vdrasankalitd, 162 
and channels of communication in India, 

310
and series expansion for arctan, 169 
and value of radius used by Clavius, 348 
computation of bis coefficients requires ir 

accurate to at least 8 decimal places, 
111
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credited for sine series by Nilakantha, 110 
felt need for greater accuracy, 147 
Govindasvamin first attempted what he 

achieved, 147
Govindasvamin’s value less accurate than 

his, 147
his compact trigonometric tables most ac­

curate available in 16th and 17th c. 
GE, 341

his series method derives from Aryabhata, 
149

his technique used to calculate 7r to 17 
places, 171

precision to the third minute, xi 
relating his series to European use of cal­

culus, 327 
sine table, 121
sine values accurate to thirds, 143 
sine values compared to Vatesvara’s and 

Aryabhata’s, 114
square-root technique discarded by his 

time, 149
subtle value of n, 119 
were his values known in Lakshadweep?, 

254
Mahd Bhdskanya, 255, 369 
MahdSiddhdnla, 199 
MahavTra

Jain mathematics not fundamentally dif­
ferent, xlii

solution of quadratic equations, 398 
sum of arithmetic progression, 162 
sum of geometric progression, 199 
translated into Arabic, 419 

Maldives, 217
Malemo Cana, Indian navigator used by Vasco 

da Gama, 217 
al Ma’mun

expedition, 231 
Margarita Philosophica, 74 
math education

current math wars in the US, 412 
implications of two streams of maths, 413 
K-12 children should be taught math 

with the epistemology in which it 
originated, 417

much of K-12 math originated outside 
Europe, 412

phvlogeny is ontogeny, 412 
root cause of learning difficulties specific 

to math, 412

to learn from history' a valid history is 
needed,413

what makes math difficult today?, 416 
why do K-12 students find math especially 

difficult, 411
will computers fundamentally change 

math, 411 
math wars

due to epistemological strife, xl 
first war over algorismus, 414 
root cause, 416
second math war over calculus, 415 
third math war over computers, 415 

mathematics
and religion, 16 
as a spiritual exercise, 61 
as part of religious and political philoso­

phy of Neoplatonism, 16 
as proof, xxxviii
defined as concerning proof, xxxviii 
defined as invented in Greece, xxxviii, 10 
Indian mathematics not separated from 

physics, 66
its importance reduced to that of a social 

event, 400
must all calculation forever remain erro­

neous?, 402
present definition is culture-dependent, 

10
proof as necessary truth, 10 

Mazarin, Cardinal, 260, 330 
Menaechmus, 12 
Meno, 16
Mercator, Gerhard, 74

how did he calculate loxodromes?, 339 
why his sources were myster ious, 347 
worked with Gemma Frisius, 324 

Mercator, N., 384 
meru prastdra

and Pascal’s triangle, 313 
de Morgan, Augustus, 31

Nagarjuna, 81, 84, 85, 96, 400
sunyavada as antithesis of idealism, 405 
vs Plato, 389 

Narayana Pandit, 194
and sharing of information between 

Cochin and Benares, 310 
navigation

and triprasna, 219
average Arab navigator compared with 

Columbus and Vasco da Gama, 254
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dead reckoning explained, 327 
divergence of traditions in Lakshadweep 

islands, 241
European difficulty in using computa­

tional methods, 343 
European vs Indo-Arabic, 329 
Europeans picked up the lead by the end 

of the 18th c. CE, 252 
existed from earliest times, 217 
foremost problem in Europe for two and 

half centuries, 331
Gregorian calendar reform inadequate, 

260
ignorance acknowledged by various Euro­

pean governments 1530-1773, 330 
inaccuracies in Dead Reckoning due to 

the log, 328
involved stars and the size of globe, 148 
lack of good technique painful matter for 

Europe, 330
livelihood of Indian navigators and mon­

soons, 255
misrepresentation by colonial historians, 

254
Nearchus’ method of creeping along the 

coast, 216
reasons for unreliability of Dead Reckon­

ing, 328
rewards offered by European govern­

ments in 17th and 18th c. CE, 260 
techniques of celestial navigation learnt 

by Europeans in 16th c\, 259 
unreliability of heaving the log, 259 
was there organized navigation between 

Egypt and South America?, 306 
Western history biased by Western use of 

charts, 216
Navik Shastram, 240, 241 
Nazm al-iqd, 394
Nearchus, Alexander’s general, 216 
Needham, Joseph, 148, 149 
Newton, Isaac

and navigational problem, 260 
deep interest in religion, 204 
deposition before British Parliament, 260 
erroneous estimate of the size of the 

earth, 228
familiar with the work of Cavalieri et ah, 

384
his date long after Indian series, 313 
his sine series lacked the correction term, 

384

his summary of his priority dispute with 
Leibniz, 384

historians jump to him after Archimedes, 
xxxvi

irrelevance of retrospective disambigua­
tion of uxions, 383

made no fundamental epistemological 
advance in the calculus, 113 

relation of his work to Indian series not 
studied, 327

takes credit only for sine series, 384 
thought he was born on Christmas be­

cause of wrong calendar, 259 
threatened to withhold publication to 

demonstrate his priority, 312 
use of epistemological test in priority dis­

pute with Leibniz, 385 
wrongly credited with binomial expan­

sion, 313 
Newton, R. R., 298 
Nilakantha, 110, 149, 195, 313, 326

comment on Aryabhata’s use ot'asanna for 
computing circumference, 125 

different reading of coefficients, 197 
interpretation of Aryabhata’s key verse, 

132
similarity of his model with Tychonic 

model, 348
sum of geometric series and order count­

ing, 110
use of geometric arguments, 197 
used higher precision than Aryabhata, 

132
de Nobili, Roberto, 337 
non-representable, see also siinyavada

absence of mechanically representable 
notion of, 403 

and siinyavada, 400
and failure of various algebraic laws for 

numbers, 402
and oating point arithmetic on comput­

ers, 401
and idealist philosophy, 402 
and integer arithmetic on computers, 401 
drops out of calculation like zero, 400 
how the problem is bypassed, 389 
in algorismus, 397 

Nonius, Vernier-like instrument, 248 
“Noorie tables”, 241 
None s Nautical Tables, 241 
number, see also oating point number 

completeness of real numbers, 387
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oating point numbers required for use of 
calculus, 404

impossible to represent natural numbers 
on a computer, 93

in Indian mathematics distinguished 
from oats on a computer, 136 

int and oat on a computer can never be 
formal integers or reals, 94 

integers and reals on a computer, 91 
notions differed in the past and may differ 

in the future, 90
possibility of supertasks not assumed in 

Indian maths, 94 
real numbers as impractical, 91 
supertasks vs non-representables, 94 
why not use a number system larger than 

reals?, 391
Nunes, Pedro, 74, 248, 330 
Nydyavarltikd, 88 
nycthemeron

and ydima, 243

ODE
stiff, 143 

On Images, 386 
Origen, 19

“cyclic” time and equity, 19 
belief in pre-existence, 19 
rejected, 20

Paramesvara, 313 
Pascal’s triangle, 313

and Indian and Chinese sources, 352 
Pascal, Blaise

first appearance of calculus in Europe, 
xxxv i

his calculus methods similar to Indian 
methods, 351

lacks priority for calculus, 313 
used series similar to Indian infinite se­

ries, xxxvii 
Pdliganila, xlii, 194 
Peano’s axioms, 77, 94 
philosophy of mathematics 

default, xxxvii
usually traced to Greek roots, xxxvii 

philosophy of science
absence of university department in In­

dia, xxxvi
phylogeny as ontogeny, 412 
Picard, Jean, 228, 260 
Pingala, 313

Plato
cave simile and maths, 61 
denigration of mathematics, 70 
Euclid of Megara his contemporary, 11 
geometry and the soul, 61 
geometry cannot dream of real existence, 

70
ideal as real, 27
learning as recollection, quote from Meno, 

17
math teaching in Republic, 61 
mathematics ought not to be based on 

physics, 30
quote from Apology, 316 
quote on diagrams from Phaedo, 16 
rejected empirical as valueless, 77 
rejection of his principles by Lokayata, 71 
scientific speculations a crime in Athens, 

quote from Apology , 49 
thought applied math inferior to pure 

math, 72
vs Nagarjuna, 389 

Pliny, the Elder
Indian trade with Romans, 313 

Poincare, Henri
criterion of convenience, 99, 443, 454 
infinity of physical interpretations for 

same mathematics, 451
pole star

compared with magnetic compass, 242 
measurement of altitude using kamdl, 243 
measurement of altitude using fingers, 

242
Popper, Karl

criterion of refutability, 63 
falsifiability assumes contingency of em­

pirical world, 68
single exception disproves the rule, 69 

pramdna, 63, 77, 113
pratyaksa, 63, see also empirical, 66, 77, 89 
pre-calculus, xxxvii 
Principia Malhemalica, 378 
Prinsep, James, 242 
Proclus, 11

aims to bring out the religious dimension 
of mathematics, 16 

and mathematical applications, 71 
and religious persecution in Roman em­

pire, 16
appeal to empirical in SAS acceptable, 69 
as contemporary- of Aryabhata, 123
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did not regard empirical as disjoint from 
mathematical proof, 68 

does not claim originality for his Euclid,
31

does not see Euclid as originator of theo­
rems in Elements, 10 

Euclid not from Megara, 12 
first to speak of Euclid, 11 
followed Plato, 61
his philosophy better fits the Elements, 25 
ideal point and image of dot, 27 
if he errs, then no basis to believe in 

Euclid, 12
ignores Euclid’s philosophy, 13 
mathematics as a means of propagating 

religious beliefs, 18
mathematics as an instrument of religion, 

4
mathematics helps stir the memories of 

the soul, 18
mathematics like yoga, 5 
maths as a spiritual exercise, 61 
maths as middle ground, 61 
maths as science of learning, 61 
practical applications of maths inferior, 

71
regarded empirical as inferior, 77 
regarded maths as a means of moving 

away from the empirical, 68 
remark admits he is the first to mention 

Euclid, 13
response to Plato’s denigration of maths, 

70
would have rejected Hilbert’s view as un­

sound, 69
product of distributions

difficulties in defining, 434 
need to refer to the empirical, 443 
Schwartz impossibility theorem, 435 
selecting a product, 435 

proof
“theology, not mathematics”, 405 
as “incontrovertible”, 68 
as fulcrum of formal maths, 77 
as necessary truth, 62 
avoidance of images, 386 
based entirely on authority, 88 
believed origins of current mathematical 

notion, 10
can it involve the empirical?, 60 
example of how theorems vary with logic, 

80

its value rests on belief in universality of 
logic, 77

regarded by Indian tradition as less valu­
able than methods of calculation, 72 

role of diagrams essential to Proclus, 69 
role of religious politics in eliminating the 

empirical from mathematical proof, 
414

Ptolemy, 395
Aryabhata has a more accurate length of 

the year, 370
Almagest accretively contained material 

unknown to him, 274 
“observations” long known to be fabri­

cated, 298 
accretive work, 407 
accuracy to the third minute, 299 
arguments in Almagest compared with In­

dian texts, 300
back calculation of star positions, 298 
back-calculated “observations” prove ac­

cretion not fraud, 298 
citation from Almagest, 197 
claim that Indian epicyclic model derived 

from him, 297
could have directly obtained knowledge 

from India, 298
crudeness of Greek and Roman calen­

dar not compatible with knowledge 
attributed to him, 274 

current history biased by Byzantine 
sources, 297

dates used to date him were back- 
calculated, 298

did Hellenic astronomy develop indepen­
dent of arithmetic?, 274 

difficulty with fractions, multiplication 
and division, 129

difficulty with fractions, multiplication 
and square roots, 203 

difficulty with multiplication and division, 
408

epicyclic model widely attributed to him, 
297

explanation for use of sexagesimal sys­
tem, 407

how did he obtain his parameters?, 302 
how Indian knowledge could have been 

transmitted to Almagest, 297 
incorporates Egyptian knowledge, 203 
inputs from India, xii
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Islamic tables involved only the second 
minute, 408

lacked algorithm for square root, 129 
little evidence lor transmission lo India, 

297
no Hellenic antecedents for models of 

planetary motion, 274 
no past or future in Hellenic astronomy, 

302
sexagesimal system for fractions not used 

by Romans and Greeks, 407 
sexagesimal system represents Arab nota­

tion, 407
significance of Polaris in his star chart, 

299
transmission of epicyclic model to him, 

297
transmission of Indian knowledge to him 

via Arabs, 297
used only the chord, 203, 305 
was the Hellenic contribution to Almagest 

limited to the name of the author?, 
275

what evidence is there of his original con­
tribution?, 51

why did his work disappear from the Ro­
man empire?, 303 

Ptolemy I, Soter, 11
Greek-Hebrew numerals, 407 
Library known to have huge holdings, 

shortly after his death, 279 
neither he nor his army wrote all those 

books, 279
Ptolemy II, Philadelphus, 50

decree to confiscate books, 279 
Pythagoras

and learning as recollection, 16 
“Pythagorean theorem”, 69

as starting point of Indian geometry, 74 
one step metric proof, 31 
order in Elements irrelevant with metric 

approach, 31
proof in traditional geometry, 35 
well-known before Pythagoras, 33

quantum field theory, xxxvi, see also renormal­
ization

quantum mechanics
Many-Worlds interpretation distinguished 

from structured-time interpretation, 
78

needed to decide logic empirically, 60

possible worlds and quasi truth-functional 
logic, 78

Reichenbach’s interpretation, 78 
related to syadavada, 82 
structured-time interpretation distin­

guished from Reichenbach’s, 86

Ramachandran, G. N., 85 
refutability, 63 
Regiomontanus, 204

probably learnt of Aryabhata’s work 
through Arabs, 338 

Rehmani, ofKunhi Kunhi Maestry, 241 
Reichenbach, Hans, 82 
Reisch, Gregor, 74 
renormalization

configuration-space representation of the 
propagators, 439 

divergences of the S'-matrix, 441 
new prescription, 442 
propagators vs field equations, 440 

Republic, 61 
Ricci, Matteo, 74, 336 

letter to Maffei, 337 
Richelieu, Cardinal, 260 
Riemann, Bernhard, 95 
Risala at Mukutiyya, 148 
Rizvi, S. S. H., 251 
Roemer, Olaf, 260 
rounding, 128

differences in rounding conventions, 120 
exceptional cases, 136 
no mechanical rule in use, 136 

Rouse Ball, W. W. , xxxix 
Runge-Kutta methods, 141 
Russell, Bertrand

definition of mathematics, 27

sabda, 63, see also authority 
Sanghamitra, daughter of Ashoka the Great, 

217
Sanjaya Belatthaputta, 84, 85 
Sankara, founder of Advaita Vedanta, 5 
Sankara, 195, 196, 326

and brother patronized by Raja of 
Cochin, 323

as source of Yuktibhdsa commentary, 154 
author of Yuktidipika and Kriyakramakari, 

177
definition of sum of infinite series, 180 
derivation of correction term, 182 
enigmatic expression?, 183
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irrelevance of induction, 183 
key passage attributed to Tantrasangraha 

found in his commentary, 196 
method of deriving correction term 

attributed to “the teacher” , 200 
teacher dissatisfied with sthaulya, 182 

Sankara Varma, 195 
Sarnia, K. V, 127
side-angle-side theorem/postulate, 28
Schopenhauer, Arthur, 30
Schrodinger’s cat, 86
Schweitzer, Albert, 296
Seler, Eduard, 306
series

sloka for sine, 114
sloka for arcification of the sine, 169 
sloka for cosine, 115 
sloka for cosine translated, 115 
sloka for sine translated, 114, 118 
slenah sloka translated, 118 
coefficients for sine, 116 
computing sum of fcth powers, 161 
derivation ofarctan series, 169 
number of terms to be summed, 177 
power series expansion and computation 

of fractions, 157
rapidly convergent series for 7r, 170 

Shakespeare, William, 397 
shamam, 242

defined as distance to the horizon, 243 
shocks

and viscosity of earth’s core, 444 
deciding the form of the initial equations, 

448
derivation of junction conditions, 448 
derivation of two additional conditions, 

452
errors arising from neglect of viscosity 

and thermal conductivity, 445 
impossibility of rarefaction, 453 
inadequacy of Rankine-Hugoniot condi­

tions, 445
junction conditions for curved shocks, 

451
junctions conditions for plane shocks, 450 
method of deriving junction conditions, 

450
need to replace R-H conditions, 445 
shock structure vs Cauchy data, 446 

Shukla, K. S., 126 
Siddhanla, of Vatesvara, 227 
Sind-Hind, 223, 394

size of the globe, 231
sine

etymology, 114 
Sisyadhivrddhida, 214 
Smith, Elliot, 306 
Socrates

diagrams and recollection, 16 
questioning of slave boy, 17 
recollection and past lives, 19 

Sphere, of “Proclus” and Sacrobosco, 334 
Srldbara, 194

first correct expression for volume of 
sphere, 145

Stevin, Simon, xxxvi, 334 
Stirling’s interpolation formula, 141 
structured time 

and logic, 81 
Struik, D. J.

loxodromes and fundamental theorem of 
calculus, 339 

sulba sfdra
how did they obtain the square root of 2?, 

129
method of extracting roots compared to 

Aryabhata’s, 129
s / 2 , 9 l
value of 7T, 124, 125 

siinya, 95
and non-representables in sunyavada, 96 
and non-reprsentables in the algorismus, 

397
as non-representable rather than zero, 

400
sunyavada, see also non-representable

and non-representables in computer 
arithmetic, 400

as antithesis of Platonic idealism, 405 
compared with Platonism, 404 
emptiness of Platonic idealisms, 405 
point as empty conceptualisation of real 

dot, 405 
supertasks

hypocrisy of permitting in mathematics 
but not in metamathematics, 399 

permitting in metamathematics would 
make all formal theories decidable, 
399

scepticism about them disregarded solely 
on social grounds, 399 

their possibility not admitted by Indian 
tradition, 399 

surd, 398
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Sfuya Siddhânta, 135, 194, 213, 336, 348
does it represent earlier knowledge?, 298 
no sine value an integral multiple of 225, 

134
preceded Regiomontanus by 1200 years, 

204
rounding and Ranganatha’s commentary, 

198
slightly postdates conjectured date of 

Ptolemy, 297
takes epicyclic model for granted, 298 
trigonometric values precise to the first 

minute, 201
used epicycles with variable radii, 144 
what was the original method of deriving 

sine values?, 198 
Süryadev Yajvan, 133

reason for choosing 24 sine values, 135 
Swift, Jonathan, 72 
Syâdavâda, 81 
Sylvester, pope, see Gerbert 
Syntaxis, 334

Tantrasangraha, 111, 113, 326, 348 
TantrasangmhaVyâkhyâ, 110, 113, 196, 309, 

326
acceleration of convergence, 176 
PL 697, T 1251 and T 275, 196 

Ya’qub ibn Tariq, 394 
“Taylor” series, 112

found in Indian tradition, 112 
Taylor, Brook, xxxvi

made no fundamental epistemological 
advance in the calculus, 113 

Theaetetus, 10 
theorem

not a necessary truth, 62 
Thibaut, 313 
Tibbets, 240, 254 
timekeeping

Vedânga Jyotisa, 213
calendar required for agriculture, 207 
European calendar and Indian agricul­

ture, 207
used astronomy, 206 
was ritualistic in Europe, 206 
why was it important to ancient civiliza­

tions?, 206
why was it important?, 207 

Timur the lame, 310 
Tozzer, the Maya authority, 306 
trade

novel feature of European method of 
trading, 330 

transmission
absurdity of standard model, 277 
absurdity of the linkage to military victor)1,

277
algorismus, 309
bandwidth of information ows, 312 
cases of non-transmission should also be 

studied, 307
circumstantial evidence for transmission 

of calculus to Europe, 347 
does contact immediately lead to it?, 275 
epistemic test applied to calculus and al­

gorismus, 315
epistemological barriers and algorismus, 

275
epistemological barriers and delayed 

transmission of Elements, 275 
epistemological test of transmission, 314 
European requirement of accurate 

trigonometric values, 344 
Indian elephant, 306 
model of information sharing in current 

civil society, 311
need for a general model of information 

exchange, 277
non-transmission of Elements to China,

308
non-transmission of European knowledge 

to Jai Singh, 308
of Persian and Egyptian science to Greeks,

278
proposed standard of evidence, 314 
racist model and selection effects, 305 
reason why Elements were not transmitted,

309
route need not be most direct, 313 
standard of evidence, 313
summary of evidence for transmission of

/

calculus to Europe, 344 
test of epistemological continuity, 315 
three kinds of non-transmission, 310 
towards military victor in case of barbar­

ian incursions, 280
Toynbee’s theory of barbarian incursions 

modified, 277
transmission of Islamic rational theology 

from Baghdad to Samarkand, 308 
transmission of the transmission thesis, 

362
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unimportance of priority in traditional 
society, 311

varying standard of evidence used by 
Western historians, 313 

weakness of documentary evidence in re­
lation to epistemic, 314 

trigonometric values
and motivation for transmission of calcu­

lus, 344
Clavius lacked knowledge of elementary 

trigonometry needed to determine 
size of globe, 348

Clavius’ table lacks explanation, 347 
European interest in, 340 
Madhava’s values most accurate available 

in 16th and 17th c., 341 
needed for calculating loxodromes, 338 
needed for determination of longitude, 

341
needed for latitude determination, 337 
precise values needed to determine the 

size of the globe, 342 
unknown to Hellenic tradition, 203 

trigonometry
misrepresentation of its origins, 305 

Tsu Chhung-Chih, 148 
Mohammed bin Tughlak, 310 
Tycho Brahe

death due to poisoning, 349 
his observations came after his model, 349 
his observations inadequate for accuracy 

of Mars orbit, 349
“Tychonic” model remarkably similar to 

NTlakantha’s, 348

Udyotkara, 86, 88 
Ulugh Beg, 148, 307 
upamana, 63, see also analog)’
US School Mathematics Study Group, 25, 26

Varahamihira, 204, 223, 313
arguments why the earth does not rotate, 

215
Vasco da Gama, 240

alleged discovery oflndia, 217 
graduating the kamdl in inches, 332 
thought the Indian pilot told the distance 

by his teeth, 259, 329 
use of Indian navigator, 217 
used dead reckoning, 329 
was creeping along the coast, 216 

Vasubandhu, 86

Vatesvara, 114, 215, 220, 227 
and situation of earth, 236 
as critic of Brahmagupta, 236 
backward differentiation interpolation 

formula, 141
divided quadrant into 96 equal part, 143 
equinoctial midday shadow, 237 
most of his predecessors did not need to 

refute claims about at earth, 215 
on why the earth stands supportless, 214 
radius of circle and value of ir, 143 
sine values accurate to seconds, 143 
sine values compared to Aryabhata’s and 

Madhava’s, 114
starting point of interpolation procedure, 

143
value of 7T, 119
why he found Brahmagupta’s table gross, 

252
Vatesvara Siddhânla, 220 
Veddnga Jyotisa, 205, 213, 311, 341

de Nobili’s polemic against, 324, 348 
Vernier, Pierre, 247 

calliper, 248 
vidvdn

sloka beginning with, 116 
Vidyabhushan, S. C., 88 
Vijaynagar empire, 310

Wallis, John, xxxvii, 313 
Walshe, Maurice, 84 
Whish, Charles, xxxv 
Whitehead, A. N„ 60 
William of Moerbeke, 192

ydrna, see also prahara 
and zdm, 243 

yojana, 127, 227
Yuktibhdsd, 66, 74, 122, 140, 149, 150, 161, 

177, 255, 309, 326 
calculation of circumference, 154 
translated into Sanskrit, 309 
use of atomic theory in deriving series ex­

pansion, 378
used empirical procedures, 69 

Yuktidïpikâ
acceleration of convergence, 199 
similar to Kriyakrarnakan, 195 
similar to TantrasangrahaVydkhyd, 195

zâm, see also yarna
and shdmarn, 242
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and nycthemeron, 243 
change from unit of time to unit of dis­

tance, 243
definition and size of the earth, 216 
fixed, 243
its size and size of the earth, 233 
variable vs fixed, 243 

Ztj Jadid Muhammad Shahi, 308
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